1
|
Liu X, Liu H, Wang N, Lai S, Qiu C, Gao S, Huang T, Zhang W. The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury. Chem Biol Interact 2025; 408:111387. [PMID: 39824432 DOI: 10.1016/j.cbi.2025.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu2+ during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction. In the present study, we utilized three cardiac I/R model: isolated rat heart, in vivo model as well as cell culture, and demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu2+ during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction. Furthermore, we proved that the Cu2+ chelator TTM significantly mitigated the deleterious effects of Hcy and Cu2+ on CMECs and cardiac function both in vitro and in vivo. Mechanismly, the combinative effect of Hcy and Cu2+ are associated with the production of reactive oxygen species (ROS) and nitric oxide (NO) by NADPH oxidase (NOX) and endothelial nitric oxide synthase (eNOS), respectively. Subsequently, the overproduction of toxic peroxynitrite (ONOO-) induces CMECs necroptosis. The application of ROS scavengers in CMECs resulted in a notable reduction in necroptosis mediated by Hcy and Cu2+ under hypoxia/reperfusion (H/R) condition. These findings indicate that the mechanism by which Hcy and Cu2+ enhances cardiac dysfunction under I/R condition may be attributed to the stimulation of both NOX and eNOS activity, resulting in the generation of excessive ONOO- and subsequent necroptosis of CMECs.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Haipeng Liu
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Ning Wang
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Chengpeng Qiu
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Shansong Gao
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China
| | - Tianxiang Huang
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China
| | - Wan Zhang
- Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China.
| |
Collapse
|
2
|
Liu Y, Li Y, Shang Q, Cao J, Zhao W, Xin J, Luo X. Increased burden of enlarged perivascular spaces in patients with patent foramen ovale. Neuroradiology 2025; 67:57-64. [PMID: 39714481 DOI: 10.1007/s00234-024-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Patent foramen ovale (PFO) patients may experience states of hypoxia and hypoperfusion, which may increase the burden of enlarged perivascular spaces (EPVS). However, to our knowledge, no data are available regarding EPVS in PFO patients. This study sought to investigate if patients with PFO exhibit a heightened burden of EPVS and to identify the mediating factors between PFO and EPVS. METHODS A total of 108 consecutive PFO patients (PFO group) and 110 healthy controls (HC group) from January 2022 to February 2024 were enrolled. The differences in centrum semiovale EPVS (CSO-EPVS) and basal ganglia EPVS (BG-EPVS) scores between PFO and HC groups were compared. The correlations among PFO diameters, laboratory indexes, and EPVS burdens were analyzed. The relationships among them were obtained using mediation analysis. RESULTS Mean age of PFO and HC group was 47.68 ± 14.47 and 48.14 ± 12.84 years. The CSO-EPVS and BG-EPVS scores were higher in PFO group than HC group (P < 0.001). The CSO-EPVS and BG-EPVS scores for PFO group were concentrated in the ranges 1-3 and 1-2 points, while for HC group were concentrated in the range 0-1 points. A positive correlation among PFO diameters and CSO-EPVS score (r = 0.62, P < 0.001), BG-EPVS score (r = 0.63, P < 0.001), and homocysteine (HCY)(r = 0.21, P = 0.03) was observed. Mediation analysis indicated that higher HCY significantly mediated the relationship between PFO diameter and BG-EPVS burden in PFO patients (P < 0.05). CONCLUSION These findings revealed the presence of glymphatic dysfunction in patients with PFO. HCY may mediate the impact of PFO diameter on glymphatic function.
Collapse
Affiliation(s)
- Yangyingqiu Liu
- Department of Radiology, Binzhou Medical University, Zibo Central Hospital, Zibo, China
| | - Yuxuan Li
- Department of Radiology, Binzhou Medical University, Zibo Central Hospital, Zibo, China
- School of Medical Imaging, Shandong Second Medical University, Weifang, China
| | - Qun Shang
- Department of Radiology, Binzhou Medical University, Zibo Central Hospital, Zibo, China
| | - Jinfeng Cao
- Department of Radiology, Binzhou Medical University, Zibo Central Hospital, Zibo, China
| | - Wei Zhao
- Department of Ultrasound, Binzhou Medical University, Zibo Central Hospital, Zibo, China
| | - Jiaxiang Xin
- MR Research Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Xin Luo
- Department of Radiology, Binzhou Medical University, Zibo Central Hospital, Zibo, China.
- Department of Radiology, Binzhou Medical University, Zibo Central Hospital, Zibo, China, No. 10, South Shanghai Road, 255000.
| |
Collapse
|
3
|
Huang XP, Shi ZH, Ming GF, Xu DM, Cheng SQ. S-Allyl-L-cysteine (SAC) inhibits copper-induced apoptosis and cuproptosis to alleviate cardiomyocyte injury. Biochem Biophys Res Commun 2024; 730:150341. [PMID: 39018965 DOI: 10.1016/j.bbrc.2024.150341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Cardiomyocyte injury is closely related to various myocardial diseases, and S-Allyl-L-cysteine (SAC) has been found to have myocardial protective effects, but its mechanism is currently unclear. Meanwhile, copper also has various physiological functions, and this study found that copper inhibited cell viability in a concentration and time-dependent manner, and was associated with multiple modes of death. Elesclomol plus CuCl2 (ES + Cu) significantly inhibited cell viability, and this effect could only be blocked by copper chelator TTM, indicating that "ES + Cu" induced cuproptosis in cardiomyocytes. SAC reduced the inhibitory effects of high concentration copper and "ES + Cu" on cell viability in a concentration and time-dependent manner, indicating that SAC plays a cardioprotective role under stress. Further mechanism study showed that high concentration of copper significantly induced cardiomyocyte apoptosis and increased the levels of LDH, MDA and ROS, while SAC inhibited the apoptosis and injury of cardiomyocytes induced by copper. "ES + Cu" significantly increased intracellular copper levels and decreased the expression of FDX1, LIAS, Lip-DLST and Lip-DLAT; FDX1 siRNA did not affect the expression of LIAS, but further reduced the expression of Lip-DLST and Lip-DLAT; SAC did not affect the expression of these genes, but enhanced the effect of "ES + Cu" in down-regulating these gene expression and restored intracellular copper levels. In addition, "ES + Cu" reduced ATP production, weakened the activity of mitochondrial complex I and III, inhibited cell viability, and increased the contents of injury markers LDH, MDA, CK-MB and cTnI, while SAC significantly improved mitochondrial function injury and cardiomyocyte injury induced by "ES + Cu". Therefore, SAC can inhibit apoptosis and cuproptosis to play a cardioprotective role.
Collapse
Affiliation(s)
- Xiao-Pei Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, 450003, Henan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zan-Hua Shi
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha 410008, Hunan, China
| | - Guang-Feng Ming
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dao-Miao Xu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shu-Qiao Cheng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Yu B, Liu M, Jiang L, Xu C, Hu H, Huang T, Xu D, Wang N, Li Q, Tang BZ, Huang X, Zhang W. Aggregation-Induced Emission Photosensitizer-Engineered Anticancer Nanomedicine for Synergistic Chemo/Chemodynamic/Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2303643. [PMID: 38115727 DOI: 10.1002/adhm.202303643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Photodynamic therapy (PDT) with aggregation-induced emission (AIE) photosensitizers (PSs) is a promising therapeutic strategy to achieve better anticancer results. However, eradicating solid tumors completely by PDT alone can be difficult owing to the inherent drawbacks of this treatment, and the combination of PDT with other therapeutic modalities provides opportunities to achieve cooperative enhancement interactions among various treatments. Herein, this work presents the construction of a biocompatible nanocomposite, namely CaO2@DOX@ZIF@ASQ, featuring light-responsive reactive oxygen species (ROS) generation and tumor-targeting oxygen and hydrogen peroxide discharge, as well as controlled doxorubicin (DOX) and copper ion release, thus allowing the combined PDT/CT/CDT effect by AIE PS-enhanced PDT, DOX-based chemotherapy (CT), and copper-involved Fenton-like reaction-driven chemodynamic therapy (CDT). In vitro and in vivo studies verify that the generation of both ROS and O2 by this nanomedicine, stimulated by light, exhibits superior anticancer efficacy, alleviating tumor hypoxia and achieving synergistic PDT/CT/CDT therapeutic effect. This multifunctional nanomedicine remarkably suppresses the tumor growth with minimized systemic toxicity, providing a new strategy for constructing multimodal PDT/CT/CDT therapeutic systems to overcome hypoxia limitations, and potentially increase the antitumor efficacy at lower doses of PSs and chemotherapeutic drugs, thus minimizing potential toxicity to non-malignant tissues.
Collapse
Affiliation(s)
- Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
| | - Mingshan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Lei Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
| | - Chuan Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Huoli Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
| | - Tong Huang
- Department of Cardiothoracic Surgery, Zhongshan People's Hospital, Zhongshan, Guangdong, 528499, P. R. China
| | - Dunwu Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Ning Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Wan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine Nanchang, Nanchang, Jiangxi, 330000, P. R. China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| |
Collapse
|
5
|
Zhong W, Dong YJ, Hong C, Li YH, Xiao CX, Liu XH, Chang J. ASH2L upregulation contributes to diabetic endothelial dysfunction in mice through STEAP4-mediated copper uptake. Acta Pharmacol Sin 2024; 45:558-569. [PMID: 37903897 PMCID: PMC10834535 DOI: 10.1038/s41401-023-01174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
Endothelial dysfunction is a common complication of diabetes mellitus (DM) and contributes to the high incidence and mortality of cardiovascular and cerebrovascular diseases. Aberrant epigenetic regulation under diabetic conditions, including histone modifications, DNA methylation, and non-coding RNAs (ncRNAs) play key roles in the initiation and progression of diabetic vascular complications. ASH2L, a H3K4me3 regulator, triggers genetic transcription, which is critical for physiological and pathogenic processes. In this study we investigated the role of ASH2L in mediating diabetic endothelial dysfunction. We showed that ASH2L expression was significantly elevated in vascular tissues from diabetic db/db mice and in rat aortic endothelial cells (RAECs) treated with high glucose medium (11 and 22 mM). Knockdown of ASH2L in RAECs markedly inhibited the deteriorating effects of high glucose, characterized by reduced oxidative stress and inflammatory responses. Deletion of endothelial ASH2L in db/db mice by injection of an adeno-associated virus (AAV)-endothelial specific system carrying shRNA against Ash2l (AAV-shAsh2l) restored the impaired endothelium-dependent relaxations, and ameliorated DM-induced vascular dysfunction. We revealed that ASH2L expression activated reductase STEAP4 transcription in vitro and in vivo, which consequently elevated Cu(I) transportation into ECs by the copper transporter CTR1. Excess copper produced by STEAP4-mediated copper uptake triggered oxidative stress and inflammatory responses, resulting in endothelial dysfunction. Our results demonstrate that hyperglycemia triggered ASH2L-STEAP4 axis contributes to diabetic endothelial dysfunction by modulating copper uptake into ECs and highlight the therapeutic potential of blocking the endothelial ASH2L in the pathogenesis of diabetic vascular complications.
Collapse
Affiliation(s)
- Wen Zhong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Ye-Jun Dong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Yu-Hui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen-Xi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Xin-Hua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Jun Chang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
6
|
Wang M, Zheng L, Ma S, Lin R, Li J, Yang S. Cuproptosis: emerging biomarkers and potential therapeutics in cancers. Front Oncol 2023; 13:1288504. [PMID: 38023234 PMCID: PMC10662309 DOI: 10.3389/fonc.2023.1288504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The sustenance of human life activities depends on copper, which also serves as a crucial factor for vital enzymes. Under typical circumstances, active homeostatic mechanisms keep the intracellular copper ion concentration low. Excess copper ions cause excessive cellular respiration, which causes cytotoxicity and cell death as levels steadily rise above a threshold. It is a novel cell death that depends on mitochondrial respiration, copper ions, and regulation. Cuproptosis is now understood to play a role in several pathogenic processes, including inflammation, oxidative stress, and apoptosis. Copper death is a type of regulatory cell death(RCD).Numerous diseases are correlated with the development of copper homeostasis imbalances. One of the most popular areas of study in the field of cancer is cuproptosis. It has been discovered that cancer angiogenesis, proliferation, growth, and metastasis are all correlated with accumulation of copper ions. Copper ion concentrations can serve as a crucial marker for cancer development. In order to serve as a reference for clinical research on the product, diagnosis, and treatment of cancer, this paper covers the function of copper ion homeostasis imbalance in malignant cancers and related molecular pathways.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: Regulator of cell death. Cell Death Dis 2023; 14:648. [PMID: 37794028 PMCID: PMC10551038 DOI: 10.1038/s41419-023-06154-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Autophagy is the process by which cells degrade and recycle proteins and organelles to maintain intracellular homeostasis. Generally, autophagy plays a protective role in cells, but disruption of autophagy mechanisms or excessive autophagic flux usually leads to cell death. Despite recent progress in the study of the regulation and underlying molecular mechanisms of autophagy, numerous questions remain to be answered. How does autophagy regulate cell death? What are the fine-tuned regulatory mechanisms underlying autophagy-dependent cell death (ADCD) and autophagy-mediated cell death (AMCD)? In this article, we highlight the different roles of autophagy in cell death and discuss six of the main autophagy-related cell death modalities, with a focus on the metabolic changes caused by excessive endoplasmic reticulum-phagy (ER-phagy)-induced cell death and the role of mitophagy in autophagy-mediated ferroptosis. Finally, we discuss autophagy enhancement in the treatment of diseases and offer a new perspective based on the use of autophagy for different functional conversions (including the conversion of autophagy and that of different autophagy-mediated cell death modalities) for the clinical treatment of tumors.
Collapse
Affiliation(s)
- ShiZuo Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Yao
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Huan Yang
- The Second School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - ShuaiJie Liu
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - YanJiao Wang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
8
|
Zhang X, Shan G, Li N, Chen J, Ji C, Li X, Jiang L, Lee TKW, Keng VW, Zhao Y. An autophagy-inducing stapled peptide induces mitochondria dysfunction and triggers autotic cell death in triple-negative breast cancer. Cell Death Discov 2023; 9:303. [PMID: 37598181 PMCID: PMC10439894 DOI: 10.1038/s41420-023-01600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/06/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Autophagy is a lysosome-dependent bulk degradation process essential for cell viability but excessive autophagy leads to a unique form of cell death termed autosis. Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with notable defect in its autophagy process. In previous studies, we developed stapled peptides that specifically targeted the essential autophagy protein Beclin 1 to induce autophagy and promote endolysosomal trafficking. Here we show that one lead peptide Tat-SP4 induced mild increase of autophagy in TNBC cells but showed potent anti-proliferative effect that could not be rescued by inhibitors of programmed cell death pathways. The cell death induced by Tat-SP4 showed typical features of autosis including sustained adherence to the substrate surface, rupture of plasma membrane and effective rescue by digoxin, a cardioglycoside that blocks the Na+/K+ ATPase. Tat-SP4 also induced prominent mitochondria dysfunction including loss of mitochondria membrane potential, elevated mitochondria reactive oxygen species and reduced oxidative phosphorylation. The anti-proliferative effect of Tat-SP4 was confirmed in a TNBC xenograft model. Our study uncovers three notable aspects of autosis. Firstly, autosis can be triggered by moderate increase in autophagy if such increase exceeds the endogenous capacity of the host cells. Secondly, mitochondria may play an essential role in autosis with dysregulated autophagy leading to mitochondria dysfunction to trigger autosis. Lastly, intrinsic autophagy deficiency and quiescent mitochondria bioenergetic profile likely render TNBC cells particularly susceptible to autosis. Our designed peptides like Tat-SP4 may serve as potential therapeutic candidates against TNBC by targeting this vulnerability.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, P. R. China
| | - Gao Shan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, P. R. China
| | - Na Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China
| | - Jingyi Chen
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, P. R. China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaoxiao Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, P. R. China
| | - Vincent W Keng
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, P. R. China
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, P. R. China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, 518057, Shenzhen, P. R. China.
| |
Collapse
|
9
|
Santovito D, Steffens S, Barachini S, Madonna R. Autophagy, innate immunity, and cardiac disease. Front Cell Dev Biol 2023; 11:1149409. [PMID: 37234771 PMCID: PMC10206260 DOI: 10.3389/fcell.2023.1149409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autophagy is an evolutionarily conserved mechanism of cell adaptation to metabolic and environmental stress. It mediates the disposal of protein aggregates and dysfunctional organelles, although non-conventional features have recently emerged to broadly extend the pathophysiological relevance of autophagy. In baseline conditions, basal autophagy critically regulates cardiac homeostasis to preserve structural and functional integrity and protect against cell damage and genomic instability occurring with aging. Moreover, autophagy is stimulated by multiple cardiac injuries and contributes to mechanisms of response and remodeling following ischemia, pressure overload, and metabolic stress. Besides cardiac cells, autophagy orchestrates the maturation of neutrophils and other immune cells, influencing their function. In this review, we will discuss the evidence supporting the role of autophagy in cardiac homeostasis, aging, and cardioimmunological response to cardiac injury. Finally, we highlight possible translational perspectives of modulating autophagy for therapeutic purposes to improve the care of patients with acute and chronic cardiac disease.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Unit of Milan, Institute for Genetic and Biomedical Research (IRGB), National Research Council, Milan, Italy
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Serena Barachini
- Hematology Division, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosalinda Madonna
- Cardiology Division, Cardio-Thoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Surgical, Medical, Molecular Pathology & Critical Care Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Bai L, Wu Q, Zhang X, Zhao Y. Autosis as a selective type of cell death. Front Cell Dev Biol 2023; 11:1164681. [PMID: 37091978 PMCID: PMC10120328 DOI: 10.3389/fcell.2023.1164681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
|
11
|
Lu J, Liu J, Li A. Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis. J Zhejiang Univ Sci B 2022; 23:437-450. [PMID: 35686524 DOI: 10.1631/jzus.b2101075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sepsis is a condition of severe organ failure caused by the maladaptive response of the host to an infection. It is a severe complication affecting critically ill patients, which can progress to severe sepsis, septic shock, and ultimately death. As a vital part of the human innate immune system, neutrophils are essential in resisting pathogen invasion, infection, and immune surveillance. Neutrophil-produced reactive oxygen species (ROS) play a pivotal role in organ dysfunction related to sepsis. In recent years, ROS have received a lot of attention as a major cause of sepsis, which can progress to severe sepsis and septic shock. This paper reviews the existing knowledge on the production mechanism of neutrophil ROS in human organ function impairment because of sepsis.
Collapse
Affiliation(s)
- Jiaqi Lu
- Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jingyuan Liu
- Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ang Li
- Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| |
Collapse
|