1
|
Meng WY, Wang ZX, Zhang Y, Hou Y, Xue JH. Epigenetic marks or not? The discovery of novel DNA modifications in eukaryotes. J Biol Chem 2024; 300:106791. [PMID: 38403247 PMCID: PMC11065753 DOI: 10.1016/j.jbc.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.
Collapse
Affiliation(s)
- Wei-Ying Meng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zi-Xin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jian-Huang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Zhang J, Peng Q, Ma C, Wang J, Xiao C, Li T, Liu X, Zhou L, Xu X, Zhou WZ, Ding W, An NA, Zhang L, Liu Y, Li CY. 6mA-Sniper: Quantifying 6mA sites in eukaryotes at single-nucleotide resolution. SCIENCE ADVANCES 2023; 9:eadh7912. [PMID: 37862411 PMCID: PMC10588941 DOI: 10.1126/sciadv.adh7912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023]
Abstract
While N6-methyldeoxyadenine (6mA) modification is a fundamental regulation in prokaryotes, its prevalence and functions in eukaryotes are controversial. Here, we report 6mA-Sniper to quantify 6mA sites in eukaryotes at single-nucleotide resolution, and delineate a 6mA profile in Caenorhabditis elegans with 2034 sites. Twenty-six of 39 events with Mnl I restriction endonuclease sites were verified, demonstrating the feasibility of this method. The levels of 6mA sites pinpointed by 6mA-Sniper are generally increased after Pseudomonas aeruginosa infection, but decreased in strains with the removal of METL-9, the dominant 6mA methyltransferase. The enrichment of these sites on specific motif of [GC]GAG, the selective constrains on them, and their coordinated changes with METL-9 levels thus support an active shaping of the 6mA profile by methyltransferase. Moreover, for regions marked by 6mA sites that emerged after infection, an enrichment of up-regulated genes was detected, possibly mediated through a mutual exclusive cross-talk between 6mA and H3K27me3 modification. We thus highlight 6mA regulation as a previously neglected regulator in eukaryotes.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Qi Peng
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Chengchuan Ma
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Liankui Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Bioinformatics Core, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Ni A. An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
3
|
Breger K, Kunkler CN, O'Leary NJ, Hulewicz JP, Brown JA. Ghost authors revealed: The structure and function of human N 6 -methyladenosine RNA methyltransferases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1810. [PMID: 37674370 PMCID: PMC10915109 DOI: 10.1002/wrna.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023]
Abstract
Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N6 -methyladenosine (m6 A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m6 A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m6 A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m6 A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N6 position of adenosine, producing m6 A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m6 A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m6 A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m6 A marks in human viruses and parasites, assigning m6 A marks in the transcriptome to specific methyltransferases, small molecules targeting m6 A methyltransferases, and the enzymes responsible for hypermodified m6 A marks and their biological functions in humans. Understanding m6 A methyltransferases is a critical steppingstone toward establishing the m6 A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nathan J O'Leary
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
4
|
Holuka C, Morel C, Roth S, Lamartinière Y, Mériaux SB, Paoli J, Guébels P, Duca RC, Godderis L, van Nieuwenhuyse A, Kremarik-Bouillaud P, Cariou R, Emond C, Schroeder H, Turner JD, Grova N. The epigenetic hallmark of early-life α-hexabromocyclododecane exposure: From cerebellar 6-mA levels to locomotor performance in adulthood. ENVIRONMENT INTERNATIONAL 2023; 178:108103. [PMID: 37494814 DOI: 10.1016/j.envint.2023.108103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
There is a growing evidence that methylation at the N6 position of adenine (6-mA), whose modulation occurs primarily during development, would be a reliable epigenetic marker in eukaryotic organisms. The present study raises the question as to whether early-life exposure to α-hexabromocyclododecane (α-HBCDD), a brominated flame retardant, may trigger modifications in 6-mA epigenetic hallmarks in the brain during the development which, in turn could affect the offspring behaviour in adulthood. Pregnant Wistar rats were split into two groups: control and α-HBCDD (66 ng/kg/per os, G0-PND14). At PND1, α-HBCDD levels were assessed in brain and liver by LC-MS/MS. At PND14, DNA was isolated from the offspring's cerebellum. DNA methylation was measured by 6-mA-specific immunoprecipitation and Illumina® sequencing (MEDIP-Seq). Locomotor activity was finally evaluated at PND120. In our early-life exposure model, we confirmed that α-HBCDD can cross the placental barrier and be detected in pups at birth. An obvious post-exposure phenotype with locomotor deficits was observed when the rats reached adulthood. This was accompanied by sex-specific over-methylation of genes involved in the insulin signaling pathway, MAPK signaling pathway as well as serotonergic and GABAergic synapses, potentially altering the normal process of neurodevelopment with consequent motor impairments crystalized at adulthood.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg; Faculty of Science, University of Luxembourg, L-4365 Belval, Luxembourg.
| | - Chloé Morel
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Sarah Roth
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Yordenca Lamartinière
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Sophie B Mériaux
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Justine Paoli
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Pauline Guébels
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Radu C Duca
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg; Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Lode Godderis
- Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee 3001, Belgium.
| | - An van Nieuwenhuyse
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg; Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Pascaline Kremarik-Bouillaud
- UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| | | | - Claude Emond
- PKSH Inc., Crabtree, Quebec, Canada; School of Public Health, DSEST, University of Montreal, Montreal, Quebec, Canada.
| | - Henri Schroeder
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg; Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| |
Collapse
|