1
|
Lang Q, Huang N, Li L, Liu K, Chen H, Liu X, Ge L, Yang X. Novel and efficient yeast-based strategies for subunit vaccine delivery against COVID-19. Int J Biol Macromol 2024; 294:139254. [PMID: 39743073 DOI: 10.1016/j.ijbiomac.2024.139254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
Yeast shows promise as a delivery system for drugs and vaccines due to its specific targeting and immunogenic properties. The objective of this research is to create novel and effective yeast-based methods for delivering subunit vaccines. Through the modification of yeast expression plasmids and optimization of expression techniques, a new dual-expression system has been developed. We have successfully generated a S. cerevisiae vaccine strain exhibiting stable dual expression of RBD, as well as an inducible S. cerevisiae vaccine strain with dual expression of RBD. The vaccine efficacy assay in mice indicated that the dual-RBD S. cerevisiae vaccine elicited a significantly more robust humoral and mucosal immune response in comparison to the conventional S. cerevisiae vaccine expressing RBD solely on Aga2p. This study demonstrated a cost-effective dual-expression S. cerevisiae system that not only exhibits potential in combating COVID-19, but also harbors the capacity to foster vaccine development against other infectious diseases.
Collapse
Affiliation(s)
- Qiaoli Lang
- Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Nan Huang
- Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Liping Li
- Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Kun Liu
- Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Hongyu Chen
- Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Xueqin Liu
- Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Liangpeng Ge
- Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Xi Yang
- Institute of Bioengineering, Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| |
Collapse
|
2
|
Wu Y, Shi J, He X, Lu J, Gao X, Zhu X, Chen X, Zhang M, Fang L, Zhang J, Yuan Z, Xiao G, Zhou P, Pan X. Protection of the receptor binding domain (RBD) dimer against SARS-CoV-2 and its variants. J Virol 2023; 97:e0127923. [PMID: 37843372 PMCID: PMC10688353 DOI: 10.1128/jvi.01279-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants achieved immune escape and became less virulent and easily transmissible through rapid mutation in the spike protein, thus the efficacy of vaccines on the market or in development continues to be challenged. Updating the vaccine, exploring compromise vaccination strategies, and evaluating the efficacy of candidate vaccines for the emerging variants in a timely manner are important to combat complex and volatile SARS-CoV-2. This study reports that vaccines prepared from the dimeric receptor-binding domain (RBD) recombinant protein, which can be quickly produced using a mature and stable process platform, had both good immunogenicity and protection in vivo and could completely protect rodents from lethal challenge by SARS-CoV-2 and its variants, including the emerging Omicron XBB.1.16, highlighting the value of dimeric recombinant vaccines in the post-COVID-19 era.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jian Shi
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | - Xiaoxue He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xuerui Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinlan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Man Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | | | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Deng Y, Atyeo C, Yuan D, Chicz TM, Tibbitts T, Gorman M, Taylor S, Lecouturier V, Lauffenburger DA, Chicz RM, Alter G, McNamara RP. Beta-spike-containing boosters induce robust and functional antibody responses to SARS-CoV-2 in macaques primed with distinct vaccines. Cell Rep 2023; 42:113292. [PMID: 38007686 PMCID: PMC11289877 DOI: 10.1016/j.celrep.2023.113292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 11/27/2023] Open
Abstract
The reduced effectiveness of COVID-19 vaccines due to the emergence of variants of concern (VOCs) necessitated the use of vaccine boosters to bolster protection against disease. However, it remains unclear how boosting expands protective breadth when primary vaccine platforms are distinct and how boosters containing VOC spike(s) broaden humoral responses. Here, we report that boosters composed of recombinant spike antigens of ancestral (prototype) and Beta VOCs elicit a robust, pan-VOC, and multi-functional humoral response in non-human primates largely independent of the primary vaccine series platform. Interestingly, Beta-spike-containing boosters stimulate immunoglobulin A (IgA) with a greater breadth of recognition in protein-primed recipients when administered with adjuvant system 03 (AS03). Our results highlight the utility of a component-based booster strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for broad humoral recognition, independent of primary vaccine series. This is of high global health importance given the heterogeneity of primary vaccination platforms distributed.
Collapse
Affiliation(s)
- Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Matthew Gorman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sabian Taylor
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Shorayeva K, Nakhanov A, Nurpeisova A, Chervyakova O, Jekebekov K, Abay Z, Assanzhanova N, Sadikaliyeva S, Kalimolda E, Terebay A, Moldagulova S, Absatova Z, Tulendibayev A, Kopeyev S, Nakhanova G, Issabek A, Nurabayev S, Kerimbayev A, Kutumbetov L, Abduraimov Y, Kassenov M, Orynbayev M, Zakarya K. Pre-Clinical Safety and Immunogenicity Study of a Coronavirus Protein-Based Subunit Vaccine for COVID-19. Vaccines (Basel) 2023; 11:1771. [PMID: 38140175 PMCID: PMC10748237 DOI: 10.3390/vaccines11121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Creating an effective and safe vaccine is critical to fighting the coronavirus infection successfully. Several types of COVID-19 vaccines exist, including inactivated, live attenuated, recombinant, synthetic peptide, virus-like particle-based, DNA and mRNA-based, and sub-unit vaccines containing purified immunogenic viral proteins. However, the scale and speed at which COVID-19 is spreading demonstrate a global public demand for an effective prophylaxis that must be supplied more. The developed products promise a bright future for SARS-CoV-2 prevention; however, evidence of safety and immunogenicity is mandatory before any vaccine can be produced. In this paper, we report on the results of our work examining the safety, toxicity, immunizing dose choice, and immunogenicity of QazCoVac-P, a Kazakhstan-made sub-unit vaccine for COVID-19. First, we looked into the product's safety profile by assessing its pyrogenicity in vaccinated rabbit models and using the LAL (limulus amebocyte lysate) test. We examined the vaccine's acute and sub-chronic toxicity on BALB/c mice and rats. The vaccine did not cause clinically significant toxicity-related changes or symptoms in our toxicity experiments. Finally, we performed a double immunization of mice, ferrets, Syrian hamsters, and rhesus macaques (Macaca mulatta). We used ELISA to measure antibody titers with the maximum mean geometric titer of antibodies in the animals' blood sera totaling approximately 8 log2. The results of this and other studies warrant recommending the QazCoVac-P vaccine for clinical trials.
Collapse
Affiliation(s)
| | | | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, The Ministry of Health of the Republic of Kazakhstan, Gvardeiskiy 080409, Kazakhstan (Z.A.); (E.K.); (Z.A.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Boggiano-Ayo T, Palacios-Oliva J, Lozada-Chang S, Relova-Hernandez E, Gomez-Perez J, Oliva G, Hernandez L, Bueno-Soler A, Montes de Oca D, Mora O, Machado-Santisteban R, Perez-Martinez D, Perez-Masson B, Cabrera Infante Y, Calzadilla-Rosado L, Ramirez Y, Aymed-Garcia J, Ruiz-Ramirez I, Romero Y, Gomez T, Espinosa LA, Gonzalez LJ, Cabrales A, Guirola O, de la Luz KR, Pi-Estopiñan F, Sanchez-Ramirez B, Garcia-Rivera D, Valdes-Balbin Y, Rojas G, Leon-Monzon K, Ojito-Magaz E, Hardy E. Development of a scalable single process for producing SARS-CoV-2 RBD monomer and dimer vaccine antigens. Front Bioeng Biotechnol 2023; 11:1287551. [PMID: 38050488 PMCID: PMC10693982 DOI: 10.3389/fbioe.2023.1287551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
We have developed a single process for producing two key COVID-19 vaccine antigens: SARS-CoV-2 receptor binding domain (RBD) monomer and dimer. These antigens are featured in various COVID-19 vaccine formats, including SOBERANA 01 and the licensed SOBERANA 02, and SOBERANA Plus. Our approach involves expressing RBD (319-541)-His6 in Chinese hamster ovary (CHO)-K1 cells, generating and characterizing oligoclones, and selecting the best RBD-producing clones. Critical parameters such as copper supplementation in the culture medium and cell viability influenced the yield of RBD dimer. The purification of RBD involved standard immobilized metal ion affinity chromatography (IMAC), ion exchange chromatography, and size exclusion chromatography. Our findings suggest that copper can improve IMAC performance. Efficient RBD production was achieved using small-scale bioreactor cell culture (2 L). The two RBD forms - monomeric and dimeric RBD - were also produced on a large scale (500 L). This study represents the first large-scale application of perfusion culture for the production of RBD antigens. We conducted a thorough analysis of the purified RBD antigens, which encompassed primary structure, protein integrity, N-glycosylation, size, purity, secondary and tertiary structures, isoform composition, hydrophobicity, and long-term stability. Additionally, we investigated RBD-ACE2 interactions, in vitro ACE2 recognition of RBD, and the immunogenicity of RBD antigens in mice. We have determined that both the monomeric and dimeric RBD antigens possess the necessary quality attributes for vaccine production. By enabling the customizable production of both RBD forms, this unified manufacturing process provides the required flexibility to adapt rapidly to the ever-changing demands of emerging SARS-CoV-2 variants and different COVID-19 vaccine platforms.
Collapse
Affiliation(s)
- Tammy Boggiano-Ayo
- Process Development Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | | | | | - Gonzalo Oliva
- Process Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Alexi Bueno-Soler
- Process Development Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Osvaldo Mora
- Process Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Dayana Perez-Martinez
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Beatriz Perez-Masson
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | - Yaima Ramirez
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Judey Aymed-Garcia
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Yamile Romero
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Tania Gomez
- Quality Direction, Center of Molecular Immunology, Havana, Cuba
| | | | | | - Annia Cabrales
- Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | - Osmany Guirola
- Center for Genetic Engineering and Biotechnology, Playa, Cuba
| | | | | | | | | | | | - Gertrudis Rojas
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Kalet Leon-Monzon
- Immunology and Immunobiology Direction, Center of Molecular Immunology, Havana, Cuba
| | | | - Eugenio Hardy
- Process Development Direction, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
6
|
Barbey C, Su J, Billmeier M, Stefan N, Bester R, Carnell G, Temperton N, Heeney J, Protzer U, Breunig M, Wagner R, Peterhoff D. Immunogenicity of a silica nanoparticle-based SARS-CoV-2 vaccine in mice. Eur J Pharm Biopharm 2023; 192:41-55. [PMID: 37774890 DOI: 10.1016/j.ejpb.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Safe and effective vaccines have been regarded early on as critical in combating the COVID-19 pandemic. Among the deployed vaccine platforms, subunit vaccines have a particularly good safety profile but may suffer from a lower immunogenicity compared to mRNA based or viral vector vaccines. In fact, this phenomenon has also been observed for SARS-CoV-2 subunit vaccines comprising the receptor-binding domain (RBD) of the spike (S) protein. Therefore, RBD-based vaccines have to rely on additional measures to enhance the immune response. It is well accepted that displaying antigens on nanoparticles can improve the quantity and quality of vaccine-mediated both humoral and cell-mediated immune responses. Based on this, we hypothesized that SARS-CoV-2 RBD as immunogen would benefit from being presented to the immune system via silica nanoparticles (SiNPs). Herein we describe the preparation, in vitro characterization, antigenicity and in vivo immunogenicity of SiNPs decorated with properly oriented RBD in mice. We found our RBD-SiNP conjugates show narrow, homogeneous particle distribution with optimal size of about 100 nm for efficient transport to and into the lymph node. The colloidal stability and binding of the antigen was stable for at least 4 months at storage- and in vivo-temperatures. The antigenicity of the RBD was maintained upon binding to the SiNP surface, and the receptor-binding motif was readily accessible due to the spatial orientation of the RBD. The particles were efficiently taken up in vitro by antigen-presenting cells. In a mouse immunization study using an mRNA vaccine and spike protein as benchmarks, we found that the SiNP formulation was able to elicit a stronger RBD-specific humoral response compared to the soluble protein. For the adjuvanted RBD-SiNP we found strong S-specific multifunctional CD4+ T cell responses, a balanced T helper response, improved auto- and heterologous virus neutralization capacity, and increased serum avidity, suggesting increased affinity maturation. In summary, our results provide further evidence for the possibility of optimizing the cellular and humoral immune response through antigen presentation on SiNP.
Collapse
Affiliation(s)
- Clara Barbey
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Nadine Stefan
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - George Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, United Kingdom
| | - Jonathan Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Liu Y, Zhang A, Wang Y, Yang J, Yin F, Wu S, Zhang Y, Jiang X, Zhu J, Gao W, Yang X, Wen H, Guo Q, Chen X, Zhang H, Shen E, Yang Z, Li Y, Chen D, Li L, Guo J, Du X, Shi Y, Fu S, Zhang H, Liu Y. Immunogenicity and protective effects of recombinant bivalent COVID-19 vaccine in mice and rhesus macaques. Vaccine 2023; 41:5283-5295. [PMID: 37451875 DOI: 10.1016/j.vaccine.2023.06.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Coronavirus disease (COVID-19) is still spreading rapidly worldwide, and a safe, effective, and cheap vaccine is still required to combat the COVID-19 pandemic. Here, we report a recombinant bivalent COVID-19 vaccine containing the RBD proteins of the prototype strain and beta variant. Immunization studies in mice demonstrated that this bivalent vaccine had far greater immunogenicity than the ZF2001, a marketed monovalent recombinant protein COVID-19 vaccine, and exhibited good immunization effects against the original COVID-19 strain and various variants. Rhesus macaque challenge experiments showed that this bivalent vaccine drastically decreased the lung viral load and reduced lung lesions in SARS-CoV-2 (the causative virus of COVID-19)-infected rhesus macaques. In summary, this bivalent vaccine showed immunogenicity and protective efficacy that was far superior to the monovalent recombinant protein vaccine against the prototype strain and provided an important basis for developing broad-spectrum COVID-19 vaccines.
Collapse
Affiliation(s)
- Yuying Liu
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China; School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Aijing Zhang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yan Wang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Jianguo Yang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Fei Yin
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuming Wu
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yao Zhang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xulin Jiang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Jiaton Zhu
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Wenshuang Gao
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiufen Yang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Hongyan Wen
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Qian Guo
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiao Chen
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Hongcai Zhang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Ercui Shen
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Zengmin Yang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yakun Li
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Dan Chen
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Ling Li
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Jiaping Guo
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiaoli Du
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yazheng Shi
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Sijia Fu
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Haijiang Zhang
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China.
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Inc., BDA, Beijing, China.
| |
Collapse
|
8
|
Love J, Rodriguez-Aponte S, Tostanoski L, Dalvie N, Johnston R, Jacob-Dolan C, Powers O, Hachmann N, Miller J, Hall K, Siamatu M, Mazurek C, Surve N, Barouch D. SARS-CoV-2 RBD dimers elicit response comparable to VLPs in mice. RESEARCH SQUARE 2023:rs.3.rs-2692315. [PMID: 37163131 PMCID: PMC10168475 DOI: 10.21203/rs.3.rs-2692315/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report the direct comparison of monomeric, dimeric and trimeric RBD protein subunit vaccines to a virus-like particle (VLP) displaying RBD. After two and three doses, a RBD dimer and trimer elicited antibody levels in mice comparable to an RBD-VLP. Furthermore, an Omicron (BA.1) RBD hetero-dimer induced neutralizing activity similar to the RBD-VLP. A RBD hetero-dimer and RBD-VLP also shows comparable breadth to other SARS-CoV-2 variants-of-concern (VOCs).
Collapse
|
9
|
Montgomerie I, Bird TW, Palmer OR, Mason NC, Pankhurst TE, Lawley B, Hernández LC, Harfoot R, Authier-Hall A, Anderson DE, Hilligan KL, Buick KH, Mbenza NM, Mittelstädt G, Maxwell S, Sinha S, Kuang J, Subbarao K, Parker EJ, Sher A, Hermans IF, Ussher JE, Quiñones-Mateu ME, Comoletti D, Connor LM. Incorporation of SARS-CoV-2 spike NTD to RBD protein vaccine improves immunity against viral variants. iScience 2023; 26:106256. [PMID: 36845030 PMCID: PMC9940465 DOI: 10.1016/j.isci.2023.106256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | - Blair Lawley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Leonor C Hernández
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Danielle E Anderson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlin H Buick
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Naasson M Mbenza
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gerd Mittelstädt
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Samara Maxwell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Shubhra Sinha
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joanna Kuang
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
| | - Emily J Parker
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Webster Centre for Infectious Diseases, University of Otago, Dunedin, New Zealand
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | |
Collapse
|
10
|
Oktay E, Alem F, Hernandez K, Girgis M, Green C, Mathur D, Medintz IL, Narayanan A, Veneziano R. DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response. Commun Biol 2023; 6:308. [PMID: 36959304 PMCID: PMC10034259 DOI: 10.1038/s42003-023-04689-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Effective and safe vaccines are invaluable tools in the arsenal to fight infectious diseases. The rapid spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 pandemic has highlighted the need to develop methods for rapid and efficient vaccine development. DNA origami nanoparticles (DNA-NPs) presenting multiple antigens in prescribed nanoscale patterns have recently emerged as a safe, efficient, and easily scalable alternative for rational design of vaccines. Here, we are leveraging the unique properties of these DNA-NPs and demonstrate that precisely patterning ten copies of a reconstituted trimer of the receptor binding domain (RBD) of SARS-CoV-2 along with CpG adjuvants on the DNA-NPs is able to elicit a robust protective immunity against SARS-CoV-2 in a mouse model. Our results demonstrate the potential of our DNA-NP-based approach for developing safe and effective nanovaccines against infectious diseases with prolonged antibody response and effective protection in the context of a viral challenge.
Collapse
Affiliation(s)
- Esra Oktay
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Farhang Alem
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Keziah Hernandez
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Michael Girgis
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Christopher Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Remi Veneziano
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA.
| |
Collapse
|
11
|
Phoolcharoen W, Shanmugaraj B, Khorattanakulchai N, Sunyakumthorn P, Pichyangkul S, Taepavarapruk P, Praserthsee W, Malaivijitnond S, Manopwisedjaroen S, Thitithanyanont A, Srisutthisamphan K, Jongkaewwattana A, Tomai M, Fox CB, Taychakhoonavudh S. Preclinical evaluation of immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052-Alum adjuvant. Vaccine 2023; 41:2781-2792. [PMID: 36963999 PMCID: PMC10027959 DOI: 10.1016/j.vaccine.2023.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine. In this study, we report a preclinical evaluation of the immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052 (TLR7/8 agonist)-Alum adjuvant. This vaccine formulation, named Baiya SARS-CoV-2 Vax 2, induced significant levels of RBD-specific IgG and neutralizing antibody responses in mice. A viral challenge study using humanized K18-hACE2 mice has shown that animals vaccinated with two doses of Baiya SARS-CoV-2 Vax 2 established immune protection against SARS-CoV-2. A study in nonhuman primates (cynomolgus monkeys) indicated that immunization with two doses of Baiya SARS-CoV-2 Vax 2 was safe, well tolerated, and induced neutralizing antibodies against the prototype virus and other viral variants (Alpha, Beta, Gamma, Delta, and Omicron subvariants). The toxicity of Baiya SARS-CoV-2 Vax 2 was further investigated in Jcl:SD rats, which demonstrated that a single dose and repeated doses of Baiya SARS-CoV-2 Vax 2 were well tolerated and no mortality or unanticipated findings were observed. Overall, these preclinical findings support further clinical development of Baiya SARS-CoV-2 Vax 2.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Narach Khorattanakulchai
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Sathit Pichyangkul
- US Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Pornnarin Taepavarapruk
- Center for Animal Research and Department of Physiology, Faculty of Medical Science, Naresuan University, Pitsanulok 65000, Thailand
| | | | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi 18110, Thailand
| | | | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Mark Tomai
- 3M Healthcare, 3M Center, Bldg 270-4N-04, St. Paul, MN 55144-1000, USA
| | - Christopher B Fox
- Access to Advanced Health Institute (AAHI), 1616 Eastlake Ave E, Ste 400, Seattle, WA 98102, USA
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Abd-Eldaim M, Maarouf M, Potgieter L, Kania SA. Amino Acid Variations of The Immuno-Dominant Domain of Respiratory Syncytial Virus Attachment Glycoprotein (G) Affect the Antibody Responses In BALB/c Mice. J Virol Methods 2023; 316:114712. [PMID: 36958697 DOI: 10.1016/j.jviromet.2023.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory illness in ruminants and infants. The G glycoprotein of RSV serves as the viral attachment ligand. Despite currently available vaccines, RSV immunity is insufficient, and re-infections occur. Vaccine studies employing the G-protein's 174-187 amino acids, representing the immunodominant domain, have protected mice and calves against infections. To investigate the causes of vaccination failure, we designed four synthetic peptides for the ruminant RSV isolates (391-2, Maryland-BRSV, European-BRSV, and ORSV) using the immune-dominant sequence and vaccinated mice groups with them. The produced antibodies targeting each peptide were evaluated using ELISA and flow cytometry to determine their reactivity against the linear antigen and the native form of the G protein, respectively. Antibodies responded to homologous and heterologous peptides as determined by ELISA. Using flow cytometry-analysis targeting the natively folded protein, most generated antibodies reacted only with their homologous strain. However, antibodies raised to 391-2 peptide reacted with homologous and heterologous Maryland-BRSV viral epitopes. Accordingly, inadequate immunity and recurring RSV infections might be attributed to variations of antibodies targeting the immunodominant region of the G-protein.
Collapse
Affiliation(s)
- Mohamed Abd-Eldaim
- Department of Virology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Maarouf
- Department of Virology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt.
| | - Leon Potgieter
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville TN, USA
| | - Stephen A Kania
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville TN, USA
| |
Collapse
|
13
|
Improved Expression of SARS-CoV-2 Spike RBD Using the Insect Cell-Baculovirus System. Viruses 2022; 14:v14122794. [PMID: 36560798 PMCID: PMC9785345 DOI: 10.3390/v14122794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Insect cell-baculovirus expression vector system is one of the most established platforms to produce biological products, and it plays a fundamental role in the context of COVID-19 emergency, providing recombinant proteins for treatment, diagnosis, and prevention. SARS-CoV-2 infection is mediated by the interaction of the spike glycoprotein trimer via its receptor-binding domain (RBD) with the host's cellular receptor. As RBD is required for many applications, in the context of pandemic it is important to meet the challenge of producing a high amount of recombinant RBD (rRBD). For this reason, in the present study, we developed a process based on Sf9 insect cells to improve rRBD yield. rRBD was recovered from the supernatant of infected cells and easily purified by metal ion affinity chromatography, with a yield of 82% and purity higher than 95%. Expressed under a novel chimeric promoter (polh-pSeL), the yield of rRBD after purification was 21.1 ± 3.7 mg/L, which is the highest performance described in Sf9 cell lines. Finally, rRBD was successfully used in an assay to detect specific antibodies in COVID-19 serum samples. The efficient strategy herein described has the potential to produce high-quality rRBD in Sf9 cell line for diagnostic purpose.
Collapse
|
14
|
Yang H, Pan W, Chen G, Huang E, Lu Q, Chen Y, Chen Y, Yang Z, Wen L, Zhang S, Xu C, Lv W, Dai L, Wu C, Zhang L. Preclinical Toxicity and Immunogenicity of a COVID-19 Vaccine (ZF2001) in Cynomolgus Monkeys. Vaccines (Basel) 2022; 10:vaccines10122080. [PMID: 36560490 PMCID: PMC9781319 DOI: 10.3390/vaccines10122080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Although the new coronavirus disease 2019 (COVID-19) outbreak occurred in late 2019, it is still endemic worldwide, and has become a global public health problem. Vaccination against SARS-CoV-2 is considered to be the most effective intervention to prevent the spread of COVID-19. ZF2001 is a recombinant protein vaccine based on SARS-CoV-2 receptor-binding domain (RBD) subunit which contains aluminum adjuvant. In order to advance our research on ZF2001 into clinical trial, we investigated the general toxicity and immunogenicity of ZF2001 in cynomolgus monkeys and assessed the possible target organs for vaccine-induced toxicity. In the present research, we observed no significant systemic toxicities and abnormal cardiovascular and respiratory events following four times injections of intramuscular ZF2001 in cynomolgus monkeys. Histological examination revealed recoverable inflammatory changes in quadricep muscle and adjacent lymph node at the vaccine injection site. As expected, the vaccine can produce a strongly specific binding antibody and neutralizing antibodies in cynomolgus monkeys after inoculation. Taken together, our regulatory toxicology research proves the safety and immunogenicity of the ZF2001 vaccine, supporting its entry into large scale clinical trials.
Collapse
Affiliation(s)
- Hongzhong Yang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Wei Pan
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Guoyu Chen
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Enqi Huang
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., Hefei 230088, China
| | - Qijiong Lu
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Yunxiang Chen
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Ying Chen
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Zhengbiao Yang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Lei Wen
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Siming Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Cong Xu
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Wanqiang Lv
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changwei Wu
- Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., Hefei 230088, China
| | - Lijiang Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou 310053, China
| |
Collapse
|
15
|
Chen L, Qi X, Liang D, Li G, Peng X, Li X, Ke B, Zheng H, Liu Z, Ke C, Liao G, Liu L, Feng Q. Human Fc-Conjugated Receptor Binding Domain-Based Recombinant Subunit Vaccines with Short Linker Induce Potent Neutralizing Antibodies against Multiple SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:vaccines10091502. [PMID: 36146579 PMCID: PMC9505662 DOI: 10.3390/vaccines10091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has been ongoing since December 2019, with more than 6.3 million deaths reported globally as of August 2022. Despite the success of several SARS-CoV-2 vaccines, the rise in variants, some of which are resistant to the effects of vaccination, highlights the need for a so-called pan-coronavirus (universal) vaccine. Here, we performed an immunogenicity comparison of prototype vaccines containing spike protein receptor-binding domain (RBD) residues 319–541, or spike protein regions S1, S2 and S fused to a histidine-tagged or human IgG1 Fc (hFC) fragment with either a longer (six residues) or shorter (three residues) linker. While all recombinant protein vaccines developed were effective in eliciting humoral immunity, the RBD-hFc vaccine was able to generate a potent neutralizing antibody response as well as a cellular immune response. We then compared the effects of recombinant protein length and linker size on immunogenicity in vivo. We found that a longer recombinant RBD protein (residues 319–583; RBD-Plus-hFc) containing a small alanine linker (AAA) was able to trigger long-lasting, high-titer neutralizing antibodies in mice. Finally, we evaluated cross-neutralization of wild-type and mutant RBD-Plus-hFc vaccines against wild-type, Alpha, Beta, Delta and Omicron SARS-CoV-2 variants. Significantly, at the same antigen dose, wild-type RBD-Plus-hFc immune sera induced broadly neutralizing antibodies against wild-type, Alpha, Beta, Delta and Omicron variants. Taken together, our findings provide valuable information for the continued development of recombinant protein-based SARS-CoV-2 vaccines and a basic foundation for booster vaccinations to avoid reinfection with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Liqing Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dan Liang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Guiqi Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaofang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Xiaohui Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong Hengda Biomedical Technology Co., Ltd., Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong Hengda Biomedical Technology Co., Ltd., Guangzhou 510006, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| | - Qian Feng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| |
Collapse
|
16
|
Zhang RY, Zhou SH, He CB, Wang J, Wen Y, Feng RR, Yin XG, Yang GF, Guo J. Adjuvant-Protein Conjugate Vaccine with Built-In TLR7 Agonist on S1 Induces Potent Immunity against SARS-CoV-2 and Variants of Concern. ACS Infect Dis 2022; 8:1367-1375. [PMID: 35748575 PMCID: PMC9260725 DOI: 10.1021/acsinfecdis.2c00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/29/2022]
Abstract
With the global pandemic of the new coronavirus disease (COVID-19), a safe, effective, and affordable mass-produced vaccine remains the current focus of research. Herein, we designed an adjuvant-protein conjugate vaccine candidate, in which the TLR7 agonist (TLR7a) was conjugated to S1 subunit of SARS-CoV-2 spike protein, and systematically compared the effect of different numbers of built-in TLR7a on the immune activity for the first time. As the number of built-in TLR7a increased, a bell-shaped reaction was observed in three TLR7a-S1 conjugates, with TLR7a(10)-S1 (with around 10 built-in adjuvant molecules on one S1 protein) eliciting a more potent immune response than TLR7a(2)-S1 and TLR7a(18)-S1. This adjuvant-protein conjugate strategy allows the built-in adjuvant to provide cluster effects and prevents systemic toxicity and facilitates the co-delivery of adjuvant and antigen. Vaccination of mice with TLR7a(10)-S1 triggered a potent humoral and cellular immunity and a balanced Th1/Th2 immune response. Meanwhile, the vaccine induces effective neutralizing antibodies against SARS-CoV-2 and all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). It is expected that the adjuvant-protein conjugate strategy has great potential to construct a potent recombinant protein vaccine candidate against various types of diseases.
Collapse
Affiliation(s)
| | | | - Chen-Bin He
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Ran-Ran Feng
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| |
Collapse
|
17
|
Hsieh CL, McLellan JS. Protein engineering responses to the COVID-19 pandemic. Curr Opin Struct Biol 2022; 74:102385. [PMID: 35533563 PMCID: PMC9075828 DOI: 10.1016/j.sbi.2022.102385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 02/06/2023]
Abstract
Antigen design guided by high-resolution viral glycoprotein structures has successfully generated diverse vaccine candidates for COVID-19. Using conjugation systems to combine antigen design with computationally optimized nanoparticles, researchers have been able to display multivalent antigens with beneficial substitutions that elicited robust humoral immunity with enhanced neutralization potency and breadth. Here, we discuss strategies that have been used for structure-based design and nanoparticle display to develop COVID-19 vaccine candidates as well as potential next-generation vaccine candidates to protect against SARS-CoV-2 variants and other coronaviruses that emerge into the human population.
Collapse
|
18
|
Coria LM, Saposnik LM, Pueblas Castro C, Castro EF, Bruno LA, Stone WB, Pérez PS, Darriba ML, Chemes LB, Alcain J, Mazzitelli I, Varese A, Salvatori M, Auguste AJ, Álvarez DE, Pasquevich KA, Cassataro J. A Novel Bacterial Protease Inhibitor Adjuvant in RBD-Based COVID-19 Vaccine Formulations Containing Alum Increases Neutralizing Antibodies, Specific Germinal Center B Cells and Confers Protection Against SARS-CoV-2 Infection in Mice. Front Immunol 2022; 13:844837. [PMID: 35296091 PMCID: PMC8919065 DOI: 10.3389/fimmu.2022.844837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 01/18/2023] Open
Abstract
In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.
Collapse
Affiliation(s)
- Lorena M. Coria
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Lucas M. Saposnik
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Eliana F. Castro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura A. Bruno
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - William B. Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Paula S. Pérez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Maria Laura Darriba
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Lucia B. Chemes
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Julieta Alcain
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Melina Salvatori
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Albert J. Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Diego E. Álvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Karina A. Pasquevich
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- *Correspondence: Karina A. Pasquevich, ; Juliana Cassataro,
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- *Correspondence: Karina A. Pasquevich, ; Juliana Cassataro,
| |
Collapse
|
19
|
Klausberger M, Kienzl NF, Stadlmayr G, Grünwald‐Gruber C, Laurent E, Stadlbauer K, Stracke F, Vierlinger K, Hofner M, Manhart G, Gerner W, Grebien F, Weinhäusel A, Mach L, Wozniak‐Knopp G. Designed SARS‐CoV‐2 receptor binding domain variants form stable monomers. Biotechnol J 2022; 17:e2100422. [PMID: 35078277 PMCID: PMC9011732 DOI: 10.1002/biot.202100422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
The receptor binding domain (RBD) of the SARS‐CoV‐2 spike (S)‐protein is a prime target of virus‐neutralizing antibodies present in convalescent sera of COVID‐19 patients and thus is considered a key antigen for immunosurveillance studies and vaccine development. Although recombinant expression of RBD has been achieved in several eukaryotic systems, mammalian cells have proven particularly useful. The authors aimed to optimize RBD produced in HEK293‐6E cells towards a stable homogeneous preparation and addressed its O‐glycosylation as well as the unpaired cysteine residue 538 in the widely used RBD (319‐541) sequence. The authors found that an intact O‐glycosylation site at T323 is highly relevant for the expression and maintenance of RBD as a monomer. Furthermore, it was shown that deletion or substitution of the unpaired cysteine residue C538 reduces the intrinsic propensity of RBD to form oligomeric aggregates, concomitant with an increased yield of the monomeric form of the protein. Bead‐based and enzyme‐linked immunosorbent assays utilizing these optimized RBD variants displayed excellent performance with respect to the specific detection of even low levels of SARS‐CoV‐2 antibodies in convalescent sera. Hence, these RBD variants could be instrumental for the further development of serological SARS‐CoV‐2 tests and inform the design of RBD‐based vaccine candidates.
Collapse
Affiliation(s)
- Miriam Klausberger
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Nikolaus F. Kienzl
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Gerhard Stadlmayr
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Clemens Grünwald‐Gruber
- Institute of Biochemistry, Department of Chemistry and BOKU Core Facility Mass Spectrometry University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Elisabeth Laurent
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- BOKU Core Facility Biomolecular & Cellular Analysis University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Katharina Stadlbauer
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Florian Stracke
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Klemens Vierlinger
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources Austrian Institute of Technology Giefinggasse 4 Vienna 1210 Austria
| | - Manuela Hofner
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources Austrian Institute of Technology Giefinggasse 4 Vienna 1210 Austria
| | - Gabriele Manhart
- Institute of Medical Biochemistry University of Veterinary Medicine Veterinärplatz 1 Vienna 1210 Austria
| | - Wilhelm Gerner
- Institute of Immunology University of Veterinary Medicine Veterinärplatz 1 Vienna 1210 Austria
| | - Florian Grebien
- Institute of Medical Biochemistry University of Veterinary Medicine Veterinärplatz 1 Vienna 1210 Austria
| | - Andreas Weinhäusel
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources Austrian Institute of Technology Giefinggasse 4 Vienna 1210 Austria
| | - Lukas Mach
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Gordana Wozniak‐Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| |
Collapse
|
20
|
Krasilnikov IV, Kudriavtsev AV, Vakhrusheva AV, Frolova ME, Ivanov AV, Stukova MA, Romanovskaya-Romanko EA, Vasilyev KA, Mushenkova NV, Isaev AA. Design and Immunological Properties of the Novel Subunit Virus-like Vaccine against SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10010069. [PMID: 35062730 PMCID: PMC8782008 DOI: 10.3390/vaccines10010069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic is ongoing, and the need for safe and effective vaccines to prevent infection and to control spread of the virus remains urgent. Here, we report the development of a SARS-CoV-2 subunit vaccine candidate (Betuvax-CoV-2) based on RBD and SD1 domains of the spike (S) protein fused to a human IgG1 Fc fragment. The antigen is adsorbed on betulin adjuvant, forming spherical particles with a size of 100–180 nm, mimicking the size of viral particles. Here we confirm the potent immunostimulatory activity of betulin adjuvant, and demonstrate that two immunizations of mice with Betuvax-CoV-2 elicited high titers of RBD-specific antibodies. The candidate vaccine was also effective in stimulating a neutralizing antibody response and T cell immunity. The results indicate that Betuvax-CoV-2 has good potential for further development as an effective vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Igor V. Krasilnikov
- Department of Vaccinology, Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (I.V.K.); (M.A.S.); (E.A.R.-R.); (K.A.V.)
| | | | | | - Maria E. Frolova
- PJSC Human Stem Cells Institute, 129110 Moscow, Russia; (M.E.F.); or
| | | | - Marina A. Stukova
- Department of Vaccinology, Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (I.V.K.); (M.A.S.); (E.A.R.-R.); (K.A.V.)
| | - Ekaterina A. Romanovskaya-Romanko
- Department of Vaccinology, Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (I.V.K.); (M.A.S.); (E.A.R.-R.); (K.A.V.)
| | - Kirill A. Vasilyev
- Department of Vaccinology, Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (I.V.K.); (M.A.S.); (E.A.R.-R.); (K.A.V.)
| | | | - Artur A. Isaev
- PJSC Human Stem Cells Institute, 129110 Moscow, Russia; (M.E.F.); or
- Center of Genetics and Reproductive Medicine “Genetico”, 119333 Moscow, Russia
| |
Collapse
|