1
|
Xu L, Liu H, Kong Y, Li L, Li J, Li K, Liang S, Chen B. Illuminating cisplatin-induced ferroptosis in non-small-cell lung cancer with biothiol-activatable fluorescent/photoacoustic bimodal probes. J Mater Chem B 2024; 13:239-248. [PMID: 39530521 DOI: 10.1039/d4tb01656d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ferroptosis modulation represents a pioneering therapeutic approach for non-small-cell lung cancer (NSCLC), where precise monitoring and regulation of ferroptosis levels are pivotal for achieving optimal therapeutic outcomes. Cisplatin (Cis), a widely used chemotherapy drug for NSCLC, demonstrates remarkable therapeutic efficacy, potentially through its ability to induce ferroptosis and synergize with other treatments. However, in vivo studies of ferroptosis face challenges due to the scarcity of validated biomarkers and the absence of reliable tools for real-time visualization. Biothiols emerge as suitable biomarkers for ferroptosis, as their concentrations decrease significantly during this process. To address these challenges, fluorescence/photoacoustic (PA) bimodal imaging offers a promising solution by providing more accurate in vivo information on ferroptosis. Therefore, the development of methods to detect biothiols using fluorescence/PA bimodal imaging is highly desirable for visualizing ferroptosis in NSCLC. In this study, we designed and constructed two activatable near-infrared (NIR) fluorescent/PA bimodal imaging probes specifically for visualizing ferroptosis by monitoring the fluctuations in biothiol levels. These probes exhibited excellent bimodal response performance in solution, cells, and tumors. Furthermore, they were successfully applied for real-time monitoring of biothiol changes during the ferroptosis process in NSCLC cells and tumors. Importantly, our findings revealed that the combined use of erastin and cisplatin exacerbates the consumption of biothiols, suggesting an enhancement of ferroptosis in NSCLC. This work not only provides powerful tools for monitoring in vivo ferroptosis but also facilitates the study of ferroptosis mechanisms and holds the potential to further advance the treatment of NSCLC.
Collapse
Affiliation(s)
- Li Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Hongwen Liu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yi Kong
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Lingyun Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jia Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Kang Li
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| |
Collapse
|
2
|
Xie B, Chen Q, Dai Z, Jiang C, Sun J, Guan A, Chen X. Prognostic significance of a 3-gene ferroptosis-related signature in lung cancer via LASSO analysis and cellular functions of UBE2Z. Comput Biol Chem 2024; 113:108192. [PMID: 39243550 DOI: 10.1016/j.compbiolchem.2024.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Ferroptosis is a newly identified form of non-apoptotic programmed cell death resulting from iron-dependent lipid peroxidation. It is controlled by integrated oxidation and antioxidant systems. Ferroptosis exerts a crucial effect on the carcinogenesis of several cancers, including pulmonary cancer. Herein, a ferroptosis-associated gene signature for lung cancer prognosis and diagnosis was identified using integrative bioinformatics analyses. From the FerrDB database, 256 ferroptotic regulators and markers were identified. Of these, 25 exhibited differential expression between lung cancer and non-cancerous samples, as evidenced by the GSE19804 and GSE7670 datasets from the GEO database. Utilizing LASSO Cox regression analysis on TCGA-LUAD data, a potent 3-gene risk signature comprising CAV1, RRM2, and EGFR was established. This signature adeptly differentiates various survival outcomes in lung cancer patients, including overall survival and disease-specific intervals. Based on the 3-gene risk signature, lung cancer patients were categorized into high-risk and low-risk groups. Comparative analysis revealed 69 differentially expressed genes between these groups, with UBE2Z significantly associated with overall survival in TCGA-LUAD. UBE2Z was found to be upregulated in LUAD tissues and cells compared to normal controls. Functionally, the knockdown of UBE2Z curtailed aggressive behaviors in LUAD cells, including viability, migration, and invasion. Moreover, this knockdown led to a decrease in the mesenchymal marker vimentin while elevating the epithelial marker E-cadherin within LUAD cell lines. In conclusion, the ferroptosis-associated 3-gene risk signature effectively differentiates prognosis and clinical features in patients with lung cancer. UBE2Z was identified through this model, and it is upregulated in LUAD samples. Its knockdown inhibits aggressive cellular behaviors, suggesting UBE2Z's potential as a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Bin Xie
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingyi Sun
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Anqi Guan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
3
|
Xie Q, Li W, Chen C, Yang Q, Jiang J, Cai X, Li R. Discovery of Lipoxygenase-Like Materials for Inducing Ferroptosis. ACS NANO 2024; 18:32438-32450. [PMID: 39532303 DOI: 10.1021/acsnano.4c04741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent research has highlighted the pivotal role of lipoxygenases in modulating ferroptosis and immune responses by catalyzing the generation of lipid peroxides. However, the limitations associated with protein enzymes, such as poor stability, low bioavailability, and high production costs, have motivated researchers to explore biomimetic materials with lipoxygenase-like activity. Here, we report the discovery of lipoxygenase-like two-dimensional (2D) MoS2nanosheets capable of catalyzing lipid peroxidation and inducing ferroptosis. The resulting catalytic products were successfully identified using mass spectrometry and a luminescent substrate. Unlike native lipoxygenases, MoS2 nanosheets exhibited exceptional catalytic activity at extreme pH, high temperature, high ionic strength, and organic solvent conditions. Structure-activity relationship analysis indicates that sulfur atomic vacancy sites on MoS2 nanosheets are responsible for their catalytic activity. Furthermore, the lipoxygenase-like activity of MoS2 nanosheets was demonstrated within mammalian cells and animal tissues, inducing distinctive ferroptotic cell death. In summary, this research introduces an alternative to lipoxygenase to regulate lipid peroxidation in cells, offering a promising avenue for ferroptosis induction.
Collapse
Affiliation(s)
- Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenjie Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Changzhi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- VSB-Technical University of Ostrava, CEET, Nanotechnology Centre, 17 listopadu 2172-15, Ostrava 70800, Czech Republic
| |
Collapse
|
4
|
Wessendorf-Rodriguez K, Ruchhoeft ML, Ashley EL, Galvez HM, Murray CW, Huang Y, McGregor GH, Kambhampati S, Shaw RJ, Metallo CM. Modeling compound lipid homeostasis using stable isotope tracing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618599. [PMID: 39463985 PMCID: PMC11507872 DOI: 10.1101/2024.10.16.618599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Lipids represent the most diverse pool of metabolites found in cells, facilitating compartmentation, signaling, and other functions. Dysregulation of lipid metabolism is linked to disease states such as cancer and neurodegeneration. However, limited tools are available for quantifying metabolic fluxes across the lipidome. To directly measure reaction fluxes encompassing compound lipid homeostasis, we applied stable isotope tracing, liquid chromatography-high-resolution mass spectrometry, and network-based isotopologue modeling to non-small cell lung cancer (NSCLC) models. Compound lipid metabolic flux analysis (CL-MFA) enables the concurrent quantitation of fatty acid synthesis, elongation, headgroup assembly, and salvage reactions within virtually any biological system. Here, we resolve liver kinase B1 (LKB1)-mediated regulation of sphingolipid recycling in NSCLC cells and precision-cut lung slice cultures. We also demonstrate that widely used tissue culture conditions drive cells to upregulate fatty acid synthase flux to supraphysiological levels. Finally, we identify previously uncharacterized isozyme specificity of ceramide synthase inhibitors. These results highlight the ability of CL-MFA to quantify lipid cycling in biological systems to discover biological function and elucidate molecular mechanisms in membrane lipid metabolism.
Collapse
|
5
|
Shan G, Bian Y, Yao G, Liang J, Shi H, Hu Z, Zheng Z, Bi G, Fan H, Zhan C. Targeting ALDH2 to augment platinum-based chemosensitivity through ferroptosis in lung adenocarcinoma. Free Radic Biol Med 2024; 224:310-324. [PMID: 39216560 DOI: 10.1016/j.freeradbiomed.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis is a regulated cell death driven by iron-dependent lipid peroxidation and associated with drug resistance in lung adenocarcinoma (LUAD). It's found that aldehyde dehydrogenase 2 (ALDH2), which is highly mutated in East Asian populations, is correlated with response to chemotherapy in LUAD patients. The rs671 variant knock-in, downregulation, and pharmacological inhibition of ALDH2 render LUAD cells more vulnerable to ferroptosis inducers and platinum-based chemotherapy. ALDH2 inhibits ferroptosis through the detoxification of 4-hydroxynonenal and malondialdehyde, the product of lipid peroxidation, as well as the production of NADH at the same time. Besides, ALDH2 deficiency leads to elevated intracellular pH (pHi), thus inhibiting the ERK/CREB1/GPX4 axis. Interestingly, ALDH2 is also regulated by CREB1, and the ALDH2 enzyme activity was decreased with elevated pHi. What's more, the elevated pHi caused by impaired ALDH2 activity promotes the biosynthesis of lipid droplets to counteract ferroptosis. At last, the effect of ALDH2 on ferroptosis and chemosensitivity is confirmed in patient-derived organoids and xenograft models. Collectively, this study demonstrates that ALDH2 deficiency confers sensitivity to platinum through ferroptosis in LUAD, and targeting ALDH2 is a promising new strategy to enhance the sensitivity of platinum-based chemotherapy for the treatment of LUAD patients.
Collapse
Affiliation(s)
- Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaolin Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Shu L, Luo P, Chen Q, Liu J, Huang Y, Wu C, Pan X, Huang Z. Fibroin nanodisruptor with Ferroptosis-Autophagy synergism is potent for lung cancer treatment. Int J Pharm 2024; 664:124582. [PMID: 39142466 DOI: 10.1016/j.ijpharm.2024.124582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Chemotherapy agents for lung cancer often cause apoptotic resistance in cells, leading to suboptimal therapeutic outcomes. FIN56 can be a potential treatment for lung cancer as it induces non-apoptotic cell death, namely ferroptosis. However, a bottleneck exists in FIN56-induced ferroptosis treatment; specifically, FIN56 fails to induce sufficient oxidative stress and may even trigger the defense system against ferroptosis, resulting in poor therapeutic efficacy. To overcome this, this study proposed a strategy of co-delivering FIN56 and piperlongumine to enhance the ferroptosis treatment effect by increasing oxidative stress and connecting with the autophagy pathway. FIN56 and piperlongumine were encapsulated into silk fibroin-based nano-disruptors, named FP@SFN. Characterization results showed that the particle size of FP@SFN was in the nanometer range and the distribution was uniform. Both in vivo and in vitro studies demonstrated that FP@SFN could effectively eliminate A549 cells and inhibit subcutaneous lung cancer tumors. Notably, ferroptosis and autophagy were identified as the main cell death pathways through which the nano-disruptors increased oxidative stress and facilitated cell membrane rupture. In conclusion, nano-disruptors can effectively enhance the therapeutic effect of ferroptosis treatment for lung cancer through the ferroptosis-autophagy synergy mechanism, providing a reference for the development of related therapeutics.
Collapse
Affiliation(s)
- Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China; Panyu Central Hospital Affiliated to Guangzhou Medical University, Guangzhou 511400, PR China
| | - Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Qingxin Chen
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Jingyang Liu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
7
|
Elsakka EGE, Midan HM, Abulsoud AI, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Abdelghany TM, Elesawy AE, Shahin RK, El Tabaa MM, Mohammed OA, Abdel-Reheim MA, Elballal MS, Doghish AS. Emerging insights: miRNA modulation of ferroptosis pathways in lung cancer. Exp Cell Res 2024; 442:114272. [PMID: 39362302 DOI: 10.1016/j.yexcr.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The newly discovered programmed iron-dependent necrosis, ferroptosis, is a novel pathway that is controlled by iron-dependent lipid peroxidation and cellular redox changes. It can be triggered intrinsically by low antioxidant enzyme activity or extrinsically by blocking amino acid transporters or activating iron transporters. The induction of ferroptosis involves the activation of specific proteins, suppression of transporters, and increased endoplasmic reticulum (ER) stress (a condition in which the ER, a crucial organelle involved in protein folding and processing, becomes overwhelmed by an accumulation of misfolded or unfolded proteins. This situation disrupts the normal functioning of the ER, leading to a cellular stress response known as the unfolded protein response), leading to lipid peroxidation byproduct accumulation and toxic reactive oxygen species (ROS), which are highly reactive molecules derived from diatomic oxygen and include various forms such as superoxide (O₂⁻), hydroxyl radicals (•OH), and hydrogen peroxide (H₂O₂). Ferroptosis is closely associated with signaling molecules in lung cancer, including epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1-alpha (HIF-1α), and P53, and is regulated by epigenetic factors such as microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Several miRNAs have been found to modulate ferroptosis by targeting key genes involved in iron metabolism, lipid peroxidation, and antioxidant defense pathways. The research on ferroptosis has expanded to target its role in lung cancer treatment and resistance prevention. This review encapsulates the significance of ferroptosis in lung cancer. Understanding the mechanisms and implications of ferroptosis in lung cancer cells may lead to targeted therapies exploiting cancer cell vulnerabilities to ferroptosis Also, improving treatment outcomes, and overcoming resistance.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
8
|
Wang TT, Yu LL, Zheng JM, Han XY, Jin BY, Hua CJ, Chen YS, Shang SS, Liang YZ, Wang JR. Berberine Inhibits Ferroptosis and Stabilizes Atherosclerotic Plaque through NRF2/SLC7A11/GPX4 Pathway. Chin J Integr Med 2024; 30:906-916. [PMID: 39167283 DOI: 10.1007/s11655-024-3666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Li-Li Yu
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jun-Meng Zheng
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xin-Yi Han
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Bo-Yuan Jin
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Cheng-Jun Hua
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yu-Shan Chen
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Sha-Sha Shang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Ya-Zhou Liang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jian-Ru Wang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
9
|
Dong J, Qi F, Qie H, Du S, Li L, Zhang Y, Xu K, Li D, Xu Y. Oleic Acid Inhibits SDC4 and Promotes Ferroptosis in Lung Cancer Through GPX4/ACSL4. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70014. [PMID: 39400975 PMCID: PMC11471947 DOI: 10.1111/crj.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION As a common malignancy, lung cancer has a relatively poor prognosis and a low survival rate. In recent years, ferroptosis, as an emerging filed, has great promise in the potential treatment of cancer. Brucea javanica oil (BJO) is often used to treat various cancers. Oleic acid (OA) is the main ingredient of BJO. In this study, we investigated the role and molecular mechanism of OA in lung cancer treatment by promoting ferroptosis. METHODS In this study, A549 cells and H1299 cells were used for in vitro experiments, and a CCK-8 test, scratch test, and MTT experiment were carried out. We examined reactive oxygen species (ROS), the JC-1 probe, glutathione (GSH) expression, lipid peroxidation, SDC4 mRNA levels, and ACSL4, SLC7A11, GPX4, and SDC4 protein levels. RESULTS The results showed that OA could inhibit the proliferation and migration of A549 cells and H1299 cells, SDC4 was a potential therapeutic target of OA against lung cancer, and OA treatment significantly inhibited the expression of SDC4 in A549 cells and H1299 cells. OA induces ferroptosis in A549 cells and H1299 cells, decreases GSH levels, increases lipid peroxidation levels, and decreases SDC4 mRNA expression; in addition, OA upregulates ACSL4 expression and decreases SLC7A11, GPX4, and SDC4 expression. CONCLUSION This study confirmed that OA could inhibit SDC4 expression and promote the occurrence of ferroptosis in A549 cells and H1299 cells through the GPX4/ACSL4 pathway, providing an effective basis for the use of drugs targeting ferroptosis in lung cancer treatment.
Collapse
Affiliation(s)
- Jingfei Dong
- Department of Clinical Laboratory, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Fei Qi
- School of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei, China
| | - Huiqing Qie
- Department of Clinical Laboratory, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shibu Du
- Department of Clinical Laboratory, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Li Li
- Department of Health Care, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yan Zhang
- Department of Functional Medicine, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Kaiyue Xu
- Department of Clinical Laboratory, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Dehui Li
- Department of Oncology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yapei Xu
- Gastrointestinal Endoscopy Room, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Xu K, Wei G, Qi W, Ye C, Liu Y, Wang S, Yang F, Tang J. CircPOLA2 sensitizes non-small cell lung cancer cells to ferroptosis and suppresses tumorigenesis via the Merlin-YAP signaling pathway. iScience 2024; 27:110832. [PMID: 39310771 PMCID: PMC11416675 DOI: 10.1016/j.isci.2024.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/14/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Circular RNAs (circRNAs) have been implicated in the tumorigenesis of non-small cell lung cancer (NSCLC). Ferroptosis is considered a mechanism to suppress tumorigenesis. Herein, we identified a downregulated circRNA, circPOLA2 (hsa_circ_0004291), in NSCLC tissues and found that it was correlated with advanced clinical stage in patients. Nuclear-cytoplasmic fractionation assays and FISH assays confirmed that circPOLA2 was predominantly localized in the cytoplasm. Overexpression of circPOLA2 promoted lipid peroxidation and ferroptosis in NSCLC cells, thereby inhibiting cell proliferation and migration, while knockdown of circPOLA2 exerted the opposite effects. Mechanistically, circPOLA2 interacted with Merlin, a critical regulator of the Hippo pathway, and restricted Merlin phosphorylation at S518, leading to the activation of the Hippo pathway. In addition, circPOLA2 enhanced ferroptosis in NSCLC cells by activating the Hippo pathway. Together, circPOLA2 sensitizes cells to ferroptosis and suppresses tumorigenesis in NSCLC by facilitating Merlin-mediated activation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Kaiying Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Guangxia Wei
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Wanghong Qi
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Chunlin Ye
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Yangyang Liu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Shijiang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Feng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, People's Republic of China
- National Regional Center for Respiratory Medicine, China Japan Friendship Jiangxi Hospital, Nanchang 330000, People's Republic of China
| |
Collapse
|
11
|
Liu M, Gao S, Wang Y, Yang X, Fang H, Hou X. Discovery of a Novel Benzimidazole Derivative Targeting Histone Deacetylase to Induce Ferroptosis and Trigger Immunogenic Cell Death. J Med Chem 2024; 67:15098-15117. [PMID: 39145486 DOI: 10.1021/acs.jmedchem.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferroptosis is a unique type of cell death, characterized by its reliance on iron dependency and lipid peroxidation (LPO). Consequently, small-molecule ferroptosis modulators have garnered substantial interest as a promising avenue for cancer therapy. Herein, we explored the ferroptosis sensitivity of epigenetic modulators and found that the antiproliferative effects of class I histone deacetylase (HDAC) inhibitors are significantly reliant on ferroptosis. Subsequently, we developed a novel series of HDAC inhibitors, identifying HL-5s with robust inhibitory activity against class I HDACs, particularly HDAC1. Notably, HL-5s induces ferroptosis by augmenting LPO production. Mechanistically, HL-5s increased the YB-1 acetylation and inhibited the Nrf2/HO-1 signaling pathway. Furthermore, HL-5s not only significantly suppresses tumor growth in the PC-9 xenograft model but also remodels the tumor microenvironment in the LLC allograft model. Our study has unveiled that class I HDAC inhibitors can exert antitumor effects by triggering ferroptosis, and HL-5s may serve as a promising candidate for future cancer treatment.
Collapse
Affiliation(s)
- Meng Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Shan Gao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 26003, P. R. China
| | - Xinying Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Hao Fang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xuben Hou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
12
|
Wang S, Guo S, Guo J, Du Q, Wu C, Wu Y, Zhang Y. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm (Beijing) 2024; 5:e693. [PMID: 39239068 PMCID: PMC11374700 DOI: 10.1002/mco2.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy's future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing Guo
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cen Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yeke Wu
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
13
|
Tian X, Fu K, Huang X, Zou H, Shi N, Li J, Bao Y, He S, Lv J. Ferroptosis in the adjuvant treatment of lung cancer-the potential of selected botanical drugs and isolated metabolites. Front Pharmacol 2024; 15:1430561. [PMID: 39193342 PMCID: PMC11347298 DOI: 10.3389/fphar.2024.1430561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Ferroptosis represents a distinct form of cell death that is not associated with necrosis, autophagy, apoptosis, or pyroptosis. It is characterised by intracellular iron-dependent lipid peroxidation. The current literature indicates that a number of botanical drugs and isolated metabolites can modulate ferroptosis, thereby exerting inhibitory effects on lung cancer cells or animal models. The aim of this review is to elucidate the mechanisms through which botanical drugs and isolated metabolites regulate ferroptosis in the context of lung cancer, thereby providing potential insights into lung cancer treatment. It is crucial to highlight that these preclinical findings should not be interpreted as evidence that these treatments can be immediately translated into clinical applications. In the future, we will continue to study the pharmacology, pharmacokinetics and toxicology of these drugs, as well as evaluating their efficacy and safety in clinical trials, with the aim of providing new approaches to the development of new agents for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Tian
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunling Fu
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuemin Huang
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Haiyan Zou
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nianmei Shi
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiayang Li
- Office of Drug Clinical Trial Institution, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuxiang Bao
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junyuan Lv
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Fu R, You Y, Wang Y, Wang J, Lu Y, Gao R, Pang M, Yang P, Wang H. Sanggenol L induces ferroptosis in non-small cell lung cancer cells via regulating the miR-26a-1-3p/MDM2/p53 signaling pathway. Biochem Pharmacol 2024; 226:116345. [PMID: 38852643 DOI: 10.1016/j.bcp.2024.116345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis is a regulated cell death marked by iron-dependent lipid peroxidation. Tumor cells that survive by evading chemotherapy-induced apoptosis are vulnerable to ferroptosis. Therefore, it is particularly urgent to explore active ingredients that can selectively induce ferroptosis in cancer cells. Here, we revealed that sanggenol L, the active agent of Morus Bark, predisposed non-small cell lung cancer (NSCLC) cells to ferroptosis, evidenced by reactive oxygen species (ROS) accumulation, glutathione depletion, mitochondrial shrinkage, and lipid peroxidation. Furthermore, the ferroptosis-related miRNA array showed that sanggenol L treatment upregulated the level of miR-26a-1-3p, which directly targeted the E3 ubiquitin ligase MDM2. In addition, silencing MDM2 by miR-26a-1-3p resulted in a notable increase in p53 protein levels and decrease of its downstream target SLC7A11, ultimately triggered ferroptosis. The subcutaneous xenograft model and patient-derived tumor xenograft (PDX) model of NSCLC further confirmed the anti-tumor efficacy and safety of sanggenol L in vivo. Collectively, our data suggest that miR-26a-1-3p/MDM2/p53/SLC7A11 signaling axis plays a key role in sanggenol L-induced ferroptosis, which implies that sanggenol L can serves as an anticancer therapeutic arsenal for NSCLC.
Collapse
Affiliation(s)
- Rong Fu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Yujie You
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqing Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jue Wang
- Department of Prosthodontics, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yu Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Min Pang
- Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Shanxi Province Key Laboratory of Respiratory Disease, Taiyuan, China.
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Hailong Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
15
|
Yuhao W, Shenghua C, Jueying C, Shate X, Rongrong S, Xiangfeng S. Targeting ferroptosis regulators in lung cancer: Exploring natural products. Heliyon 2024; 10:e33934. [PMID: 39104501 PMCID: PMC11298827 DOI: 10.1016/j.heliyon.2024.e33934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Lung cancer remains a formidable global health challenge, necessitating innovative therapeutic strategies for improved efficacy. This review explores the untapped potential of natural products and Traditional Chinese Medicine (TCM) in lung cancer therapy, focusing on targeting ferroptosis regulators. Natural compounds, such as curcumin and resveratrol, exhibit diverse anti-cancer mechanisms, complemented by TCM's holistic approach rooted in a 3500-year history. Emphasizing the induction of cell death, particularly ferroptosis, the review highlights its significance in overcoming challenges like resistance to conventional therapies. Key ferroptosis regulators are explored in the context of natural products and TCM. The impact of these treatments on crucial pathways, such as antioxidant mechanisms (GPX4, SLC7A11, and NRF2), iron metabolism regulators, and lipid and mitochondria pathways, is examined. The findings provide a comprehensive overview of how natural products and TCM modulate ferroptosis in lung cancer, offering valuable insights for the development of innovative, side-effect-reduced therapeutic strategies. This work holds promise for transforming the landscape of lung cancer treatment by integrating the rich resources of nature into conventional therapeutic paradigms.
Collapse
Affiliation(s)
- Wang Yuhao
- Graduated College, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Cheng Shenghua
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Chen Jueying
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| | - Xiang Shate
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Song Rongrong
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Shen Xiangfeng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| |
Collapse
|
16
|
Ma R, Hu K, Dai S, Wang Y. Overexpression of transcription factor TBX5 inhibits the activation of YAP1-TEAD1 pathway to promote ferroptosis in lung cancer cells. Biochem Biophys Res Commun 2024; 718:150037. [PMID: 38735135 DOI: 10.1016/j.bbrc.2024.150037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for more than 80 % of lung cancer (LC) cases, making it the primary cause of cancer-related mortality worldwide. T-box transcription factor 5 (TBX5) is an important regulator of embryonic and organ development and plays a key role in cancer development. Here, our objective was to investigate the involvement of TBX5 in ferroptosis within LC cells and the underlying mechanisms. METHODS First, TBX5 expression was examined in human LC cells. Next, overexpression of TBX5 and Yes1-associated transcriptional regulator (YAP1) and knockdown of TEA domain 1 (TEAD1) were performed in A549 and NCI-H1703 cells. The proliferation ability of A549 and NCI-H1703 cells, GSH, MDA, ROS, and Fe2+ levels were measured. Co-immunoprecipitation (Co-IP) was performed to verify whether TBX5 protein could bind YAP1. Then TBX5, YAP1, TEAD1, GPX4, p53, FTH1, SLC7A11 and PTGS2 protein levels were assessed. Finally, we verified the effect of TBX5 on ferroptosis in LC cells in vivo. RESULTS TBX5 expression was down-regulated in LC cells, especially in A549 and NCI-H1703 cells. Overexpression of TBX5 significantly decreased proliferation ability of A549 and NCI-H1703 cells, downregulated GPX4 and GSH levels, and upregulated MDA, ROS, and Fe2+ levels. Co-IP verified that TBX5 protein could bind YAP1. Moreover, oe-YAP1 promoted proliferation ability of A549 and NCI-H1703 cells transfected with Lv-TBX5, upregulated GPX4 and GSH levels and downregulated MDA, ROS, and Fe2+ levels. Additionally, oe-YAP1 promoted FTH1 and SLC7A11 levels and inhibited p53 and PTGS2 levels in A549 and NCI-H1703 cells transfected with Lv-TBX5. However, transfection with si-TEAD1 further reversed these effects. In vivo experiments further validated that TBX5 promoted ferroptosis in LC cells. CONCLUSIONS TBX5 inhibited the activation of YAP1-TEAD1 pathway to promote ferroptosis in LC cells.
Collapse
Affiliation(s)
- Ruoting Ma
- General Medicine Department, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| | - Ke Hu
- Medical College, Hunan University of Medicine, Huaihua, 418000, Hunan, PR China
| | - Siyuan Dai
- Geriatric Medicine Department, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Yiqun Wang
- Geriatric Medicine Department, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| |
Collapse
|
17
|
Hou Y, Wang H, Wu J, Guo H, Chen X. Dissecting the pleiotropic roles of reactive oxygen species (ROS) in lung cancer: From carcinogenesis toward therapy. Med Res Rev 2024; 44:1566-1595. [PMID: 38284170 DOI: 10.1002/med.22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Lung cancer is a major cause of morbidity and mortality. The specific pulmonary structure to directly connect with ambient air makes it more susceptible to damage from airborne toxins. External oxidative stimuli and endogenous reactive oxygen species (ROS) play a crucial role in promoting lung carcinogenesis and development. The biological properties of higher ROS levels in tumor cells than in normal cells make them more sensitive and vulnerable to ROS injury. Therefore, the strategy of targeting ROS has been proposed for cancer therapy for decades. However, it is embarrassing that countless attempts at ROS-based therapies have had very limited success, and no FDA approval in the anticancer list was mechanistically based on ROS manipulation. Even compared with the untargetable proteins, such as transcription factors, ROS are more difficult to be targeted due to their chemical properties. Thus, the pleiotropic roles of ROS provide therapeutic potential for anticancer drug discovery, while a better dissection of the mechanistic action and signaling pathways is a prerequisite for future breakthroughs. This review discusses the critical roles of ROS in cancer carcinogenesis, ROS-inspired signaling pathways, and ROS-based treatment, exemplified by lung cancer. In particular, an eight considerations rule is proposed for ROS-targeting strategies and drug design and development.
Collapse
Affiliation(s)
- Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Heng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Department of Pharmaceutical Sciences, University of Macau, Taipa, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, China
| |
Collapse
|
18
|
Wang Y, Hu J, Fleishman JS, Li Y, Ren Z, Wang J, Feng Y, Chen J, Wang H. Inducing ferroptosis by traditional medicines: a novel approach to reverse chemoresistance in lung cancer. Front Pharmacol 2024; 15:1290183. [PMID: 38855750 PMCID: PMC11158628 DOI: 10.3389/fphar.2024.1290183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is the leading cause of global cancer-related deaths. Platinum-based chemotherapy is the first-line treatment for the most common type of lung cancer, i.e., non-small-cell lung cancer (NSCLC), but its therapeutic efficiency is limited by chemotherapeutic resistance. Therefore, it is vital to develop effective therapeutic modalities that bypass the common molecular mechanisms associated with chemotherapeutic resistance. Ferroptosis is a form of non-apoptotic regulated cell death characterized by iron-dependent lipid peroxidation (LPO). Ferroptosis is crucial for the proper therapeutic efficacy of lung cancer-associated chemotherapies. If targeted as a novel therapeutic mechanism, ferroptosis modulators present new opportunities for increasing the therapeutic efficacy of lung cancer chemotherapy. Emerging studies have revealed that the pharmacological induction of ferroptosis using natural compounds boosts the efficacy of chemotherapy in lung cancer or drug-resistant cancer. In this review, we first discuss chemotherapeutic resistance (or chemoresistance) in lung cancer and introduce the core mechanisms behind ferroptosis. Then, we comprehensively summarize the small-molecule compounds sourced from traditional medicines that may boost the anti-tumor activity of current chemotherapeutic agents and overcome chemotherapeutic resistance in NSCLC. Cumulatively, we suggest that traditional medicines with ferroptosis-related anticancer activity could serve as a starting point to overcome chemotherapeutic resistance in NSCLC by inducing ferroptosis, highlighting new potential therapeutic regimens used to overcome chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Joshua S. Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Zhao Ren
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yukuan Feng
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Hongquan Wang
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
19
|
Liang Q, Wang Y, Li Y, Wang J, Liu C, Li Y. Ferroptosis: emerging roles in lung cancer and potential implications in biological compounds. Front Pharmacol 2024; 15:1374182. [PMID: 38783959 PMCID: PMC11111967 DOI: 10.3389/fphar.2024.1374182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer has high metastasis and drug resistance. The prognosis of lung cancer patients is poor and the patients' survival chances are easily neglected. Ferroptosis is a programmed cell death proposed in 2012, which differs from apoptosis, necrosis and autophagy. Ferroptosis is a novel type of regulated cell death which is driven by iron-dependent lipid peroxidation and subsequent plasma membrane ruptures. It has broad prospects in the field of tumor disease treatment. At present, multiple studies have shown that biological compounds can induce ferroptosis in lung cancer cells, which exhibits significant anti-cancer effects, and they have the advantages in high safety, minimal side effects, and less possibility to drug resistance. In this review, we summarize the biological compounds used for the treatment of lung cancer by focusing on ferroptosis and its mechanism. In addition, we systematically review the current research status of combining nanotechnology with biological compounds for tumor treatment, shed new light for targeting ferroptosis pathways and applying biological compounds-based therapies.
Collapse
Affiliation(s)
- Qiuran Liang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yuehui Wang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yili Li
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jinyan Wang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chuanbo Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yicong Li
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Dong W, Zhang H, Han L, Zhao H, Zhang Y, Liu S, Zhang J, Niu B, Xiao W. Revealing prognostic insights of programmed cell death (PCD)-associated genes in advanced non-small cell lung cancer. Aging (Albany NY) 2024; 16:8110-8141. [PMID: 38728242 PMCID: PMC11131998 DOI: 10.18632/aging.205807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
The management of patients with advanced non-small cell lung cancer (NSCLC) presents significant challenges due to cancer cells' intricate and heterogeneous nature. Programmed cell death (PCD) pathways are crucial in diverse biological processes. Nevertheless, the prognostic significance of cell death in NSCLC remains incompletely understood. Our study aims to investigate the prognostic importance of PCD genes and their ability to precisely stratify and evaluate the survival outcomes of patients with advanced NSCLC. We employed Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), univariate and multivariate Cox regression analyses for prognostic gene screening. Ultimately, we identified seven PCD-related genes to establish the PCD-related risk score for the advanced NSCLC model (PRAN), effectively stratifying overall survival (OS) in patients with advanced NSCLC. Multivariate Cox regression analysis revealed that the PRAN was the independent prognostic factor than clinical baseline factors. It was positively related to specific metabolic pathways, including hexosamine biosynthesis pathways, which play crucial roles in reprogramming cancer cell metabolism. Furthermore, drug prediction for different PRAN risk groups identified several sensitive drugs explicitly targeting the cell death pathway. Molecular docking analysis suggested the potential therapeutic efficacy of navitoclax in NSCLC, as it demonstrated strong binding with the amino acid residues of C-C motif chemokine ligand 14 (CCL14), carboxypeptidase A3 (CPA3), and C-X3-C motif chemokine receptor 1 (CX3CR1) proteins. The PRAN provides a robust personalized treatment and survival assessment tool in advanced NSCLC patients. Furthermore, identifying sensitive drugs for distinct PRAN risk groups holds promise for advancing targeted therapies in NSCLC.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - He Zhang
- Department of Oncology, The Forth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Li Han
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Huixia Zhao
- Department of Oncology, The Forth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Yue Zhang
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Jiali Zhang
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing 100176, P.R. China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenhua Xiao
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| |
Collapse
|
21
|
Qin L, Zhong Y, Li Y, Yang Y. TCM targets ferroptosis: potential treatments for cancer. Front Pharmacol 2024; 15:1360030. [PMID: 38738174 PMCID: PMC11082647 DOI: 10.3389/fphar.2024.1360030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Ferroptosis is caused by the accumulation of cellular reactive oxygen species that exceed the antioxidant load that glutathione (GSH) and phospholipid hydroperoxidases with GSH-based substrates can carry When the antioxidant capacity of cells is reduced, lipid reactive oxygen species accumulate, which can cause oxidative death. Ferroptosis, an iron-dependent regulatory necrosis pathway, has emerged as a new modality of cell death that is strongly associated with cancer. Surgery, chemotherapy and radiotherapy are the main methods of cancer treatment. However, resistance to these mainstream anticancer drugs and strong toxic side effects have forced the development of alternative treatments with high efficiency and low toxicity. In recent years, an increasing number of studies have shown that traditional Chinese medicines (TCMs), especially herbs or herbal extracts, can inhibit tumor cell growth and metastasis by inducing ferroptosis, suggesting that they could be promising agents for cancer treatment. This article reviews the current research progress on the antitumor effects of TCMs through the induction of ferroptosis. The aim of these studies was to elucidate the potential mechanisms of targeting ferroptosis in cancer, and the findings could lead to new directions and reference values for developing better cancer treatment strategies.
Collapse
Affiliation(s)
- Liwen Qin
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Song Y, Luo X, Yao L, Chen Y, Mao X. Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage. Mol Biotechnol 2024:10.1007/s12033-024-01140-7. [PMID: 38619799 DOI: 10.1007/s12033-024-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event associated with high mortality and significant morbidity. Recent studies have highlighted the emerging role of ferroptosis, a novel form of regulated cell death, in the pathogenesis of SAH. Circular RNAs (circRNAs), have been found to play essential roles in various cellular processes, including gene regulation and disease pathogenesis. The expression profile of circRNAs in neural tissues, particularly in the brain, suggests their critical role in synaptic function and neurogenesis. Moreover, the interplay between circRNAs and ferroptosis-related pathways, such as iron metabolism and lipid peroxidation, is explored in the context of SAH. Understanding the functional roles of specific circRNAs in the context of SAH may provide potential therapeutic targets to attenuate ferroptosis-associated brain injury. Furthermore, the potential of circRNAs as diagnostic biomarkers for SAH severity, prognosis, and treatment response is discussed. Overall, this review highlights the significance of studying the intricate interplay between circRNAs and ferroptosis in the context of SAH. Unraveling the mechanisms by which circRNAs modulate ferroptotic cell death may pave the way for the development of novel therapeutic strategies and diagnostic approaches for SAH management, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yanju Song
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xin Luo
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Liping Yao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Yinchao Chen
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China.
| |
Collapse
|
23
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
24
|
Zhou H, Mao Y, Zhou Z. Charting the course of ferroptosis research in lung cancer: Insights from a bibliometric analysis. Heliyon 2024; 10:e24810. [PMID: 38312575 PMCID: PMC10835360 DOI: 10.1016/j.heliyon.2024.e24810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Background Lung cancer, a major cause of cancer-related mortality globally, necessitates innovative therapeutic strategies. Ferroptosis, an iron-dependent, non-apoptotic cell death form, has risen as a crucial therapeutic target. This study aims to conduct a comprehensive bibliometric analysis of ferroptosis in lung cancer, highlighting principal research trends, influential publications, and prospective future directions. Methods This study utilized bibliometric tools such as VOSviewer, CiteSpace, and the R package "bibliometrix" to thoroughly analyze 488 articles on ferroptosis in lung cancer from 2014 to October 2023. Data from the Web of Science Core Collection were analyzed to determine spatial and temporal trends, identify prominent authors and seminal works, and uncover emerging hotspots and frontiers of the field. The literature was segmented into coherent thematic groups through cluster analysis. Results Our analysis revealed a significant exponential growth in publications from 2019 to 2023, mirroring the increasing interest in this area. Predominantly, the influential research was published in high-impact journals, with Scott J. Dixon's works being the most cited. The study identified four primary research themes: Lung Cancer Specifics; Biomarker Identification and Prognosis; Cellular Death Mechanisms and Metabolic Regulation; and Cancer Stem Cells and Therapeutic Resistance. Recent studies have increasingly focused on areas such as the immune microenvironment and mitochondrial dysfunction. Furthermore, the analysis highlighted the field's global collaborative nature, with significant contributions from China, the USA, and Germany. Conclusion This extensive bibliometric analysis emphasizes the growing importance of ferroptosis in lung cancer research. The identified themes and emerging topics underline the field's complexity and suggest new research avenues. This study promotes a holistic research approach, advocating for the exploration of innovative ferroptosis-targeting therapies that could revolutionize lung cancer treatment.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yu Mao
- Department of Thyroid Surgey, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011, Changsha, China
| |
Collapse
|
25
|
Liu Y, Tang T, Wang C, Wang C, Zhu D. Analysis of the incidence and influencing factors of abdominal distension in postoperative lung cancer patients in ICU based on real-world data: a retrospective cohort study. BMC Surg 2024; 24:26. [PMID: 38238695 PMCID: PMC10795388 DOI: 10.1186/s12893-024-02317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Abdominal distension is a relatively common complication in postoperative lung cancer patients, which affects patients' early postoperative recovery to varying degrees. However, the current status of the incidence of abdominal distension in postoperative lung cancer patients and the affecting factors are not well understood. This study aims at exploring the incidence of abdominal distension in postoperative lung cancer patients in ICU based on real-world data and analyzing its influencing factors. METHODS A retrospective cohort study was conducted, encompassing patients who underwent lung cancer resections in the Lung Cancer Center of West China Hospital of Sichuan University from April 2020 to April 2021. Nevertheless, patients younger than 18 years and those whose information was limited in medical records were excluded. All data were obtained from the hospital HIS system. In this study, the influencing factors of abdominal distension were analyzed by univariate analysis and multiple logistic regression methods. RESULTS A total of 1317 patients met eligibility criteria, and were divided into the abdominal distended group and the non-distended group according to whether abdominal distension occurred after surgery. Abdominal distension occurred in a total of 182 cases(13.8%). The results of the univariate analysis showed that, compared with the non-distended group, the abdominal distended group had these features as follows: more women (P = 0.021), older (P = 0.000), lower BMI (P = 0.000), longer operation duration (P = 0.031), more patients with open thoracotomy (P = 0.000), more patients with pneumonectomy (p = 0.002), more patients with neoadjuvant chemotherapy (P = 0.000), more days of hospitalization on average (P = 0.000), and higher costs of hospitalization on average (P = 0.032). Multifactor logistic regression analysis showed that sex (OR = 0.526; 95% CI = 0.378 ~0.731), age (OR = 1.154; 95%CI = 1.022 ~1.304) and surgical approach (OR = 4.010; 95%CI = 2.781 ~5.781) were independent influencing factors for the occurrence of abdominal distension in patients after lung cancer surgery in ICU. CONCLUSIONS The incidence of abdominal distension was high in postoperative lung cancer patients in ICU, and female, older and patients with open thoracotomy were more likely to experience abdominal distension. TRIAL REGISTRATION The study was approved by the Chinese Clinical Trials Registry (registration number was ChiCTR2200061370).
Collapse
Affiliation(s)
- Yan Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tingting Tang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Daxing Zhu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Shi H, Lei S, Xiong L, Du S, Shi Y. Molecular characterization of STEAP3 in lung squamous cell carcinoma: Regulating EGFR to affect cell proliferation and ferroptosis. Arch Biochem Biophys 2024; 751:109842. [PMID: 38040224 DOI: 10.1016/j.abb.2023.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Six-transmembrane epithelial antigen of the prostate 3 (STEAP3) has been reported to play a regulatory role in various types of cancers. However, its involvement in lung squamous cell carcinoma (LUSC) remains understudied. Here, we aimed to explore the biological functions and underlying mechanisms of STEAP3 in LUSC. Intersection genes associated with LUSC and ferroptosis were analyzed using the Venn method, STRING, GEPIA and UALCAN databases. The expression of STEAP3 was detected by qPCR and western blotting assay. Cell proliferation and viability were determined using the cell counting kit-8 assay and EDU staining. Oxidative stress and lipid peroxidation were measured by corresponding kits and DCFH-DA staining. Ferroptosis was evaluated by Phen Green SK and Western blot assay. The correlation between STEAP3 and EGFR was predicted by the TIMER and starBase database. Co-immunoprecipitation was conducted to verify the binding of STEAP3 and EGFR. The data demonstrated a significant upregulation of STEAP3 expression in LUSC cell lines. Silencing of STEAP3 suppressed H2170 cell viability and proliferation while promoting oxidative stress and lipid peroxidation through increased levels of MDA and ROS, as well as inhibited SOD activity. In addition, knockdown of STEAP3 induced ferroptosis through the regulation of ferroptosis-related proteins. Moreover, the binding between STEAP3 and EGFR was predicted and confirmed in LUSC. EGFR overexpression reversed the effects of STEAP3 silencing on H2170 cell viability, proliferation, oxidative stress, and ferroptosis. To summarize, the inhibition of STEAP3/EGFR may serve as a promising therapeutic target for LUSC treatment, as it can suppress LUSC proliferation and promote lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Hanqiang Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, 314000, China; Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, 314000, China
| | - Siyu Lei
- Department of Urology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Lie Xiong
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, 314000, China; Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, 314000, China
| | - Shuqin Du
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, 314000, China; Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, 314000, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, 314000, China; Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, 314000, China.
| |
Collapse
|
27
|
Ma X, Deng Z, Li Z, Ma T, Li G, Zhang C, Zhang W, Chang J. Leveraging a disulfidptosis/ferroptosis-based signature to predict the prognosis of lung adenocarcinoma. Cancer Cell Int 2023; 23:267. [PMID: 37946181 PMCID: PMC10634118 DOI: 10.1186/s12935-023-03125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Disulfidptosis and Ferroptosis are two novel forms of cell death. Although their mechanisms differ, research has shown that there is a relationship between the two. Investigating the connection between these two forms of cell death can further deepen our understanding of the development and progression of cancer, and provide better prediction models for accurate prognosis. METHODS In this study, RNA sequencing (RNA-seq) data, clinical data, single nucleotide polymorphism (SNP) data, and single-cell sequencing data were obtained from public databases. We used weighted gene co-expression network analysis (WGCNA) and unsupervised clustering to identify new Disulfidptosis/Ferroptosis-Related Genes (DFRG), and constructed a LASSO COX prognosis model that was externally validated. To further explore this novel signature, pathway and function analysis was performed, and differences in gene mutation frequency between high- and low-risk groups were studied. Importantly, we also conducted research on immune checkpoint, immune cell infiltration levels and immune resistance indicators, in addition to analyzing real clinical immunotherapy data. RESULTS We have identified four optimal disulfidptosis/ferroptosis-related genes (ODFRGs) that are differentially expressed and associated with the prognosis of Lung Adenocarcinoma (LUAD). These genes include GMPR, MCFD2, MRPL13, and SALL2. Based on these ODFRGs, we constructed a robust prognostic model in this study, and the high-risk group showed significantly lower overall survival (OS) compared to the low-risk group. Furthermore, this model can also predict the immunotherapy outcomes of LUAD patients to some extent.
Collapse
Affiliation(s)
- Xiaoqing Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Zilin Deng
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Ting Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Guiqing Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Cuijia Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Wentao Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Jin Chang
- Department of Radiation Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
28
|
Cao Y, Peng T, Ai C, Li Z, Lei X, Li G, Li T, Wang X, Cai S. Inhibition of SIRT6 aggravates p53-mediated ferroptosis in acute lung injury in mice. Heliyon 2023; 9:e22272. [PMID: 38034611 PMCID: PMC10685376 DOI: 10.1016/j.heliyon.2023.e22272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Although studies have shown that protein 53 (p53)-mediated ferroptosis is involved in acute lung injury (ALI), the mechanism of its regulation remains unclear. The protective effects of Sirtuin 6 (SIRT6), a histone deacetylase, have been demonstrated in multiple diseases; however, further studies are needed to elucidate the role of SIRT6 in ALI. In the present study, we hypothesize that SIRT6 protects against lipopolysaccharide (LPS)-induced ALI by regulating p53-mediated ferroptosis. We observed that the inhibition of ferroptosis prevented LPS-induced ALI. The knockout of p53 blocked LPS-induced ferroptosis and ALI, suggesting that p53 facilitated ALI by promoting ferroptosis. In addition, the inhibition of SIRT6 aggravated LPS-induced ferroptosis and ALI, while the depression of ferroptosis blocked the exacerbation of lung injury induced by SIRT6 inhibition. The results suggest that SIRT6 protects against ALI by regulating ferroptosis. Furthermore, the inhibition of SIRT6 reinforced the p53 acetylation and the deletion of p53 rescued the exacerbation of ferroptosis induced by SIRT6 inhibition. The findings indicate that SIRT6 regulates the acetylation of p53 and prevents p53-mediated ferroptosis. In conclusion, our results indicate that SIRT6 protects against LPS-induced ALI by regulating p53-mediated ferroptosis, thereby demonstrating that SIRT6 holds great promise as a therapeutic target for ALI.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Critical Care Medicine, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Tian Peng
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Chenmu Ai
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Zhiwang Li
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Xiaobao Lei
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Guicheng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Xiang Wang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou, 423000, PR China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
29
|
Bhuia MS, Chowdhury R, Sonia FA, Kamli H, Shaikh A, El-Nashar HAS, El-Shazly M, Islam MT. Anticancer Potential of the Plant-Derived Saponin Gracillin: A Comprehensive Review of Mechanistic Approaches. Chem Biodivers 2023; 20:e202300847. [PMID: 37547969 DOI: 10.1002/cbdv.202300847] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
With the increasing prevalence of cancer and the toxic side effects of synthetic drugs, natural products are being developed as promising therapeutic approaches. Gracillin is a naturally occurring triterpenoid steroidal saponin with several therapeutic activities. It is obtained as a major compound from different Dioscorea species. This review was designated to summarize the research progress on the anti-cancer activities of gracillin focusing on the underlying cellular and molecular mechanisms, as well as its pharmacokinetic features. The data were collected (up to date as of May 1, 2023) from various reliable and authentic literatures comprising PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings demonstrated that gracillin displays promising anticancer effects through various molecular mechanisms, including anti-inflammatory effects, apoptotic cell death, induction of oxidative stress, cytotoxicity, induction of genotoxicity, cell cycle arrest, anti-proliferative effect, autophagy, inhibition of glycolysis, and blocking of cancer cell migration. Additionally, this review highlighted the pharmacokinetic features of gracillin, indicating its lower oral bioavailability. As a conclusion, it can be proposed that gracillin could serve as a hopeful chemotherapeutic agent. However, further extensive clinical research is recommended to establish its safety, efficacy, and therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
30
|
Sodano F, Rolando B, Lazzarato L, Costamagna C, Failla M, Riganti C, Chegaev K. Use of Enzymatically Activated Carbon Monoxide Donors for Sensitizing Drug-Resistant Tumor Cells. Int J Mol Sci 2023; 24:11258. [PMID: 37511019 PMCID: PMC10379931 DOI: 10.3390/ijms241411258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The application of gaseous signaling molecules like NO, H2S or CO to overcome the multidrug resistance in cancer treatment has proven to be a viable therapeutic strategy. The development of CO-releasing molecules (CORMs) in a controlled manner and in targeted tissues remains a challenge in medicinal chemistry. In this paper, we describe the design, synthesis and chemical and enzymatic stability of a novel non-metal CORM (1) able to release intracellularly CO and, simultaneously, facilitate fluorescent degradation of products under the action of esterase. The toxicity of 1 against different human cancer cell lines and their drug-resistant counterparts, as well as the putative mechanism of toxicity were investigated. The drug-resistant cancer cell lines efficiently absorbed 1 and 1 was able to restore their sensitivity vs. chemotherapeutic drugs by causing a CO-dependent mitochondrial oxidative stress that culminated in mitochondrial-dependent apoptosis. These results demonstrate the importance of CORMs in cases where conventional chemotherapy fails and thus open the horizons towards new combinatorial strategies to overcome multidrug resistance.
Collapse
Affiliation(s)
- Federica Sodano
- Department of Pharmacy, "Federico II" University of Naples, 80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | | | - Mariacristina Failla
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10125 Torino, Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| |
Collapse
|
31
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|