1
|
Talbert JA, Townsend SD. Human milk as a complex natural product. Nat Prod Rep 2025; 42:406-420. [PMID: 39831434 DOI: 10.1039/d4np00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Covering: up to the end of 2024Breastfeeding is one of the most effective ways to promote child health. However, characterizing the chemistry that fortifies the benefits of breastfeeding remains a grand challenge. Current efforts in the community are focused on characterizing the roles of the different carbohydrates, proteins, and fats in milk. The goal of this review is to highlight and describe current knowledge about the major classes of macromolecules in human milk and their potential role in infant health and wellness.
Collapse
Affiliation(s)
- Julie A Talbert
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, USA.
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, USA.
| |
Collapse
|
2
|
Nie W, Tong X, Pung C, Li J, Ye H, Huang X. Insights into the relationship between the acetylation of Dendrobium officinale polysaccharides and the ability to promote sIgA secretion. Int J Biol Macromol 2025; 304:140764. [PMID: 39924036 DOI: 10.1016/j.ijbiomac.2025.140764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
The acetyl group is a significant reactive component of Dendrobium officinale polysaccharide (DOP). In this study, we prepared DOPs with different degrees of acetyl substitution and investigated how the acetyl group, a naturally occurring characteristic of DOP, influences the immunomodulatory activity and the production of secretory IgA (sIgA) in the small intestine. Physical property measurements revealed significant changes in surface morphology and solubility of DOP caused by the addition or removal of acetyl groups. In vivo studies have demonstrated that DOP can mitigate Cyclophosphamide-induced immunosuppression by enhancing the immune organ index, promoting immunoglobulin secretion, and increasing the population of immune cells. Additionally, DOP can enhance sIgA production through multiple pathways, including enhanced IgA+ B cell class switch recombination, gut homing of IgA+ plasma cells, and upregulation of factors involved in sIgA composition and secretion. Correlation analysis revealed strong, piecewise-specific correlations between DOP acetylation and sIgA production at varying intervals of acetyl substitution. Based on this, we propose a theoretical framework in which the acetylation of DOP and the secretion of small intestinal sIgA demonstrate a "piecewise correlation". This framework illustrates the influence of DOP acetylation on immunomodulatory activity and provides a theoretical basis for enhancing the added value of Dendrobium officinale resources.
Collapse
Affiliation(s)
- Wenlei Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xuecong Tong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chewhui Pung
- School of Chemistry, Chemical Engineering and Biotechnology. Nanyang Technological University, Singapore
| | - Jia Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology. Nanyang Technological University, Singapore
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
3
|
Tao B, Li X, Li X, Lu K, Song K, Mohsen M, Li P, Wang L, Zhang C. Derivatives of postbiotics (cell wall constituents) from Bacillus subtilis (LCBS1) relieve soybean meal-induced enteritis in bullfrog (Aquarana catesbeianus). Int J Biol Macromol 2024; 279:135359. [PMID: 39244121 DOI: 10.1016/j.ijbiomac.2024.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Soybean meal (SM) serves as a primary alternative to fish meal in aquafeeds. However, a high-SM diet may result in intestinal injury. Our previous study demonstrated the probiotic effects of heat-inactivated Bacillus subtilis (LCBS1) on bullfrogs (Aquarana catesbeianus) fed a high-SM diet, probably attributed to the bioactive constituent of cell wall. Therefore, in this study, the main constituents of cell wall from LCBS1, including peptidoglycan (PGN), lipoteichoic acid (LTA), cell wall protein (CWP), and whole cell wall (WCW), were extracted and added to a high-SM (~55 %) diet to investigate their probiotic effects on bullfrogs and reveal the possible mechanisms. The results indicated that bullfrogs fed the LTA of LCBS1 showed the highest weight gain, feed efficiency, and protein efficiency ratio. Additionally, the LTA of LCBS1 could activate the humoral immunity and modulate intestinal microbiota. It might activate JAK2-STAT3 and MAPK-ERK pathways, as well as up-regulate tlr5 gene to promote intestinal cell proliferation, thereby alleviating jejunal injury. The WCW of LCBS1 effectively increased the growth performance of bullfrogs by improving the humoral immunity, enhancing intestinal barrier function, and alleviating intestinal inflammatory response. The PGN and CWP of LCBS1 could stimulate the humoral immunity and enhance intestinal barrier function, but had no significant effect on the growth performance of bullfrogs. In conclusion, the LTA might be the primary bioactive constituent of heat-inactivated LCBS1, with the beneficial effects of promoting intestinal cell proliferation and enhancing intestinal barrier function, therefore alleviating the intestinal injury induced by SM on bullfrogs. This study establishes a theoretical basis for the efficient utilization of plant proteins by the application of postbiotics additive in aquafeed, which further saves the feed costs and promotes development of economically sustainable aquaculture.
Collapse
Affiliation(s)
- Bingyi Tao
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xinyuan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mohamed Mohsen
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Peng Li
- North American Renderers Association, Alexandria, VA, USA
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
4
|
Wang Y, Su C, Ji C, Xiao J. CD5L associates with IgM via the J chain. Nat Commun 2024; 15:8397. [PMID: 39333069 PMCID: PMC11437284 DOI: 10.1038/s41467-024-52175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
CD5 antigen-like (CD5L), also known as Spα or AIM (Apoptosis inhibitor of macrophage), emerges as an integral component of serum immunoglobulin M (IgM). However, the molecular mechanism underlying the interaction between IgM and CD5L has remained elusive. In this study, we present a cryo-electron microscopy structure of the human IgM pentamer core in complex with CD5L. Our findings reveal that CD5L binds to the joining chain (J chain) in a Ca2+-dependent manner and further links to IgM via a disulfide bond. We further corroborate recently published data that CD5L reduces IgM binding to the mucosal transport receptor pIgR, but does not impact the binding of the IgM-specific receptor FcμR. Additionally, CD5L does not interfere with IgM-mediated complement activation. These results offer a more comprehensive understanding of IgM and shed light on the function of the J chain in the immune system.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China.
- Changping Laboratory, Beijing, P.R. China.
| |
Collapse
|
5
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Wang Y, Xiao J. Recent advances in the molecular understanding of immunoglobulin A. FEBS J 2024; 291:3597-3603. [PMID: 38329005 DOI: 10.1111/febs.17089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Immunoglobulin A (IgA) plays a crucial role in the human immune system, particularly in mucosal immunity. IgA antibodies that target the mucosal surface are made up of two to five IgA monomers linked together by the joining chain, forming polymeric molecules. These IgA polymers are transported across mucosal epithelial cells by the polymeric immunoglobulin receptor pIgR, resulting in the formation of secretory IgA (SIgA). This review aims to explore recent advancements in our molecular understanding of IgA, with a specific focus on SIgA, and the interaction between IgA and pathogen molecules.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Kumar Bharathkar S, Stadtmueller BM. Structural and Biochemical Requirements for Secretory Component Interactions with Dimeric IgA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:226-234. [PMID: 38809110 PMCID: PMC11233122 DOI: 10.4049/jimmunol.2300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Secretory (S) IgA is the predominant mucosal Ab that protects host epithelial barriers and promotes microbial homeostasis. SIgA production occurs when plasma cells assemble two copies of monomeric IgA and one joining chain (JC) to form dimeric (d) IgA, which is bound by the polymeric Ig receptor (pIgR) on the basolateral surface of epithelial cells and transcytosed to the apical surface. There, pIgR is proteolytically cleaved, releasing SIgA, a complex of the dIgA and the pIgR ectodomain, called the secretory component (SC). The pIgR's five Ig-like domains (D1-D5) undergo a conformational change upon binding dIgA, ultimately contacting four IgA H chains and the JC in SIgA. In this study, we report structure-based mutational analysis combined with surface plasmon resonance binding assays that identify key residues in mouse SC D1 and D3 that mediate SC binding to dIgA. Residues in D1 CDR3 are likely to initiate binding, whereas residues that stabilize the D1-D3 interface are likely to promote the conformational change and stabilize the final SIgA structure. Additionally, we find that the JC's three C-terminal residues play a limited role in dIgA assembly but a significant role in pIgR/SC binding to dIgA. Together, these results inform models for the intricate mechanisms underlying IgA transport across epithelia and functions in the mucosa.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carl R. Woese Institute of Genomic Biology
| |
Collapse
|
8
|
Hong C, Huang Y, Yang G, Wen X, Wang L, Yang X, Gao K, Jiang Z, Xiao H. Maternal resveratrol improves the intestinal health and weight gain of suckling piglets during high summer temperatures: The involvement of exosome-derived microRNAs and immunoglobin in colostrum. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:36-48. [PMID: 38464951 PMCID: PMC10921242 DOI: 10.1016/j.aninu.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Previous studies have shown that maternal resveratrol improved growth performance and altered the microbial composition of suckling piglets under hot summer conditions. However, it remains unclear how maternal resveratrol improves growth performance of suckling piglets during high summer temperatures. A total of 20 sows (Landrace × Large White; three parity) were randomly assigned to 2 groups (with or without 300 mg/kg resveratrol) from d 75 of gestation to d 21 of lactation during high ambient temperatures (from 27 to 30 °C). The results showed that maternal resveratrol supplementation increased total daily weight gain of piglets under hot summer conditions, which is consistent with previous studies. Furthermore, we found that maternal resveratrol improved the intestinal morphology and intestinal epithelial proliferation in suckling piglets. Dietary resveratrol supplementation affected the characteristics of exosome-derived microRNAs (miRNAs) in sow colostrum, as well as the genes targeted by differentially produced miRNAs. MiRNAs are concentrated in the tight junction pathway. As a result, the expression of intestinal tight junction proteins was increased in suckling piglets (P < 0.05). Notably, maternal resveratrol increased the intestinal secretory immunoglobulin A (sIgA) levels of suckling piglets via colostrum immunoglobin (P < 0.05), which could increase the abundance of beneficial microbiota to further increase the concentration of short chain fatty acids (SCFA) in suckling piglets' intestine (P < 0.05). Finally, our correlation analysis further demonstrated the positive associations between significantly differential intestinal microbiota, intestinal sIgA production and SCFA concentrations, as well as the positive relation between total daily weight gain and intestinal health of suckling piglets. Taken together, our findings suggested that maternal resveratrol could promote intestinal health to improve piglet growth during high summer temperatures, which might be associated with the immunoglobin and exosome-derived miRNAs in sows' colostrum.
Collapse
Affiliation(s)
- Changming Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yujian Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiaolu Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Hao Xiao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| |
Collapse
|
9
|
Chen Y, Chen Z, Wang W, Wang Y, Zhu J, Wang X, Huang W. Investigating the effects of Laggera pterodonta on H3N2-Induced inflammatory and immune responses through network pharmacology, molecular docking, and experimental validation in a mice model. Heliyon 2024; 10:e29487. [PMID: 38665556 PMCID: PMC11043942 DOI: 10.1016/j.heliyon.2024.e29487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
For centuries, Laggera pterodonta (LP), a Chinese herbal medicine, has been widely employed for treating respiratory infectious diseases; however, the mechanism underlying LP's effectiveness against the influenza A/Aichi/2/1968 virus (H3N2) remains elusive. This study aims to shed light on the mechanism by which LP combats influenza in H3N2-infected mice. First, we conducted quasi-targeted metabolomics analysis using liquid chromatography-mass spectrometry to identify LP components. Subsequently, network pharmacology, molecular docking, and simulation were conducted to screen candidate targets associated with AKT and NF-κB. In addition, we conducted a series of experiments including qPCR, hematoxylin-eosin staining, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay to provide evidence that LP treatment in H3N2-infected mice can reduce pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β, and MCP-1) while increasing T cells (CD3+, CD4+, and CD8+) and syndecan-1 and secretory IgA expression. This, in turn, aids in the prevention of excessive inflammation and the fortification of immunity, both of which are compromised by H3N2. Finally, we utilized a Western blot assay to confirm that LP indeed inhibits the AKT/NF-κB signaling cascade. Thus, the efficacy of LP serves as a cornerstone in establishing a theoretical foundation for influenza treatment.
Collapse
Affiliation(s)
- Yaorong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zexing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanqi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Jinyi Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Kumar Bharathkar S, Stadtmueller BM. Structural and biochemical requirements for secretory component interactions with dimeric Immunoglobulin A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.09.566401. [PMID: 38014291 PMCID: PMC10680632 DOI: 10.1101/2023.11.09.566401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody that protects host epithelial barriers and promotes microbial homeostasis. SIgA production occurs when plasma cells assemble two copies of monomeric IgA and one joining-chain (JC) to form dimeric (d) IgA, which is bound by the polymeric Ig receptor (pIgR) on the basolateral surface of epithelial cells and transcytosed to the apical surface. There, pIgR is proteolytically cleaved, releasing SIgA, a complex of the dIgA and the pIgR ectodomain, called secretory component (SC). The pIgR's five Ig-like domains (D1-D5) undergo a conformational change upon binding dIgA, ultimately contacting four IgA heavy chains and the JC in SIgA. Here we report structure-based mutational analysis combined with surface plasmon resonance binding assays that identify key residues in mouse SC D1 and D3 that mediate SC binding to dIgA. Residues in D1 CDR3 are likely to initiate binding whereas residues that stabilize the D1-D3 interface are likely to promote the conformation change and stabilize the final SIgA structure. Additionally, we find that the JC's three C-terminal residues play a limited role in dIgA assembly but a significant role in pIgR/SC binding to dIgA. Together results inform new models for the intricate mechanisms underlying IgA transport across epithelia and functions in the mucosa.
Collapse
Affiliation(s)
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carle R. Woese Institute of Genomic Biology
| |
Collapse
|
11
|
Liu X, Hong H, Wang J, Huang J, Li J, Tao Y, Liu M, Pang H, Li J, Bo R. Mucosal immune responses and protective efficacy elicited by oral administration AMP-ZnONPs-adjuvanted inactivated H9N2 virus in chickens. Poult Sci 2024; 103:103496. [PMID: 38330890 PMCID: PMC10864799 DOI: 10.1016/j.psj.2024.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024] Open
Abstract
The avian influenza virus is infected through the mucosal route, thus mucosal barrier defense is very important. While the inactivated H9N2 vaccine cannot achieve sufficient mucosal immunity, adjuvants are needed to induce mucosal and systemic immunity to prevent poultry from H9N2 influenza virus infection. Our previous study found that polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles (AMP-ZnONPs) had immune-enhancing effects in vitro. This study aimed to evaluate the mucosal immune responses of oral whole-inactivated H9N2 virus (WIV)+AMP-ZnONPs and its impact on the animal challenge protection, and the corresponding changes of pulmonary metabolomics after the second immunization. The results showed that compared to the WIV, the combined treatment of WIV and AMP-ZnONPs significantly enhanced the HI titer, IgG and specific sIgA levels, the number of goblet cells and intestinal epithelial lymphocytes (iIELs) as well as the expression of J-chain, polymeric immunoglobulin receptor (pIgR), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β). In viral attack experiments, WIV combing with AMP-ZnONPs effectively reduced lung damage and viral titers in throat swabs. Interestingly, significant changes of both the IgA intestinal immune network and PPAR pathway could also be found in the WIV+AMP-ZnONPs group compared to the non-infected group. Taken together, these findings suggest that AMP-ZnONPs can serve as a potential mucosal vaccine adjuvant, thereby avoiding adverse stress and corresponding costs caused by vaccine injection.
Collapse
Affiliation(s)
- Xiaopan Liu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Hailong Hong
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jing Wang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Huang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jiawen Li
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ya Tao
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Jingui Li
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Ruonan Bo
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Pan S, Manabe N, Ohno S, Komatsu S, Fujimura T, Yamaguchi Y. Each N-glycan on human IgA and J-chain uniquely affects oligomericity and stability. Biochim Biophys Acta Gen Subj 2024; 1868:130536. [PMID: 38070292 DOI: 10.1016/j.bbagen.2023.130536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Immunoglobulin A (IgA) plays a pivotal role in various immune responses, especially that of mucosal immunity. IgA is usually assembled into dimers with the contribution of J-chains. There are two N-glycosylation sites in human IgA1-Fc and one in the J-chain. There is no consensus as yet on the functional role of the N-glycosylation. METHODS To gain a better understanding of their role, we designed a series of IgA1-Fc mutants, which were expressed in the absence or presence of the J-chain. RESULTS IgA1-Fc without the J-chain, was predominantly expressed as a monomer, and in its presence dimers and some polymers appeared. N263 (Fc Cα2), N459 (Fc tailpiece) and N49 (J-chain) were shown to be site-specifically modified with N-glycans by mass spectrometry analysis. Mutant IgA1-Fc N459Q failed to form a proper dimer in the presence of the J-chain, instead higher-order aggregates appeared. Fluorescence experiments suggest that the N459-glycans cover a hydrophobic surface at the Fc tailpiece that prevents other Fc molecules from approaching the dimeric IgA. A thermofluor assay revealed that the N-glycans at N263 (Fc) and N49 (J-chain) both contribute in different ways to the thermal stability of the Fc-J-chain complex. NMR analysis of 13C-labeled Fc suggests that the N459-glycan is relatively flexible while the N263-glycan is more rigid. CONCLUSIONS We conclude that the N459-glycan of IgA1-Fc is essential for dimer formation and prevention of higher-order aggregates while those at N263 (Fc) and N49 (J-chain) stabilize the Fc-J-chain complex. GENERAL SIGNIFICANCE Site-specific role for N-glycan in molecular assembly is addressed.
Collapse
Affiliation(s)
- Shunli Pan
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Sachiko Komatsu
- Division of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Tsutomu Fujimura
- Division of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan.
| |
Collapse
|
13
|
Bharathkar SK, Miller MJ, Stadtmueller BM. Engineered Secretory Immunoglobulin A provides insights on antibody-based effector mechanisms targeting Clostridiodes difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566291. [PMID: 37986930 PMCID: PMC10659285 DOI: 10.1101/2023.11.08.566291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Secretory (S) Immunoglobin (Ig) A is the predominant mucosal antibody, which mediates host interactions with commensal and pathogenic microbes, including Clostridioides difficile. SIgA adopts a polymeric IgA structure that is bound by secretory component (SC). Despite significance, how SIgA supports diverse effector mechanisms is poorly characterized and SIgA-based therapies nonexistent. We engineered chimeric (c) SIgAs, in which we replaced SC domain D2 with a single domain antibody or a monomeric fluorescent protein, allowing us to investigate and enhance SIgA effector mechanisms. cSIgAs exhibited increased neutralization potency against C. difficile toxins, promoted bacterial clumping and cell rupture, and decreased cytotoxicity. cSIgA also allowed us to visualize and/or quantify C. difficile morphological changes and clumping events. Results reveal mechanisms by which SIgA combats C. difficile infection, demonstrate that cSIgA design can modulate these mechanisms, and demonstrate cSIgA's adaptability to modifications that might target a broad range of antigens and effector mechanisms.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Michael J. Miller
- Carle R. Woese Institute of Genomic Biology
- Department of food science and Human Nutrition, University of Illinois Urbana-Champaign, Illinois 61801 USA
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carle R. Woese Institute of Genomic Biology
| |
Collapse
|
14
|
Liu Q, Stadtmueller BM. SIgA structures bound to Streptococcus pyogenes M4 and human CD89 provide insights into host-pathogen interactions. Nat Commun 2023; 14:6726. [PMID: 37872175 PMCID: PMC10593759 DOI: 10.1038/s41467-023-42469-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Immunoglobulin (Ig) A functions as monomeric IgA in the serum and Secretory (S) IgA in mucosal secretions. Host IgA Fc receptors (FcαRs), including human FcαR1/CD89, mediate IgA effector functions; however, human pathogen Streptococcus pyogenes has evolved surface-protein virulence factors, including M4, that also engage the CD89-binding site on IgA. Despite human mucosa serving as a reservoir for pathogens, SIgA interactions with CD89 and M4 remain poorly understood. Here we report cryo-EM structures of M4-SIgA and CD89-SIgA complexes, which unexpectedly reveal different SIgA-binding stoichiometry for M4 and CD89. Structural data, supporting experiments, and modeling indicate that copies of SIgA bound to S. pyogenes M4 will adopt similar orientations on the bacterium surface and leave one host FcαR binding site open. Results suggest unappreciated functional consequences associated with SIgA binding to host and bacterial FcαRs relevant to understanding host-microbe co-evolution, IgA effector functions and improving the outcomes of group A Streptococcus infection.
Collapse
Affiliation(s)
- Qianqiao Liu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, 61801, USA.
| |
Collapse
|
15
|
Hockenberry A, Slack E, Stadtmueller BM. License to Clump: Secretory IgA Structure-Function Relationships Across Scales. Annu Rev Microbiol 2023; 77:645-668. [PMID: 37713459 DOI: 10.1146/annurev-micro-032521-041803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Secretory antibodies are the only component of our adaptive immune system capable of attacking mucosal pathogens topologically outside of our bodies. All secretory antibody classes are (a) relatively resistant to harsh proteolytic environments and (b) polymeric. Recent elucidation of the structure of secretory IgA (SIgA) has begun to shed light on SIgA functions at the nanoscale. We can now begin to unravel the structure-function relationships of these molecules, for example, by understanding how the bent conformation of SIgA enables robust cross-linking between adjacent growing bacteria. Many mysteries remain, such as the structural basis of protease resistance and the role of noncanonical bacteria-IgA interactions. In this review, we explore the structure-function relationships of IgA from the nano- to the metascale, with a strong focus on how the seemingly banal "license to clump" can have potent effects on bacterial physiology and colonization.
Collapse
Affiliation(s)
- Alyson Hockenberry
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
- Department of Environmental Systems Science (D-USYS), ETH Zürich, Zürich, Switzerland;
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland;
- Botnar Research Centre for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Beth M Stadtmueller
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA;
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
16
|
Liu Q, Stadtmueller BM. The Structures of Secretory IgA in complex with Streptococcus pyogenes M4 and human CD89 provide insights on mucosal host-pathogen interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537878. [PMID: 37662389 PMCID: PMC10473612 DOI: 10.1101/2023.04.21.537878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Immunoglobulin (Ig) A functions as monomeric IgA in the serum and Secretory (S) IgA in mucosal secretions. Host IgA Fc receptors (FcαRs), including human FcαR1/CD89, mediate IgA effector functions; however human pathogen Streptococcus pyogenes has evolved surface-protein virulence factors, including M4, that also engage the CD89 binding site on IgA. Despite human mucosa serving as a reservoir for pathogens, SIgA interactions with CD89 and M4 remain poorly understood. Here we report cryo-EM structures of M4-SIgA and CD89-SIgA complexes, which unexpectedly reveal different SIgA-binding stoichiometry for M4 and CD89. Structural data, supporting experiments, and modeling indicate that copies of SIgA bound to S. pyogenes M4 will adopt similar orientations on the bacterium surface and leave one host FcαR binding site open. Results suggest unappreciated functional consequences associated with SIgA binding to host and bacterial FcαRs relevant to understanding host-microbe co-evolution, IgA effector functions and to improving the outcomes of group A Streptococcus infection.
Collapse
Affiliation(s)
- Qianqiao Liu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| |
Collapse
|
17
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Polymeric immunoglobulin receptor (pIgR) in ray-finned fish (Actinopterygii). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108814. [PMID: 37211331 DOI: 10.1016/j.fsi.2023.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
18
|
Chen Q, Menon RP, Masino L, Tolar P, Rosenthal PB. Structural basis for Fc receptor recognition of immunoglobulin M. Nat Struct Mol Biol 2023:10.1038/s41594-023-00985-x. [PMID: 37095205 DOI: 10.1038/s41594-023-00985-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Immunoglobulin Fc receptors are cell surface transmembrane proteins that bind to the Fc constant region of antibodies and play critical roles in regulating immune responses by activation of immune cells, clearance of immune complexes and regulation of antibody production. FcμR is the immunoglobulin M (IgM) antibody isotype-specific Fc receptor involved in the survival and activation of B cells. Here we reveal eight binding sites for the human FcμR immunoglobulin domain on the IgM pentamer by cryogenic electron microscopy. One of the sites overlaps with the binding site for the polymeric immunoglobulin receptor (pIgR), but a different mode of FcμR binding explains its antibody isotype specificity. Variation in FcμR binding sites and their occupancy reflects the asymmetry of the IgM pentameric core and the versatility of FcμR binding. The complex explains engagement with polymeric serum IgM and the monomeric IgM B-cell receptor (BCR).
Collapse
Affiliation(s)
- Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Rajesh P Menon
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
| | - Laura Masino
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK.
- Institute of Immunity and Transplantation, University College London, London, UK.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
19
|
Li Y, Shen H, Zhang R, Ji C, Wang Y, Su C, Xiao J. Immunoglobulin M perception by FcμR. Nature 2023; 615:907-912. [PMID: 36949194 DOI: 10.1038/s41586-023-05835-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Immunoglobulin M (IgM) is the first antibody to emerge during embryonic development and the humoral immune response1. IgM can exist in several distinct forms, including monomeric, membrane-bound IgM within the B cell receptor (BCR) complex, pentameric and hexameric IgM in serum and secretory IgM on the mucosal surface. FcμR, the only IgM-specific receptor in mammals, recognizes different forms of IgM to regulate diverse immune responses2-5. However, the underlying molecular mechanisms remain unknown. Here we delineate the structural basis of the FcμR-IgM interaction by crystallography and cryo-electron microscopy. We show that two FcμR molecules interact with a Fcμ-Cμ4 dimer, suggesting that FcμR can bind to membrane-bound IgM with a 2:1 stoichiometry. Further analyses reveal that FcμR-binding sites are accessible in the context of IgM BCR. By contrast, pentameric IgM can recruit four FcμR molecules to bind on the same side and thereby facilitate the formation of an FcμR oligomer. One of these FcμR molecules occupies the binding site of the secretory component. Nevertheless, four FcμR molecules bind to the other side of secretory component-containing secretory IgM, consistent with the function of FcμR in the retrotransport of secretory IgM. These results reveal intricate mechanisms of IgM perception by FcμR.
Collapse
Affiliation(s)
- Yaxin Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Hao Shen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Ruixue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P. R. China
| | - Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P. R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
20
|
Xiao C, Zhang L, Zhang B, Kong L, Pan X, GOOSSENS T, Song Z. Dietary sodium butyrate improves female broiler breeder performance and offspring immune function by enhancing maternal intestinal barrier and microbiota. Poult Sci 2023; 102:102658. [PMID: 37075488 PMCID: PMC10127124 DOI: 10.1016/j.psj.2023.102658] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
This study aimed to investigate the effects of dietary sodium butyrate (SB) supplementation on the reproductive performance of female broiler breeders under intensive rearing conditions and to analyze antioxidant capacity, immune function, and intestinal barrier function of the female breeders and their offspring. A total of 96,000 40-wk-old Ross308 female broiler breeders were divided into the control (CON) and SB groups, each with 6 replicates of 8,000 birds. Each house with similar production performance characteristics was considered a replicate. The experiment lasted for 20 wk, whereupon sampling took place. Results showed that SB improved the egg production performance, egg quality of broiler breeders, and hatchability (P < 0.05). Maternal supplementation with SB substantially increased serum immunoglobulin A levels in broiler breeders and offspring (both P = 0.04) and offspring immunoglobulin G (P < 0.001). The levels of interleukin-1β (P < 0.001) and interleukin-4 (P = 0.03) in the offspring were downregulated, while the total superoxide dismutase in the offspring and the eggs increased (P < 0.05). The serum biochemical components in breeders and offspring were altered by SB, as evidenced by the reduction in triglycerides, total cholesterol, and high- and low-density lipoproteins (P < 0.05). The intestinal morphology of broiler breeders and offspring also improved by the SB with the decreasing the jejunal crypt depth (P = 0.04) and increasing villus height in offspring (P = 0.03). Maternal jejunal and ileal intestinal barrier-related genes were also shown to be significantly affected by SB. Furthermore, SB altered the microbial diversity in maternal cecal contents, thus increasing the abundance of Lachnospiraceae (P = 0.004) and Ruminococcaceae (P = 0.03). Dietary SB enhanced the reproductive performance and egg quality of broiler breeders and improved the antioxidant capacity and immune function of broiler breeders and offspring, with the benefits potentially arising from the regulation of the maternal intestinal barrier and gut microbiota by SB.
Collapse
|
21
|
Chen Q, Menon R, Calder LJ, Tolar P, Rosenthal PB. Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer. Nat Commun 2022; 13:6314. [PMID: 36274064 PMCID: PMC9588798 DOI: 10.1038/s41467-022-34090-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Immunoglobulin M (IgM) is the most ancient of the five isotypes of immunoglobulin (Ig) molecules and serves as the first line of defence against pathogens. Here, we use cryo-EM to image the structure of the human full-length IgM pentamer, revealing antigen binding domains flexibly attached to the asymmetric and rigid core formed by the Cμ4 and Cμ3 constant regions and the J-chain. A hinge is located at the Cμ3/Cμ2 domain interface, allowing Fabs and Cμ2 to pivot as a unit both in-plane and out-of-plane. This motion is different from that observed in IgG and IgA, where the two Fab arms are able to swing independently. A biased orientation of one pair of Fab arms results from asymmetry in the constant domain (Cμ3) at the IgM subunit interacting most extensively with the J-chain. This may influence the multi-valent binding to surface-associated antigens and complement pathway activation. By comparison, the structure of the Fc fragment in the IgM monomer is similar to that of the pentamer, but is more dynamic in the Cμ4 domain.
Collapse
Affiliation(s)
- Qu Chen
- grid.451388.30000 0004 1795 1830Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Rajesh Menon
- grid.451388.30000 0004 1795 1830Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Lesley J. Calder
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,Institute of Immunity and Transplantation, University College London, Rowland Hill Street, London, NW3 2PP, UK.
| | - Peter B. Rosenthal
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| |
Collapse
|
22
|
Ding L, Chen X, Cheng H, Zhang T, Li Z. Advances in IgA glycosylation and its correlation with diseases. Front Chem 2022; 10:974854. [PMID: 36238099 PMCID: PMC9552352 DOI: 10.3389/fchem.2022.974854] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant immunoglobulin synthesized in the human body. It has the highest concentration in the mucosa and is second only to IgG in serum. IgA plays an important role in mucosal immunity, and is the predominant antibody used to protect the mucosal surface from pathogens invasion and to maintain the homeostasis of intestinal flora. Moreover, The binding IgA to the FcαRI (Fc alpha Receptor I) in soluble or aggregated form can mediate anti- or pro- inflammatory responses, respectively. IgA is also known as one of the most heavily glycosylated antibodies among human immunoglobulins. The glycosylation of IgA has been shown to have a significant effect on its immune function. Variation in the glycoform of IgA is often the main characteration of autoimmune diseases such as IgA nephropathy (IgAN), IgA vasculitis (IgAV), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). However, compared with the confirmed glycosylation function of IgG, the pathogenic mechanism of IgA glycosylation involved in related diseases is still unclear. This paper mainly summarizes the recent reports on IgA’s glycan structure, its function, its relationship with the occurrence and development of diseases, and the potential application of glycoengineered IgA in clinical antibody therapeutics, in order to provide a potential reference for future research in this field.
Collapse
|
23
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
24
|
Cheng X, He F, Si M, Sun P, Chen Q. Effects of Antibiotic Use on Saliva Antibody Content and Oral Microbiota in Sprague Dawley Rats. Front Cell Infect Microbiol 2022; 12:721691. [PMID: 35174102 PMCID: PMC8843035 DOI: 10.3389/fcimb.2022.721691] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are often used to treat systemic diseases not associated with the oral cavity. This application of antibiotics may affect the healthy oral microbiota community, as it destroys the balance between specific bacterial populations throughout the ecosystem and may lead to dysbacteriosis. We hypothesized that the effects on antibiotics on oral microbiota regulation and function would affect antibody content in saliva, depending on the antibiotic type. To address this, a total of 24 Sprague Dawley rats (divided into 4 cages, 6 per pen) were administered amoxicillin (AMX), spiramycin (SP), metronidazole (MTZ), or water (control) daily for 14 days (gavage). After treatment was completed, high-throughput sequencing of 16S rRNA genes was used to determine changes in the composition, metabolic function, and diversity of oral microbiota in the rats. Enzyme-linked immunosorbent assay was used to detect antibodies in saliva, including SIgA, IgG, and IgM. Results showed that AMX, MTZ, and SP significantly affected oral microbiota composition, diversity, and metabolic function in rats. AMX induced substantial changes in the rat salivary antibody concentrations. At the genus level, the relative abundance of Rothia and Haemophilus was higher in the AMX group than in the other groups. In conclusion, antibiotics-induced changes in oral microbiota populations may be associated with changes in salivary antibody concentrations. However, the specific interaction mechanisms remain unknown, and it is still unclear whether significant changes in the oral microbiota cause changes in salivary antibody concentrations or vice versa.
Collapse
Affiliation(s)
- Xi Cheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Department of Stomatology, People’s Hospital of Leshan, Leshan, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ping Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- *Correspondence: Ping Sun, ; Qianming Chen,
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- *Correspondence: Ping Sun, ; Qianming Chen,
| |
Collapse
|
25
|
Abstract
As central effectors of the adaptive immune response, immunoglobulins, or antibodies, provide essential protection from pathogens through their ability to recognize foreign antigens, aid in neutralization, and facilitate elimination from the host. Mammalian immunoglobulins can be classified into five isotypes—IgA, IgD, IgE, IgG, and IgM—each with distinct roles in mediating various aspects of the immune response. Of these isotypes, IgA and IgM are the only ones capable of multimerization, arming them with unique biological functions. Increased valency of polymeric IgA and IgM provides high avidity for binding low-affinity antigens, and their ability to be transported across the mucosal epithelium into secretions by the polymeric immunoglobulin receptor allows them to play critical roles in mucosal immunity. Here we discuss the molecular assembly, structure, and function of these multimeric antibodies. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marissa L. Matsumoto
- Department of Structural Biology, Genentech, Inc., South San Francisco, California, USA
- Current affiliation: Department of Discovery Biotherapeutics, Exelixis, Inc., Alameda, California, USA
| |
Collapse
|
26
|
3D Structures of IgA, IgM, and Components. Int J Mol Sci 2021; 22:ijms222312776. [PMID: 34884580 PMCID: PMC8657937 DOI: 10.3390/ijms222312776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Immunoglobulin G (IgG) is currently the most studied immunoglobin class and is frequently used in antibody therapeutics in which its beneficial effector functions are exploited. IgG is composed of two heavy chains and two light chains, forming the basic antibody monomeric unit. In contrast, immunoglobulin A (IgA) and immunoglobulin M (IgM) are usually assembled into dimers or pentamers with the contribution of joining (J)-chains, which bind to the secretory component (SC) of the polymeric Ig receptor (pIgR) and are transported to the mucosal surface. IgA and IgM play a pivotal role in various immune responses, especially in mucosal immunity. Due to their structural complexity, 3D structural study of these molecules at atomic scale has been slow. With the emergence of cryo-EM and X-ray crystallographic techniques and the growing interest in the structure-function relationships of IgA and IgM, atomic-scale structural information on IgA-Fc and IgM-Fc has been accumulating. Here, we examine the 3D structures of IgA and IgM, including the J-chain and SC. Disulfide bridging and N-glycosylation on these molecules are also summarized. With the increasing information of structure–function relationships, IgA- and IgM-based monoclonal antibodies will be an effective option in the therapeutic field.
Collapse
|
27
|
Xie X, Gao L, Liu P, Lv J, Lu WH, Zhang H, Jin J. Propensity of IgA to self-aggregate via tailpiece cysteine-471 and treatment of IgA nephropathy using cysteamine. JCI Insight 2021; 6:e150551. [PMID: 34428184 PMCID: PMC8525636 DOI: 10.1172/jci.insight.150551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
IgA nephropathy is caused by deposition of circulatory IgA1 in the kidney. Hypogalactosylated IgA1 has the propensity to form poly-IgA aggregates that are prone to deposition. Herein, we purified poly-IgA from the plasma of patients with IgA nephropathy and showed that the complex is susceptible to reducing conditions, suggesting intermolecular disulfide connections between IgA units. We sought to find the cysteine residue(s) that form intermolecular disulfide. Naturally assembled dimeric IgA, also known as secretory IgA, involves a J chain subunit connected with 2 IgA1 molecules via their penultimate cysteine-471 residue on a “tailpiece” segment of IgA heavy chain. It is plausible that, with the absence of J chain, the cysteine residue of mono-IgA1 might aberrantly form a disulfide bond in poly-IgA formation. Mutagenesis confirmed that cysteine-471 is capable of promoting IgA aggregation. These discoveries prompted us to test thiol-based drugs for stabilizing cysteine. Specifically, the cystine-reducing drug cysteamine used for treatment of cystinosis showed a remarkable potency in preventing self-aggregation of IgA. When administrated to rat and mouse models of IgA nephropathy, cysteamine significantly reduced glomerular IgA deposition. Collectively, our results reveal a potentially novel molecular mechanism for aberrant formation of IgA aggregates, to which the repurposed cystinosis drug cysteamine was efficacious in preventing renal IgA deposition.
Collapse
Affiliation(s)
- Xinfang Xie
- Department of Medicine/Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Nephrology and
| | - Li Gao
- Department of Medicine/Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pan Liu
- Department of Medicine/Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jicheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China
| | | | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China
| | - Jing Jin
- Department of Medicine/Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
28
|
Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. J Clin Med 2021; 10:jcm10194501. [PMID: 34640530 PMCID: PMC8509647 DOI: 10.3390/jcm10194501] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
IgA nephropathy, initially described in 1968 as a kidney disease with glomerular “intercapillary deposits of IgA-IgG”, has no disease-specific treatment and is a common cause of kidney failure. Clinical observations and laboratory analyses suggest that IgA nephropathy is an autoimmune disease wherein the kidneys are damaged as innocent bystanders due to deposition of IgA1-IgG immune complexes from the circulation. A multi-hit hypothesis for the pathogenesis of IgA nephropathy describes four sequential steps in disease development. Specifically, patients with IgA nephropathy have elevated circulating levels of IgA1 with some O-glycans deficient in galactose (galactose-deficient IgA1) and these IgA1 glycoforms are recognized as autoantigens by unique IgG autoantibodies, resulting in formation of circulating immune complexes, some of which deposit in glomeruli and activate mesangial cells to induce kidney injury. This proposed mechanism is supported by observations that (i) glomerular immunodeposits in patients with IgA nephropathy are enriched for galactose-deficient IgA1 glycoforms and the corresponding IgG autoantibodies; (ii) circulatory levels of galactose-deficient IgA1 and IgG autoantibodies predict disease progression; and (iii) pathogenic potential of galactose-deficient IgA1 and IgG autoantibodies was demonstrated in vivo. Thus, a better understanding of the structure–function of these immunoglobulins as autoantibodies and autoantigens will enable development of disease-specific treatments.
Collapse
|
29
|
Yang S, Yuan X, Kang T, Xia Y, Xu S, Zhang X, Chen W, Jin Z, Ma Y, Ye Z, Qian S, Huang M, Lv Z, Fei H. Molecular cloning and binding analysis of polymeric immunoglobulin receptor in largemouth bass (Micropterus salmoides). Mol Immunol 2021; 133:14-22. [PMID: 33610122 DOI: 10.1016/j.molimm.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
The polymeric immunoglobulin receptor (pIgR) is an important molecule in the mucosal immunity of teleosts. Previous studies have shown that pIgR can bind and transport polymeric immunoglobulins (pIgs), but few studies have focused on the binding of teleost pIgR to bacteria. In this study, we identified a gene encoding pIgR in largemouth bass (Micropterus salmoides). The pIgR gene contained two Ig-like domains (ILDs), which were homologous to ILD1 and ILD5 of mammalian pIgR. Our results showed that largemouth bass pIgR-ILD could combine with IgM. Moreover, we also found that largemouth bass pIgR-ILD could bind to Aeromonas hydrophila and Micrococcus luteus. Further analysis showed that largemouth bass pIgR-ILD could also combine with lipopolysaccharide (LPS), peptidoglycan (PGN) and various saccharides, and reduced binding to bacteria was observed with LPS and PGN treatment, indicating that largemouth bass pIgR could bind to bacteria to prevent infection and that saccharide binding is an important interaction mechanism between pIgR and bacteria. These results collectively demonstrated that largemouth bass pIgR not only combines with IgM but also binds to bacteria by various saccharides.
Collapse
Affiliation(s)
- Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Xiangyu Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Ting Kang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yanting Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Shuqi Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Xintang Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Wenqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zhihong Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yuanxin Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zifeng Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Shichao Qian
- Huzhou Baijiayu Biotech Co., Ltd., 313000 Huzhou, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
30
|
Kumar N, Arthur CP, Ciferri C, Matsumoto ML. Structure of the human secretory immunoglobulin M core. Structure 2021; 29:564-571.e3. [PMID: 33513362 DOI: 10.1016/j.str.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
Immunoglobulins (Ig) A and M are the only human antibodies that form oligomers and undergo transcytosis to mucosal secretions via the polymeric Ig receptor (pIgR). When complexed with the J-chain (JC) and the secretory component (SC) of pIgR, secretory IgA and IgM (sIgA and sIgM) play critical roles in host-pathogen defense. Recently, we determined the structure of sIgA-Fc which elucidated the mechanism of polymeric IgA assembly and revealed an extensive binding interface between IgA-Fc, JC, and SC. Despite low sequence identity shared with IgA-Fc, IgM-Fc also undergoes JC-mediated assembly and binds pIgR. Here, we report the structure of sIgM-Fc and carryout a systematic comparison to sIgA-Fc. Our structural analysis reveals a remarkably conserved mechanism of JC-templated oligomerization and SC recognition of both IgM and IgA through a highly conserved network of interactions. These studies reveal the structurally conserved features of sIgM and sIgA required for function in mucosal immunity.
Collapse
Affiliation(s)
- Nikit Kumar
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christopher P Arthur
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Marissa L Matsumoto
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
31
|
van Gool MMJ, van Egmond M. IgA and FcαRI: Versatile Players in Homeostasis, Infection, and Autoimmunity. Immunotargets Ther 2021; 9:351-372. [PMID: 33447585 PMCID: PMC7801909 DOI: 10.2147/itt.s266242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mucosal surfaces constitute the frontiers of the body and are the biggest barriers of our body for the outside world. Immunoglobulin A (IgA) is the most abundant antibody class present at these sites. It passively contributes to mucosal homeostasis via immune exclusion maintaining a tight balance between tolerating commensals and providing protection against pathogens. Once pathogens have succeeded in invading the epithelial barriers, IgA has an active role in host-pathogen defense by activating myeloid cells through divers receptors, including its Fc receptor, FcαRI (CD89). To evade elimination, several pathogens secrete proteins that interfere with either IgA neutralization or FcαRI-mediated immune responses, emphasizing the importance of IgA-FcαRI interactions in preventing infection. Depending on the IgA form, either anti- or pro-inflammatory responses can be induced. Moreover, the presence of excessive IgA immune complexes can result in continuous FcαRI-mediated activation of myeloid cells, potentially leading to severe tissue damage. On the one hand, enhancing pathogen-specific mucosal and systemic IgA by vaccination may increase protective immunity against infectious diseases. On the other hand, interfering with the IgA-FcαRI axis by monovalent targeting or blocking FcαRI may resolve IgA-induced inflammation and tissue damage. This review describes the multifaceted role of FcαRI as immune regulator between anti- and pro-inflammatory responses of IgA, and addresses potential novel therapeutic strategies that target FcαRI in disease. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xlijXy5W0xA
Collapse
Affiliation(s)
- Melissa Maria Johanna van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Kumar Bharathkar S, Parker BW, Malyutin AG, Haloi N, Huey-Tubman KE, Tajkhorshid E, Stadtmueller BM. The structures of secretory and dimeric immunoglobulin A. eLife 2020; 9:56098. [PMID: 33107820 PMCID: PMC7707832 DOI: 10.7554/elife.56098] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody, which binds pathogens and commensal microbes. SIgA is a polymeric antibody, typically containing two copies of IgA that assemble with one joining-chain (JC) to form dimeric (d) IgA that is bound by the polymeric Ig-receptor ectodomain, called secretory component (SC). Here, we report the cryo-electron microscopy structures of murine SIgA and dIgA. Structures reveal two IgAs conjoined through four heavy-chain tailpieces and the JC that together form a β-sandwich-like fold. The two IgAs are bent and tilted with respect to each other, forming distinct concave and convex surfaces. In SIgA, SC is bound to one face, asymmetrically contacting both IgAs and JC. The bent and tilted arrangement of complex components limits the possible positions of both sets of antigen-binding fragments (Fabs) and preserves steric accessibility to receptor-binding sites, likely influencing antigen binding and effector functions.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| | - Benjamin W Parker
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| | - Andrey G Malyutin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Nandan Haloi
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Urbana, United States
| | - Kathryn E Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Urbana, United States
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| |
Collapse
|
33
|
Affiliation(s)
- Andrew B Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Divisions of Immunobiology & Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|