1
|
Corominas J, Garriga C, Prenafeta A, Moros A, Cañete M, Barreiro A, González-González L, Madrenas L, Güell I, Clotet B, Izquierdo-Useros N, Raïch-Regué D, Gallemí M, Blanco J, Pradenas E, Trinité B, G Prado J, Pérez-Caballero R, Bernad L, Plana M, Esteban I, Aurrecoechea E, Taleb RA, McSkimming P, Soriano A, Nava J, Anagua JO, Ramos R, Martí Lluch R, Corpes Comes A, Otero Romero S, Martínez-Gómez X, Camacho-Arteaga L, Molto J, Benet S, Bailón L, Arribas JR, Borobia AM, Queiruga Parada J, Navarro-Pérez J, Forner Giner MJ, Lucas RO, Vázquez Jiménez MDM, López Fernández MJ, Alvarez-Mon M, Troncoso D, Arana-Arri E, Meijide S, Imaz-Ayo N, García PM, de la Villa S, Rodríguez Fernández S, Prat T, Torroella È, Ferrer L. Humoral and cellular immune responses after 6 months of a heterologous SARS-CoV-2 booster with the protein-based PHH-1V vaccine in a phase IIb trial. Vaccine 2025; 47:126685. [PMID: 39809095 DOI: 10.1016/j.vaccine.2024.126685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
The HIPRA-HH-2 was a multicentre, randomized, active-controlled, double-blind, non-inferiority phase IIb clinical trial comparing the immunogenicity and safety of the PHH-1V adjuvanted recombinant vaccine as a heterologous booster against homologous booster with BNT162b2. Interim results demonstrated strong humoral and cellular immune response against the SARS-CoV-2 Wuhan-Hu-1 strain and the Beta, Delta, and Omicron BA.1 variants up to day 98 post-dosing. Here we report that these responses with PHH-1V are sustained up to 6 months, including in participants over 65 years, despite their smaller sample size. The PHH-1V booster was non-inferior in eliciting neutralizing antibodies for SARS-CoV-2 Omicron XBB.1.5 variant compared to BNT162b2 after 6 months. No severe COVID-19 cases occurred in any group, and mild cases were similar (50.4 % for PHH-1V vs. 47.8 % for BNT162b2). While both groups may have reached comparable immunity levels, these findings suggest that the PHH-1V vaccine provides long-lasting immunity against various of SARS-CoV-2 variants. ClinicalTrials.gov Identifier: NCT05142553.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Middle Aged
- COVID-19/prevention & control
- COVID-19/immunology
- Male
- Female
- SARS-CoV-2/immunology
- Immunization, Secondary/methods
- Immunity, Cellular
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Immunity, Humoral
- Double-Blind Method
- Aged
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Adult
- BNT162 Vaccine/immunology
- BNT162 Vaccine/administration & dosage
- Immunogenicity, Vaccine
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain
| | - Marçal Gallemí
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Raúl Pérez-Caballero
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Laia Bernad
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain
| | - Montserrat Plana
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ignasi Esteban
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Aurrecoechea
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Paula McSkimming
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alex Soriano
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jocelyn Nava
- Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesse Omar Anagua
- Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rafel Ramos
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Biomedical Research Institute, Girona (IdIBGi), Catalan Institute of Health, Catalonia, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Ruth Martí Lluch
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Biomedical Research Institute, Girona (IdIBGi), Catalan Institute of Health, Catalonia, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Aida Corpes Comes
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Biomedical Research Institute, Girona (IdIBGi), Catalan Institute of Health, Catalonia, Spain
| | - Susana Otero Romero
- Hospital Universitari Vall d'Hebron, Barcelona, Spain; Unitat Docent Vall d'Hebron, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Esclerosis Múltiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Xavier Martínez-Gómez
- Hospital Universitari Vall d'Hebron, Barcelona, Spain; Unitat Docent Vall d'Hebron, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Jose Molto
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Susana Benet
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Lucía Bailón
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jose R Arribas
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Alberto M Borobia
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain; Spanish Clinical Research Network - SCReN, Spain
| | - Javier Queiruga Parada
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain; Spanish Clinical Research Network - SCReN, Spain
| | | | | | | | | | | | | | | | - Eunate Arana-Arri
- Scientific Coordination, Biocruces Bizkaia HRI, Osakidetza, Barakaldo, Spain
| | - Susana Meijide
- Scientific Coordination, Biocruces Bizkaia HRI, Osakidetza, Barakaldo, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination, Biocruces Bizkaia HRI, Osakidetza, Barakaldo, Spain
| | - Patricia Muñoz García
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias- CIBERES (CB06/06/0058), Madrid, Spain
| | - Sofía de la Villa
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Madrid, Spain
| | | | | | | | | |
Collapse
|
2
|
Jia T, Wang F, Chen Y, Liao G, Xu Q, Chen J, Wu J, Li N, Wang L, Yuan L, Wang D, Xie Q, Luo C, Luo H, Wang Y, Chen Y, Shu Y. Expanded immune imprinting and neutralization spectrum by hybrid immunization following breakthrough infections with SARS-CoV-2 variants after three-dose vaccination. J Infect 2024; 89:106362. [PMID: 39608577 DOI: 10.1016/j.jinf.2024.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Despite vaccination, SARS-CoV-2 evolution leads to breakthrough infections and reinfections worldwide. Knowledge of hybrid immunization is crucial for future broad-spectrum SARS-CoV-2 vaccines. METHODS In this study, we investigated neutralizing antibodies (nAbs) against the SARS-CoV-2 ancestral virus (wild-type [WT]), pre-Omicron VOCs, Omicron subvariants, and SARS-CoV-1 using plasma collected from four distinct cohorts: individuals who received three doses of BBIBP-CorV/CoronaVac vaccines, those who experienced BA.5 breakthrough infections, those with XBB breakthrough infections, and those with BA.5-XBB consecutive infections following three-dose vaccination. FINDINGS Following Omicron breakthrough infections, the levels of nAbs against WT and pre-Omicron VOCs were higher due to immune imprinting established by WT-based vaccination, in comparison to nAbs against Omicron variants. Interestingly, the XBB breakthrough infections elicited a broader neutralization spectrum against SARS-CoV-2 variants compared to the BA.5 breakthrough infections. This observation suggests that the XBB variant demonstrates superior immunogenicity relative to BA.5. Notably, hybrid immunization of BA.5 breakthrough infections after WT vaccination led to additional immune imprinting, resulting in a broadened neutralization profile against both WT and BA.5 variants in BA.5-XBB consecutive infections. However, the duration of nAbs was shorter in these reinfections compared to the breakthrough infections. Additionally, the expanded immune imprinting from previous WT vaccination and BA.5 breakthrough infections account for the enhanced plasma neutralization immunodominance observed in the antigenic cartography for BA.5-XBB consecutive infections. INTERPRETATION Overall, we demonstrated a persistent and expanded effect of immune imprinting from prior SARS-CoV-2 exposures. Thus, future vaccines should specifically address the latest variants, and booster shots should be given at a longer interval after the previous infection or vaccination.
Collapse
Affiliation(s)
- Tingting Jia
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yihao Chen
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiuyi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiamin Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongli Wang
- Guangming District Center for Disease Control and Prevention, Shenzhen, PR China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Sun Yat-sen University, Shenzhen, PR China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, PR China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China.
| |
Collapse
|
3
|
Sun Y, Wang H, Wang H, Cai J, Yuan G, Zhang H, Zhao J, Xue Q, Jiang X, Ying H, Zhang Y, Yang Y, Jin J, Zhang W, Lu J, Ai J, Wang S. Aging brought additional immune response alterations after breakthrough infections with the Omicron BA.5/BF.7 variants: Protein immune mechanism. Int J Biol Macromol 2024; 281:136183. [PMID: 39357723 DOI: 10.1016/j.ijbiomac.2024.136183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The global spread of the Omicron variant strain BA.5/BF.7 has led to an increase in breakthrough infections. The elderly population shows different immune responses after infection due to the aging of the immune system, which has not been fully studied. The aim of this study was to investigate the effect of aging on immune response after breakthrough infection of Omicron BA.5/BF.7 variant, especially the changes of protein immune mechanism. The study analyzed the concentration of antibodies in serum and their ability to neutralize the mutant strain by comparing the immune response of the elderly population and the young population after infection. Proteomics techniques were used to assess differences in the expression of key proteins in immune cells of different age groups. The study found that older subjects produced lower levels of antibodies after infection than younger subjects and showed a significantly reduced ability to neutralize against BA.5/BF.7. In addition, proteomic analysis showed that the expression of proteins related to inflammation and apoptosis significantly increased in the immune cells of the elderly, while the proteins related to antiviral response and cell repair significantly decreased. These findings provide new ideas for immune intervention strategies in the elderly population, and emphasize the targeted research of anti-virus vaccines.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hua Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China
| | - Jingjing Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Quanlin Xue
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xiaochun Jiang
- Community Health Service Center of Xianghuaqiao Street, Qingpu District, Shanghai, China
| | - Huang Ying
- Community Health Service Center of Baihe Street, Qingpu District, Shanghai, China
| | - Yeting Zhang
- Community Health Service Center of Chonggu Town, Qingpu District, Shanghai, China
| | - Yongfeng Yang
- Community Health Service Center of Huaxin Town, Qingpu District, Shanghai, China
| | - Jialin Jin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China; Institute of Infection and Health, Fudan University, Shanghai 200040, China
| | - Jiahuan Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China.
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 20052, China.
| |
Collapse
|
4
|
Chen J, Huang Z, Xiao J, Du S, Bu Q, Guo H, Ye J, Chen S, Gao J, Li Z, Lan M, Wang S, Zhang T, Zhang J, Wu Y, Zhang Y, Xia N, Yuan Q, Cheng T. A quadri-fluorescence SARS-CoV-2 pseudovirus system for efficient antigenic characterization of multiple circulating variants. CELL REPORTS METHODS 2024; 4:100856. [PMID: 39243752 PMCID: PMC11440059 DOI: 10.1016/j.crmeth.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
The ongoing co-circulation of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains necessitates advanced methods such as high-throughput multiplex pseudovirus systems for evaluating immune responses to different variants, crucial for developing updated vaccines and neutralizing antibodies (nAbs). We have developed a quadri-fluorescence (qFluo) pseudovirus platform by four fluorescent reporters with different spectra, allowing simultaneous measurement of the nAbs against four variants in a single test. qFluo shows high concordance with the classical single-reporter assay when testing monoclonal antibodies and human plasma. Utilizing qFluo, we assessed the immunogenicities of the spike of BA.5, BQ.1.1, XBB.1.5, and CH.1.1 in hamsters. An analysis of cross-neutralization against 51 variants demonstrated superior protective immunity from XBB.1.5, especially against prevalent strains such as "FLip" and JN.1, compared to BA.5. Our finding partially fills the knowledge gap concerning the immunogenic efficacy of the XBB.1.5 vaccine against current dominant variants, being instrumental in vaccine-strain decisions and insight into the evolutionary path of SARS-CoV-2.
Collapse
Affiliation(s)
- Jijing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Jin Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Shuangling Du
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Qingfang Bu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Huilin Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Jianghui Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jiahua Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Zonglin Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Miaolin Lan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Shaojuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China.
| | - Yali Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China.
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, P.R. China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, P.R. China.
| |
Collapse
|
5
|
Focosi D, Franchini M, Casadevall A, Maggi F. An update on the anti-spike monoclonal antibody pipeline for SARS-CoV-2. Clin Microbiol Infect 2024; 30:999-1006. [PMID: 38663655 DOI: 10.1016/j.cmi.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Anti-spike monoclonal antibodies represent one of the most tolerable prophylaxis and therapies for COVID-19 in frail and immunocompromised patients. Unfortunately, viral evolution in Omicron has led all of them to failure. OBJECTIVES We review here the current pipeline of anti-spike mAb's, discussing in detail the most promising candidates. SOURCES We scanned PubMed, ClinicalTrials.gov and manufacturers' press releases for clinical studies on anti-spike monoclonal antibodies. CONTENT We present state-of-art data clinical progress for AstraZeneca's AZD3152, Invivyd's VYD222, Regeneron's REGN-17092 and Aerium Therapeutics' AER-800. IMPLICATIONS The anti-spike monoclonal antibody clinical pipeline is currently limited to few agents (most being single antibodies) with unknown efficacy against the dominant JN.1 sublineage. The field of antibody-based therapies requires boosting by both manufacturers and institutions.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| | - Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
6
|
Du P, Li N, Tang S, Zhou Z, Liu Z, Wang T, Li J, Zeng S, Chen J. Development and evaluation of vaccination strategies for addressing the continuous evolution SARS-CoV-2 based on recombinant trimeric protein technology: Potential for cross-neutralizing activity and broad coronavirus response. Heliyon 2024; 10:e34492. [PMID: 39148990 PMCID: PMC11324815 DOI: 10.1016/j.heliyon.2024.e34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Given the significant decline in vaccine efficacy against Omicron, the development of novel vaccines with specific or broad-spectrum effectiveness is paramount. In this study, we formulated four monovalent vaccines based on recombinant spike trimer proteins, along with three bivalent vaccines, and five monovalent vaccines based on recombinant spike proteins. We evaluated the efficacy of different vaccination regimens in eliciting neutralizing antibodies in mice through pseudovirus neutralization assays. Following two doses of primary immunization with D614G, mice received subsequent immunizations with Omicron (BA.1, BA.2, BA.4/5) boosters individually, which led to the generation of broader and more potent cross-neutralizing activity compared to D614G boosters. Notably, the BA.4/5 booster exhibited superior efficacy. Following two doses of primary immunization with Omicron (BA.1, BA.2, BA.4/5), mice were subsequently immunized with one dose of D614G booster which resulted in broader neutralizing activity compared to one dose of Omicron (BA.1, BA.2, or BA.4/5). In unvaccinated mice, full-course immunization with different bivalent vaccines induced broad neutralizing activity against Omicron and pre-Omicron variants, with D614G&BA.4/5 demonstrating superior efficacy. However, compared to other variants, the neutralizing activity against XBB.1.5/1.9.1 is notably reduced. This observation emphasizes the necessity of timely updates to the vaccine antigen composition. Based on these findings and existing studies, we propose a vaccination strategy aimed at preserving the epitope repertoire to its maximum potential: (1) Individuals previously vaccinated or infected with pre-Omicron variants should inoculate a monovalent vaccine containing Omicron components; (2) Individuals who have only been vaccinated or infected with Omicron should be inoculated a monovalent vaccine containing pre-Omicron variants components; (3) Individuals without SARS-CoV-2 infection and vaccination should inoculate a bivalent vaccine comprising both pre-Omicron and Omicron components for primary immunization. Additionally, through cross-inoculation of SARS-CoV-2 D614G spike trimer protein and SARS-CoV-1 spike protein in mice, we preliminarily demonstrated the possibility of cross-reaction between different coronavirus vaccines to produce resistance to the pan-coronavirus.
Collapse
Affiliation(s)
- Peng Du
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Ning Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Shengjun Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhihai Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Taorui Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Jiahui Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Simiao Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Juan Chen
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, #466 Xin-Gang-Zhong-Lu, Haizhu District, Guangzhou, 510317, China
| |
Collapse
|
7
|
Xie H, Zhang J, Bai S, Lv M, Li J, Chen W, Suo L, Chen M, Zhao W, Zhou S, Wang J, Zhang A, Ma J, Wang F, Yan L, Li D, Wu J. The contributions of vaccination and natural infection to the production of neutralizing antibodies against the SARS-CoV-2 prototype strain and variants. Int J Infect Dis 2024; 144:107060. [PMID: 38670482 DOI: 10.1016/j.ijid.2024.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVES To evaluate the neutralizing antibody (NAb) levels against the SARS-CoV-2 Omicron variants BF.7, BQ.1, BQ.1.1, XBB.1, and XBB.1.5 after vaccination and natural infection. METHODS The NAbs against the different viral strains of 490 individuals with SARS-CoV-2 and 187 without SARS-CoV-2 in the Beijing COVID-19 outbreak during December 2022 to January 2023 were analyzed. RESULTS In uninfected individuals, limited levels of NAbs were produced against the prototype and variant strains after two doses vaccine but significantly increased after three or four doses of the vaccine. The infected individuals had high NAbs levels against the BF.7, BQ.1, and BQ.1.1 variants and moderate NAbs levels against the XBB.1 and XBB.1.5 variants. The highest NAbs levels were observed after two inoculation doses. The third and fourth doses vaccine did not result in a significant increase the NAbs levels. After the last dose of vaccination, the NAbs levels peaked at 12 months for the prototype and BF.7 and between 6 to 12 months for the BQ.1, BQ.1.1, XBB.1, and XBB.1.5 variants. CONCLUSIONS The immune response decreases as the virus mutates. If booster vaccination is considered necessary, it is suggested for at least 6 months after infection.
Collapse
Affiliation(s)
- Hui Xie
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Junnan Zhang
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Shuang Bai
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Min Lv
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Juan Li
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Weixin Chen
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Luodan Suo
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Meng Chen
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Wei Zhao
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Shanshan Zhou
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Jian Wang
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Ao Zhang
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China
| | - Jianxin Ma
- Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Fengshuang Wang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Le Yan
- Huairou District Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Li
- Daxing District Center for Disease Control and Prevention, Beijing, China
| | - Jiang Wu
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing, China.
| |
Collapse
|
8
|
Wang X, Jiang S, Ma W, Zhang Y, Wang P. Robust neutralization of SARS-CoV-2 variants including JN.1 and BA.2.87.1 by trivalent XBB vaccine-induced antibodies. Signal Transduct Target Ther 2024; 9:123. [PMID: 38724561 PMCID: PMC11082144 DOI: 10.1038/s41392-024-01849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, University of Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Astakhova EA, Morozov AA, Vavilova JD, Filatov AV. Antigenic Cartography of SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:862-871. [PMID: 38880647 DOI: 10.1134/s0006297924050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 06/18/2024]
Abstract
Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.
Collapse
Affiliation(s)
- Ekaterina A Astakhova
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey A Morozov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Julia D Vavilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
10
|
Wang X, Zhang M, Wei K, Li C, Yang J, Jiang S, Zhao C, Zhao X, Qiao R, Cui Y, Chen Y, Li J, Cai G, Liu C, Yu J, Zhang W, Xie F, Wang P, Zhang Y. Longitudinal Analysis of Humoral and Cellular Immune Response up to 6 Months after SARS-CoV-2 BA.5/BF.7/XBB Breakthrough Infection and BA.5/BF.7-XBB Reinfection. Vaccines (Basel) 2024; 12:464. [PMID: 38793715 PMCID: PMC11125724 DOI: 10.3390/vaccines12050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation was conducted on 118 sera and 50 PBMC samples from 49 healthy individuals who experienced BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection. By studying antibody response, memory B cell, and IFN-γ secreting CD4+/CD8+ T cell response to several SARS-CoV-2 variants, we observed that each component of immune response exhibited distinct kinetics. Either BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection induces relatively high level of binding and neutralizing antibody titers against Omicron subvariants at an early time point, which rapidly decreases over time. Most of the individuals at 6 months post-breakthrough infection completely lost their neutralizing activities against BQ.1.1, CH.1.1, BA.2.86, JN.1 and XBB subvariants. Individuals with BA.5/BF.7-XBB reinfection exhibit immune imprinting shifting and recall pre-existing BA.5/BF.7 neutralization antibodies. In the BA.5 breakthrough infection group, the frequency of BA.5 and XBB.1.16-RBD specific memory B cells, resting memory B cells, and intermediate memory B cells gradually increased over time. On the other hand, the frequency of IFN-γ secreting CD4+/CD8+ T cells induced by WT/BA.5/XBB.1.16 spike trimer remains stable over time. Overall, our research indicates that individuals with breakthrough infection have rapidly declining antibody levels but have a relatively stable cellular immunity that can provide some degree of protection from future exposure to new antigens.
Collapse
Affiliation(s)
- Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Meng Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Kaifeng Wei
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jinghui Yang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Changyi Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jizhen Yu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200437, China;
| | - Faren Xie
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| |
Collapse
|
11
|
Zhao X, Qiu T, Huang X, Mao Q, Wang Y, Qiao R, Li J, Mao T, Wang Y, Cun Y, Wang C, Luo C, Yoon C, Wang X, Li C, Cui Y, Zhao C, Li M, Chen Y, Cai G, Geng W, Hu Z, Cao J, Zhang W, Cao Z, Chu H, Sun L, Wang P. Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination. Cell Discov 2024; 10:14. [PMID: 38320990 PMCID: PMC10847457 DOI: 10.1038/s41421-024-00648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The current SARS-CoV-2 variants strikingly evade all authorized monoclonal antibodies and threaten the efficacy of serum-neutralizing activity elicited by vaccination or prior infection, urging the need to develop antivirals against SARS-CoV-2 and related sarbecoviruses. Here, we identified both potent and broadly neutralizing antibodies from a five-dose vaccinated donor who exhibited cross-reactive serum-neutralizing activity against diverse coronaviruses. Through single B-cell sorting and sequencing followed by a tailor-made computational pipeline, we successfully selected 86 antibodies with potential cross-neutralizing ability from 684 antibody sequences. Among them, PW5-570 potently neutralized all SARS-CoV-2 variants that arose prior to Omicron BA.5, and the other three could broadly neutralize all current SARS-CoV-2 variants of concern, SARS-CoV and their related sarbecoviruses (Pangolin-GD, RaTG13, WIV-1, and SHC014). Cryo-EM analysis demonstrates that these antibodies have diverse neutralization mechanisms, such as disassembling spike trimers, or binding to RBM or SD1 to affect ACE2 binding. In addition, prophylactic administration of these antibodies significantly protects nasal turbinate and lung infections against BA.1, XBB.1, and SARS-CoV viral challenge in golden Syrian hamsters, respectively. Importantly, post-exposure treatment with PW5-5 and PW5-535 also markedly protects against XBB.1 challenge in these models. This study reveals the potential utility of computational process to assist screening cross-reactive antibodies, as well as the potency of vaccine-induced broadly neutralizing antibodies against current SARS-CoV-2 variants and related sarbecoviruses, offering promising avenues for the development of broad therapeutic antibody drugs.
Collapse
Grants
- We thank Center of Cryo-Electron Microscopy, Fudan University for the supports on cryo-EM data collection. This study was supported by funding from the National Key Research and Development Program of China (No. 2023YFC3404000 to Z.C.), National Natural Science Foundation of China (32270142 to P.W.; 32300121 to X.Z; 31900483 and 32370697 to T.Q.; 32070657 to Z.C.), National Key R&D Program of China (2019YFA0905900 to Z.C.), the Ministry of Science and Technology of China (2021YFC2302500 to L.S.), Shanghai Rising-Star Program (22QA1408800 to P.W.), Shanghai Pujiang Programme (23PJD007 to X.Z.), Shanghai Sailing Program (19YF1441100 to T.Q.), the Program of Science and Technology Cooperation with Hong Kong, Macao and Taiwan (23410760500 to P.W.), AI for Science project of Fudan University (XM06231724 to T.Q. & P.W.), and R&D Program of Guangzhou Laboratory (SRPG22-003 to L.S.). This study was also supported by Collaborative Research Fund (HKU C7103-22G to H.C.), Theme-Based Research Scheme (T11-709/21-N to H.C.), the Research Grants Council of the HKSAR; the Health and Medical Research Fund (COVID1903010-Project 14 to H.C.), the Food and Health Bureau, the Government of the HKSAR; and Emergency COVID-19 grant (2021YFC0866100 to H.C.) from Major Projects on Public Security under the National Key Research and Development Program of China. Pengfei Wang acknowledges support from Open Research Fund of State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-2304) and Xiaomi Young Talents Program. Xiaoyu Zhao acknowledges support from International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program, YJ20220079).
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Tianyi Qiu
- Institute of Clinical Science, ZhongShan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xiner Huang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qiyu Mao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yajie Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Tiantian Mao
- School of Life Sciences, Fudan University, Shanghai, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yewei Cun
- School of Life Sciences, Fudan University, Shanghai, China
| | - Caicui Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cuiting Luo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chaemin Yoon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Minghui Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
| | - Wenye Geng
- Fudan Zhangjiang Institute, Shanghai Medical College of Fudan University, Fudan University, Shanghai, China
| | - Zixin Hu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China
| | - Jinglei Cao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai, China.
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Lei Sun
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China.
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Shanghai Sci-Tech Inno Center for Infection & Immunity, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Yadav PD, Sardana V, Deshpande GR, Shinde PV, Thangaraj JWV, George LS, Sapkal GN, Patil DY, Sahay RR, Shete AM, Joshi M, Murhekar M, Godbole S, Gupta N, Prakash S, Rathore M, Ujjainiya R, Singh AP, Mishra A, Dash D, Chaudhary K, Sengupta S. Neutralizing antibody responses to SARS-CoV-2 Omicron variants: Post six months following two-dose & three-dose vaccination of ChAdOx1 nCoV-19 or BBV152. Indian J Med Res 2024; 159:223-231. [PMID: 38517215 PMCID: PMC11050759 DOI: 10.4103/ijmr.ijmr_948_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND OBJECTIVES The Omicron sub-lineages are known to have higher infectivity, immune escape and lower virulence. During December 2022 - January 2023 and March - April 2023, India witnessed increased SARS-CoV-2 infections, mostly due to newer Omicron sub-lineages. With this unprecedented rise in cases, we assessed the neutralization potential of individuals vaccinated with ChAdOx1 nCoV (Covishield) and BBV152 (Covaxin) against emerging Omicron sub-lineages. METHODS Neutralizing antibody responses were measured in the sera collected from individuals six months post-two doses (n=88) of Covishield (n=44) or Covaxin (n=44) and post-three doses (n=102) of Covishield (n=46) or Covaxin (n=56) booster dose against prototype B.1 strain, lineages of Omicron; XBB.1, BQ.1, BA.5.2 and BF.7. RESULTS The sera of individuals collected six months after the two-dose and the three-dose demonstrated neutralizing activity against all variants. The neutralizing antibody (NAbs) level was highest against the prototype B.1 strain, followed by BA5.2 (5-6 fold lower), BF.7 (11-12 fold lower), BQ.1 (12 fold lower) and XBB.1 (18-22 fold lower). INTERPRETATION CONCLUSIONS Persistence of NAb responses was comparable in individuals with two- and three-dose groups post six months of vaccination. Among the Omicron sub-variants, XBB.1 showed marked neutralization escape, thus pointing towards an eventual immune escape, which may cause more infections. Further, the correlation of study data with complete clinical profile of the participants along with observations for cell-mediated immunity may provide a clear picture for the sustained protection due to three-dose vaccination as well as hybrid immunity against the newer variants.
Collapse
Affiliation(s)
| | - Viren Sardana
- Big Data and Informatics Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | | | | | | | - Leyanna S. George
- Division of Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | | | | - Rima R. Sahay
- Maximum Containment Laboratory, Pune, Maharashtra, India
| | - Anita M. Shete
- Maximum Containment Laboratory, Pune, Maharashtra, India
| | - Madhavi Joshi
- Department of Science & Technology, Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Manoj Murhekar
- Department of Epidemiology & Biostatistics, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Sheela Godbole
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Nivedita Gupta
- Division of Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Satyartha Prakash
- Big Data and Informatics Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Mamta Rathore
- Cardiometabolic Disease Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Rajat Ujjainiya
- Cardiometabolic Disease Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Ajay Pratap Singh
- Cardiometabolic Disease Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Aastha Mishra
- Cardiometabolic Disease Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Debasis Dash
- Cardiometabolic Disease Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Kumardeep Chaudhary
- Big Data and Informatics Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Shantanu Sengupta
- Big Data and Informatics Unit, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, India
| | | |
Collapse
|
13
|
Wang X, Jiang S, Ma W, Li X, Wei K, Xie F, Zhao C, Zhao X, Wang S, Li C, Qiao R, Cui Y, Chen Y, Li J, Cai G, Liu C, Yu J, Li J, Hu Z, Zhang W, Jiang S, Li M, Zhang Y, Wang P. Enhanced neutralization of SARS-CoV-2 variant BA.2.86 and XBB sub-lineages by a tetravalent COVID-19 vaccine booster. Cell Host Microbe 2024; 32:25-34.e5. [PMID: 38029742 DOI: 10.1016/j.chom.2023.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Emerging SARS-CoV-2 sub-lineages like XBB.1.5, XBB.1.16, EG.5, HK.3 (FLip), and XBB.2.3 and the variant BA.2.86 have recently been identified. Understanding the efficacy of current vaccines on these emerging variants is critical. We evaluate the serum neutralization activities of participants who received COVID-19 inactivated vaccine (CoronaVac), those who received the recently approved tetravalent protein vaccine (SCTV01E), or those who had contracted a breakthrough infection with BA.5/BF.7/XBB virus. Neutralization profiles against a broad panel of 30 sub-lineages reveal that BQ.1.1, CH.1.1, and all the XBB sub-lineages exhibit heightened resistance to neutralization compared to previous variants. However, despite their extra mutations, BA.2.86 and the emerging XBB sub-lineages do not demonstrate significantly increased resistance to neutralization over XBB.1.5. Encouragingly, the SCTV01E booster consistently induces higher neutralizing titers against all these variants than breakthrough infection does. Cellular immunity assays also show that the SCTV01E booster elicits a higher frequency of virus-specific memory B cells. Our findings support the development of multivalent vaccines to combat future variants.
Collapse
Affiliation(s)
- Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiangnan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Kaifeng Wei
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Faren Xie
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shidi Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Changyi Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jizhen Yu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zixin Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Ao D, He X, Liu J, Xu L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal Transduct Target Ther 2023; 8:466. [PMID: 38129394 PMCID: PMC10739883 DOI: 10.1038/s41392-023-01724-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant casualties and put immense strain on public health systems worldwide, leading to economic recession and social unrest. In response, various prevention and control strategies have been implemented globally, including vaccine and drug development and the promotion of preventive measures. Implementing these strategies has effectively curbed the transmission of the virus, reduced infection rates, and gradually restored normal social and economic activities. However, the mutations of SARS-CoV-2 have led to inevitable infections and reinfections, and the number of deaths continues to rise. Therefore, there is still a need to improve existing prevention and control strategies, mainly focusing on developing novel vaccines and drugs, expediting medical authorization processes, and keeping epidemic surveillance. These measures are crucial to combat the Coronavirus disease (COVID-19) pandemic and achieve sustained, long-term prevention, management, and disease control. Here, we summarized the characteristics of existing COVID-19 vaccines and drugs and suggested potential future directions for their development. Furthermore, we discussed the COVID-19-related policies implemented over the past years and presented some strategies for the future.
Collapse
Affiliation(s)
- Danyi Ao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Jian Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Li Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Wang H, Xue Q, Zhang H, Yuan G, Wang X, Sheng K, Li C, Cai J, Sun Y, Zhao J, Lu J, Fang S, Yang Y, Zhang Y, Huang Y, Wang J, Xu JH, Jiang MX, Wang X, Shen L, Liu Y, Liu Q, Zhang Q, Wang S, Wang P, Qiu C, Ai J, Zhang W. Neutralization against Omicron subvariants after BA.5/BF.7 breakthrough infection weakened as virus evolution and aging despite repeated prototype-based vaccination 1. Emerg Microbes Infect 2023; 12:2249121. [PMID: 37668156 PMCID: PMC10524800 DOI: 10.1080/22221751.2023.2249121] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Omicron had swept the mainland China between December 2022 and January 2023, while SARS-CoV-2 still continued to evolve. To fully prepare for the next wave, it's urgent to evaluate the humoral immune response post BA.5/BF.7 breakthrough infection against predominant sub-lineages among existing vaccination strategies and the elders. METHOD This study enrolled a longitudinal young-adult cohort from 2/3-dose vaccination to 1 month after breakthrough infection, and an elder cohort at 1 month after breakthrough infection. Seral samples were collected and tested for humoral immune response to SARS-CoV-2 subvariants including WT, BA.2, BA.5, BF.7, BQ.1.1, CH.1.1, XBB.1.5. RESULTS BA.5/BF.7 breakthrough infection induced higher neutralization activity than solely vaccination in all SARS-CoV-2 strains, while the latest Omicron subvariants, BQ.1.1, CH.1.1, XBB.1.5, exhibited the strongest neutralization evasion ability. There was a negative correlation between age and humoral immune response in WT, BA.5, BQ.1.1, and XBB.1.5. Compared to non-vaccination groups, breakthrough infection in two-dose vaccination groups had significantly higher neutralizing antibody against WT, BA.2, BA.5, BF.7 but not to BQ.1.1, CH.1.1, XBB.1.5 while booster dose against the prototype prior-breakthrough would not further significantly enhance individual's humoral responses against the latest Omicron subvariants. CONCLUSIONS Newer variants manifest increasing immune evasion from neutralization and repeated prototype-based booster vaccines may not further enhance neutralizing antibody against emerging new variants. Older adults have lower levels of neutralizing antibody. Future vaccination strategies should aim to enhance effective neutralization to contemporary variants.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Quanlin Xue
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, Shanghai, China
| | - Kai Sheng
- Geriatric Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, Shanghai, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jingjing Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jiahuan Lu
- Geriatric Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Shuyu Fang
- Geriatric Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yongfeng Yang
- Community Health Service Center of Huaxin Town, Shanghai, People’s Republic of China
| | - Yeting Zhang
- Community Health Service Center of Chonggu Town, Shanghai, People’s Republic of China
| | - Ying Huang
- Community Health Service Center of Baihe Street, Shanghai, People’s Republic of China
| | - Jiancui Wang
- Community Health Service Center of Xianghuaqiao Street, Shanghai, People’s Republic of China
| | - Jonathan H. Xu
- Shanghai High School International Division, Shanghai, People’s Republic of China
| | - Melissa X. Jiang
- Shanghai Pinghe Bilingual School, Shanghai, People’s Republic of China
| | - Xinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Lei Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qihui Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, People’s Republic of China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
16
|
Li L, Chen X, Wang Z, Li Y, Wang C, Jiang L, Zuo T. Breakthrough infection elicits hypermutated IGHV3-53/3-66 public antibodies with broad and potent neutralizing activity against SARS-CoV-2 variants including the emerging EG.5 lineages. PLoS Pathog 2023; 19:e1011856. [PMID: 38048356 PMCID: PMC10721163 DOI: 10.1371/journal.ppat.1011856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern (VOCs) calls for efforts to study broadly neutralizing antibodies elicited by infection or vaccination so as to inform the development of vaccines and antibody therapeutics with broad protection. Here, we identified two convalescents of breakthrough infection with relatively high neutralizing titers against all tested viruses. Among 50 spike-specific monoclonal antibodies (mAbs) cloned from their B cells, the top 6 neutralizing mAbs (KXD01-06) belong to previously defined IGHV3-53/3-66 public antibodies. Although most antibodies in this class are dramatically escaped by VOCs, KXD01-06 all exhibit broad neutralizing capacity, particularly KXD01-03, which neutralize SARS-CoV-2 from prototype to the emerging EG.5.1 and FL.1.5.1. Deep mutational scanning reveals that KXD01-06 can be escaped by current and prospective variants with mutations on D420, Y421, L455, F456, N460, A475 and N487. Genetic and functional analysis further indicates that the extent of somatic hypermutation is critical for the breadth of KXD01-06 and other IGHV3-53/3-66 public antibodies. Overall, the prevalence of broadly neutralizing IGHV3-53/3-66 public antibodies in these two convalescents provides rationale for novel vaccines based on this class of antibodies. Meanwhile, KXD01-06 can be developed as candidates of therapeutics against SARS-CoV-2 through further affinity maturation.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Xixian Chen
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
- University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zuowei Wang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Yunjian Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Chen Wang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Liwei Jiang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Teng Zuo
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People’s Republic of China
| |
Collapse
|
17
|
Song R, Chen X, Li B, Ni J, Zhou Y, Zhang H, Liang X, Zou L, Liu J, Yang F, Li G, Guo X, Liu Z, Mao F, Lei C, Sui J, Li W, Jin R. Nasal spray of an IgM-like ACE2 fusion protein HH-120 prevents SARS-CoV-2 infection: Two investigator-initiated postexposure prophylaxis trials. J Med Virol 2023; 95:e29275. [PMID: 38054556 DOI: 10.1002/jmv.29275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
HH-120, an IgM-like angiotensin converting enzyme 2 (ACE2) fusion protein, has been developed as a nasal spray against Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently undergoing human trials. HH-120 nasal spray was assessed for postexposure prophylaxis (PEP) in two investigator-initiated (NS01 and NS02) trials with different risk levels of SARS-CoV-2 exposure. NS01 enrolled family caregiver participants who had continuous contacts with laboratory-confirmed index cases; NS02 enrolled participants who had general contacts (Part 1) or close contacts (Part 2) with index cases. The primary endpoints were safety and laboratory-confirmed and/or symptomatic SARS-CoV-2 infection. In NS01 trial (14 participants), the SARS-CoV-2 infection rates were 25% in the HH-120 group and 83.3% in the external control group (relative risk reduction [RRR]: 70.0%). In NS02-Part 1 (193 participants), the infection rates were 4% (HH-120) versus 11.3% (placebo), symptomatic infection rates were 0.8% versus 3.5%, hence with a RRR of 64.6% and 77.1%, respectively. In Part 2 (76 participants), the infection rates were 17.1% (HH-120) versus 30.4% (placebo), symptomatic infection rates were 7.5% versus 27.3%, with a RRR of 43.8% and 72.5%, respectively. No HH-120-related serious adverse effects were observed. The HH-120 nasal spray used as PEP was safe and effective in preventing laboratory-confirmed and symptomatic SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyou Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Baoliang Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jun Ni
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yunao Zhou
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | | | | | | | - Juan Liu
- Huahui Health Ltd., Beijing, China
| | | | | | - Xiaodi Guo
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhe Liu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | | | - Cong Lei
- Huahui Health Ltd., Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Chen K, Zhang L, Fang Z, Li J, Li C, Song W, Huang Z, Chen R, Zhang Y, Li J. Analysis of the protective efficacy of approved COVID-19 vaccines against Omicron variants and the prospects for universal vaccines. Front Immunol 2023; 14:1294288. [PMID: 38090587 PMCID: PMC10711607 DOI: 10.3389/fimmu.2023.1294288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
By the end of 2022, different variants of Omicron had rapidly spread worldwide, causing a significant impact on the Coronavirus disease 2019 (COVID-19) pandemic situation. Compared with previous variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these new variants of Omicron exhibited a noticeable degree of mutation. The currently developed platforms to design COVID-19 vaccines include inactivated vaccines, mRNA vaccines, DNA vaccines, recombinant protein vaccines, virus-like particle vaccines, and viral vector vaccines. Many of these platforms have obtained approval from the US Food and Drug Administration (FDA) or the WHO. However, the Omicron variants have spread in countries where vaccination has taken place; therefore, the number of cases has rapidly increased, causing concerns about the effectiveness of these vaccines. This article first discusses the epidemiological trends of the Omicron variant and reviews the latest research progress on available vaccines. Additionally, we discuss progress in the development progress and practical significance of universal vaccines. Next, we analyze the neutralizing antibody effectiveness of approved vaccines against different variants of Omicron, heterologous vaccination, and the effectiveness of multivalent vaccines in preclinical trials. We hope that this review will provide a theoretical basis for the design, development, production, and vaccination strategies of novel coronavirus vaccines, thus helping to end the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ling Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wancheng Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiwei Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruyi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Virus Inspection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Department of Virus Inspection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
19
|
Sun B, Gao F. Investigation of escape mechanisms of SARS-CoV-2 Omicron sub-lineages and exploration of potential antibodies for XBB.1. J Infect 2023; 87:354-357. [PMID: 37507093 DOI: 10.1016/j.jinf.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Bo Sun
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|