1
|
Pascal W, Gotowiec M, Smoliński A, Suchecki M, Kopka M, Pascal AM, Włodarski PK. Biologic Brachytherapy: Genetically Modified Surgical Flap as a Therapeutic Tool-A Systematic Review of Animal Studies. Int J Mol Sci 2024; 25:10330. [PMID: 39408659 PMCID: PMC11476562 DOI: 10.3390/ijms251910330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Surgical flaps are rudimentary tools in reconstructive surgery, especially following extensive solid tumour resections. They cover skin and soft tissue defects but are prone to ischaemia and necrosis. Since their primary aim is reconstruction, they rarely exhibit a therapeutic activity against the treated disease. Attempts have been made to develop a new therapeutic strategy-biologic brachytherapy, which uses genetically engineered surgical flaps as a drug delivery vehicle, allowing the flap tissue to act as a "biologic pump". This systematic review summarizes the preclinical evidence on using genetically modified surgical flaps. A literature search was conducted in PubMed, EMBASE, Scopus and Web of Science. The initial literature search yielded 714 papers, and, eventually, seventy-seven studies were included in qualitative analysis. The results show that genetic enhancement of flaps has been used as a local or systemic therapy for numerous disease models. Frequently, it has been used to increase flap survival and limit ischaemia or promote flap survival in a non-ischemic context, with some studies focusing on optimizing the technique of such gene therapy. The results show that genetically modified flaps can be successfully used in a variety of contexts, but we need more studies to implement this research into specific clinical scenarios.
Collapse
Affiliation(s)
- Wiktor Pascal
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Mateusz Gotowiec
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Antoni Smoliński
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Michał Suchecki
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Michał Kopka
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Adriana M. Pascal
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| |
Collapse
|
2
|
Brouwers K, van Geel SRWM, van Midden D, Kruit AS, Kusters B, Hummelink S, Ulrich DJO. Added Value of Histological Evaluation of Muscle Biopsies in Porcine Vascularized Composite Allografts. J Clin Med 2024; 13:5167. [PMID: 39274379 PMCID: PMC11395792 DOI: 10.3390/jcm13175167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Machine perfusion (MP) offers extended preservation of vascularized complex allografts (VCA), but the diagnostic value of histology using hematoxylin and eosin (H&E) in detecting ischemia-reperfusion injury (IRI) in muscle cells remains unclear. This study aims to document the application of the Histology Injury Severity Score (HISS) and to assess whether additional staining for nicotinamide adenine dinucleotide (NADH) and membrane attack complex (MAC) improves IRI detection in a porcine limb replantation model. Methods: The forelimbs of 16 Dutch Landrace pigs were amputated and preserved for 24 h using hypothermic MP (n = 8) with Histidine-Tryptophan-Ketoglutarate (HTK) or for 4 h with SCS (n = 8) before heterotopic replantation and 7 days of follow-up. Muscle damage was assessed via biochemical markers and light microscopy using H&E, NADH, and MAC at baseline, post-intervention, and post-operative day (POD) 1, 3, and 7 timepoints, using the HISS and a self-developed NADH and MAC score. Results: H&E effectively identified damaged muscle fibers and contributed to IRI assessment in porcine limbs (p < 0.05). The highest HISS was measured on POD 3 between MP (4.9) and SCS (3.5) (p = 0.029). NADH scores of both preservation groups varied over the 7-day follow-up and were statistically insignificant compared with baseline measurements (p > 0.05). MAC revealed no to minimal necrotic tissue across the different timepoints. Conclusions: This study documents the application of the HISS with H&E to detect IRI in muscle fibers. NADH and MAC showed no significant added diagnostic utility. The 24 h MP showed similar muscle alterations using the HISS compared to that of the 4 h SCS after a 7-day follow up.
Collapse
Affiliation(s)
- Kaj Brouwers
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Shannen R W M van Geel
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dominique van Midden
- Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anne Sophie Kruit
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Stefan Hummelink
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dietmar J O Ulrich
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
3
|
Blades CM, Greyson MA, Dumanian ZP, Yu JW, Wang Y, Li B, Wang Z, Washington KM, Huang CA, Navarro-Alvarez N, Mathes DW. Development of a Porcine VCA Model Using an External Iliac Vessel-Based Vertical Rectus Abdominus Myocutaneous Flap. J Reconstr Microsurg 2024. [PMID: 39106899 DOI: 10.1055/s-0044-1788812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) involves transplanting a functional and anatomically complete tissue graft, such as a hand or face, from a deceased donor to a recipient. Although clinical VCA has resulted in successful outcomes, high rates of acute rejection and increased requirements for immunosuppression have led to significant long-term complications. Of note, immunosuppressed graft recipients are predisposed to infections, organ dysfunction, and malignancies. The long-term success of VCA grafts requires the discovery and implementation of unique approaches that avoid these complications altogether. Here, we describe our surgical technique and initial experience with a reproducible heterotopic porcine VCA model for the preclinical assessment of approaches to improve graft outcomes. METHODS Six heterotopic porcine allogeneic vertical rectus abdominis myocutaneous flap transplants were performed using Sinclair donors and Yucatan recipients. Immunosuppressive therapy was not used. Each flap was based on the left external iliac vessel system. Animals were followed postoperatively for surgery-related complications. RESULTS The six pigs underwent successful VCA and were euthanized at the end of the study. Each flap demonstrated complete survival following vessel anastomosis. For the allogeneic recipients, on average, minimal erythema and healthy flap color were observed from postoperative days 1 to 4. There were no surgery-related animal deaths or complications. CONCLUSION We have developed a reproducible, technically feasible heterotopic porcine VCA model based on the left external iliac vessel system. Our results demonstrate this model's potential to improve VCA graft outcomes by exploring tolerance induction and rejection biomarker discovery in preclinical studies.
Collapse
Affiliation(s)
- Caitlin M Blades
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Mark A Greyson
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Zari P Dumanian
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Jason W Yu
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Yong Wang
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Bing Li
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Zhaohui Wang
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Kia M Washington
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Christene A Huang
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Nalu Navarro-Alvarez
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - David W Mathes
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Opyrchał J, Bula D, Dowgierd K, Pachuta B, Krakowczyk D, Raciborska A, Krakowczyk Ł. Case Series: Fibula Free Flap with Bone Allograft as the Gold Standard in Lower Limb-Salvage Surgery for Adolescent Patients with Primary Bone Tumors Located within Tibial Diaphysis: Technical Modifications and Short-Term Follow-Up. J Clin Med 2024; 13:4217. [PMID: 39064257 PMCID: PMC11277773 DOI: 10.3390/jcm13144217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Primary malignant bone tumors are most commonly associated with mutilating surgical procedures that can significantly disturb the motor development of a young patient and are frequently affiliated with major postoperative complications. Unfortunately, despite available autologous tissue donor sites, artificial materials are still most commonly used for the reconstruction of post-resection defects. Reconstructive microsurgery is increasingly recognized as an effective method of functional reconstruction, creating the possibility of performing limb-sparing surgery (LSS) with significant limitation of major postoperative complications at the same time. Methods: The study group consisted of 9 pediatric patients diagnosed with primary malignant bone tumor in the limb location. In order to perform microvascular reconstruction, 9 free fibula flaps were used in combination with a bone allograft (Capanna method). The functional outcome of the reconstruction was assessed on the basis of the MSTS (Musculoskeletal Tumor Society Scoring System) scale. Results: The presented analysis proves the effectiveness of this reconstructive procedure and the possibility of performing LSS with reasonable functional outcomes after appropriate patient qualification. In this study, all limbs included were spared. In all cases, the R0 surgical margins were achieved and no reports of local recurrences were reported during the follow-up. The average score on the MSTS scale was 27/30 points. Conclusions: Microvascular reconstructive surgery is an individually personalized and highly effective method of treating patients with primary bone tumors in the limb location and provides satisfactory functional outcomes.
Collapse
Affiliation(s)
- Jakub Opyrchał
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
- 1st Department of Oncologic Surgery, Maria Sklodowska Curie Memorial National Cancer Center, 44-100 Gliwice, Poland
| | - Daniel Bula
- 1st Department of Oncologic Surgery, Maria Sklodowska Curie Memorial National Cancer Center, 44-100 Gliwice, Poland
| | - Krzysztof Dowgierd
- Department of Clinical Pediatrics, Head and Neck Surgery Clinic for Children and Young Adults, University of Warmia and Mazury, 10-709 Olsztyn, Poland
| | - Bartosz Pachuta
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Dominika Krakowczyk
- Pediatric Surgery and Urological Department, Upper Silesian Child Health Center in Katowice, Silesian University of Medicine, 40-052 Katowice, Poland
| | - Anna Raciborska
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Łukasz Krakowczyk
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
- 1st Department of Oncologic Surgery, Maria Sklodowska Curie Memorial National Cancer Center, 44-100 Gliwice, Poland
- Department of Clinical Pediatrics, Head and Neck Surgery Clinic for Children and Young Adults, University of Warmia and Mazury, 10-709 Olsztyn, Poland
| |
Collapse
|
5
|
Amin KR, Fildes JE. The contribution of the donor vascularised hand and face allograft in transplant rejection: An immunological perspective. Transpl Immunol 2024; 84:102035. [PMID: 38518826 DOI: 10.1016/j.trim.2024.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Overcoming immunological rejection remains a barrier to the safe adoption of Vascularised Composite Allotransplantation (VCA). To mitigate this risk, clinical protocols have been derived from solid organ transplantation, targeting recipient immunomodulation, yet VCA is unique. Face and hand composite allografts are composed of multiple different tissues, each with their own immunological properties. Experimental work suggests that allografts carry variable numbers and populations of donor leukocytes in an organ specific manner. Ordinarily, these passenger leukocytes are transferred from the donor graft into the recipient circulation after transplantation. Whether alloantigen presentation manifests as acute allograft rejection or transplant tolerance is unknown. This review aims to characterise the immunological properties of the constituent parts of the donor face and hand, the potential fate of donor leukocytes and to consider theoretical graft specific interventions to mitigate early rejection.
Collapse
Affiliation(s)
- Kavit R Amin
- Department of Plastic Surgery, Manchester University NHS Foundation Trust, Manchester, UK; Division of Cell Matrix, Biology and Regenerative Medicine, University of Manchester, Manchester, UK; The Pebble Institute, Manchester, UK.
| | - James E Fildes
- The Pebble Institute, Manchester, UK; The Healthcare Technologies Institute, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Van Dieren L, Tawa P, Coppens M, Naenen L, Dogan O, Quisenaerts T, Lancia HH, Oubari H, Dabi Y, De Fré M, Thiessen Ef F, Cetrulo CL, Lellouch AG. Acute Rejection Rates in Vascularized Composite Allografts: A Systematic Review of Case Reports. J Surg Res 2024; 298:137-148. [PMID: 38603944 DOI: 10.1016/j.jss.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/20/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Vascularized Composite Allografts (VCA) are usually performed in a full major histocompatibility complex mismatch setting, with a risk of acute rejection depending on factors such as the type of immunosuppression therapy and the quality of graft preservation. In this systematic review, we present the different immunosuppression protocols used in VCA and point out relationships between acute rejection rates and possible factors that might influence it. METHODS This systematic review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We systematically searched Medline (PubMed), Embase, and The Cochrane Library between November 2022 and February 2023, using following Mesh Terms: Transplant, Transplantation, Hand, Face, Uterus, Penis, Abdominal Wall, Larynx, and Composite Tissue Allografts. All VCA case reports and reviews describing multiple case reports were included. RESULTS We discovered 211 VCA cases reported. The preferred treatment was a combination of antithymocyte globulins, mycophenolate mofetil (MMF), tacrolimus, and steroids; and a combination of MMF, tacrolimus, and steroids for induction and maintenance treatment, respectively. Burn patients showed a higher acute rejection rate (P = 0.073) and were administered higher MMF doses (P = 0.020). CONCLUSIONS In contrast to previous statements, the field of VCA is not rapidly evolving, as it has encountered challenges in addressing immune-related concerns. This is highlighted by the absence of a standardized immunosuppression regimen. Consequently, more substantial data are required to draw more conclusive results regarding the immunogenicity of VCAs and the potential superiority of one immunosuppressive treatment over another. Future efforts should be made to report the VCA surgeries comprehensively, and muti-institutional long-term prospective follow-up studies should be performed to compare the number of acute rejections with influencing factors.
Collapse
Affiliation(s)
- Loïc Van Dieren
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine and Health Sciences, Antwerp, Belgium; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Pierre Tawa
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospitals for Children-Boston, Boston, Massachusetts
| | - Marie Coppens
- Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Laura Naenen
- Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Omer Dogan
- Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | | | - Hyshem H Lancia
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Haïzam Oubari
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Yohann Dabi
- Department of Obstetrics, Gynecology and Reproductive Medicine, Sorbonne University, Tenon Hospital (AP-HP), Paris, France
| | - Maxime De Fré
- Department of Plastic, Reconstructive and Aesthetic Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Thiessen Ef
- Department of Plastic, Reconstructive and Aesthetic Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospitals for Children-Boston, Boston, Massachusetts
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts; Shriners Hospitals for Children-Boston, Boston, Massachusetts.
| |
Collapse
|
7
|
Ashraf MI, Mengwasser J, Reutzel-Selke A, Polenz D, Führer K, Lippert S, Tang P, Michaelis E, Catar R, Pratschke J, Witzel C, Sauer IM, Tullius SG, Kern B. Depletion of donor dendritic cells ameliorates immunogenicity of both skin and hind limb transplants. Front Immunol 2024; 15:1395945. [PMID: 38799435 PMCID: PMC11116604 DOI: 10.3389/fimmu.2024.1395945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APCs), particularly dendritic cells (DCs), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DCs (cDCs) and APCs on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation. By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. Notably, the skin component exhibited heightened immunogenicity when compared to the entire VCA, evidenced by increased frequencies of pan (CD11b-CD11c+), mature (CD11b-CD11c+MHCII+) and active (CD11b-CD11c+CD40+) DCs and cDC2 subset (CD11b+CD11c+ MHCII+) in the lymphoid tissues and the blood of skin transplant recipients. While donor depletion of cDC and APC reduced frequencies, maturation and activation of DCs in all analyzed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APCs and cDCs mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.
Collapse
Affiliation(s)
- Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Joerg Mengwasser
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Dietrich Polenz
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kirsten Führer
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Steffen Lippert
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Edward Michaelis
- Department of Pathology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christian Witzel
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Igor M. Sauer
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Einstein Berlin Institute of Health Visiting Fellow, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Kern
- Department of Surgery, Experimental Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin Institute of Health (BIH) Biomedical Innovation Academy, Berlin Institute of Health (BIH) Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
8
|
Knoedler L, Dean J, Diatta F, Thompson N, Knoedler S, Rhys R, Sherwani K, Ettl T, Mayer S, Falkner F, Kilian K, Panayi AC, Iske J, Safi AF, Tullius SG, Haykal S, Pomahac B, Kauke-Navarro M. Immune modulation in transplant medicine: a comprehensive review of cell therapy applications and future directions. Front Immunol 2024; 15:1372862. [PMID: 38650942 PMCID: PMC11033354 DOI: 10.3389/fimmu.2024.1372862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Balancing the immune response after solid organ transplantation (SOT) and vascularized composite allotransplantation (VCA) remains an ongoing clinical challenge. While immunosuppressants can effectively reduce acute rejection rates following transplant surgery, some patients still experience recurrent acute rejection episodes, which in turn may progress to chronic rejection. Furthermore, these immunosuppressive regimens are associated with an increased risk of malignancies and metabolic disorders. Despite significant advancements in the field, these IS related side effects persist as clinical hurdles, emphasizing the need for innovative therapeutic strategies to improve transplant survival and longevity. Cellular therapy, a novel therapeutic approach, has emerged as a potential pathway to promote immune tolerance while minimizing systemic side-effects of standard IS regiments. Various cell types, including chimeric antigen receptor T cells (CAR-T), mesenchymal stromal cells (MSCs), regulatory myeloid cells (RMCs) and regulatory T cells (Tregs), offer unique immunomodulatory properties that may help achieve improved outcomes in transplant patients. This review aims to elucidate the role of cellular therapies, particularly MSCs, T cells, Tregs, RMCs, macrophages, and dendritic cells in SOT and VCA. We explore the immunological features of each cell type, their capacity for immune regulation, and the prospective advantages and obstacles linked to their application in transplant patients. An in-depth outline of the current state of the technology may help SOT and VCA providers refine their perioperative treatment strategies while laying the foundation for further trials that investigate cellular therapeutics in transplantation surgery.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Noelle Thompson
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Samuel Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Richmond Rhys
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Khalil Sherwani
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Tobias Ettl
- Department of Dental, Oral and Maxillofacial Surgery, Regensburg, Germany
| | - Simon Mayer
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Katja Kilian
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Adriana C. Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ali-Farid Safi
- Faculty of Medicine, University of Bern, Bern, Switzerland
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Siba Haykal
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bohdan Pomahac
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martin Kauke-Navarro
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Barrow B, Diep GK, Berman ZP, Boczar D, Lee O, Salinero L, Howard R, Trilles J, Rodriguez Colon R, Rodriguez ED. Immunologic Outcomes in Cross-Sex Solid Organ Transplants: A Systematic Review and Meta-Analysis to Inform Vascularized Composite Allotransplantation. Plast Reconstr Surg 2024; 153:839-851. [PMID: 37224220 DOI: 10.1097/prs.0000000000010757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Of nearly 90 hand and 50 face transplant recipients, only five have received a cross-sex vascularized composite allotransplantation (CS-VCA). CS-VCA has the potential to expand the donor pool and has been proven anatomically feasible and ethically acceptable in previous studies. However, there is a lack of immunologic data. This study evaluated the immunologic feasibility of CS-VCA through analysis of the solid organ transplant literature, given the paucity of CS-VCA data. The authors hypothesize that rates of acute rejection (AR) and graft survival (GS) in CS versus same-sex (SS) solid organ transplantation are similar. METHODS A systematic review and meta-analysis were performed. Studies comparing GS or AR episodes in CS and SS adult kidney (KT) and liver transplant (LT) populations were included. Odds ratios were calculated for overall GS and AR for all SS and CS transplant combinations [male-to-female (MTF), female-to-male, and overall]. RESULTS A total of 693 articles were initially identified with 25 included in the meta-analysis. No significant difference in GS was noted between SS-KT versus CS-KT [OR, 1.04 (95% CI, 1.00 to 1.07); P = 0.07), SS-KT versus MTF-KT [OR, 0.97 (95% CI, 0.90 to 1.04); P = 0.41), and SS-LT versus MTF-LT [OR, 0.95 (95% CI, 0.91 to 1.00); P = 0.05). No significant difference in AR was noted between SS-KT versus MTF-KT [OR, 0.99 (95% CI, 0.96 to 1.02); P = 0.57), SS-LT versus CS-LT [OR, 0.78 (95% CI, 0.53 to 1.16); P = 0.22], or SS-LT versus female-to-male LT [OR, 1.03 (95% CI, 0.95 to 1.12); P = 0.47]. For the remaining pairings, GS was significantly increased and AR was significantly decreased in the SS transplants. CONCLUSIONS Published data suggest immunologic feasibility of CS-KT and CS-LT with the potential for generalization to the VCA population. CLINICAL RELEVANCE STATEMENT In theory, CS-VCA could expand the potential donor pool, ultimately leading to decreased wait times for recipients and improve the likelihood of establishing a immunologically favorable donor-recipient match.
Collapse
Affiliation(s)
- Brooke Barrow
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| | - Gustave K Diep
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| | - Zoe P Berman
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| | - Daniel Boczar
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| | - Olive Lee
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| | - Lauren Salinero
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| | - Rachel Howard
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| | - Jorge Trilles
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| | | | - Eduardo D Rodriguez
- From the Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health
| |
Collapse
|
10
|
Grosu-Bularda A, Hodea FV, Zamfirescu D, Stoian A, Teodoreanu RN, Lascăr I, Hariga CS. Exploring Costimulatory Blockade-Based Immunologic Strategies in Transplantation: Are They a Promising Immunomodulatory Approach for Organ and Vascularized Composite Allotransplantation? J Pers Med 2024; 14:322. [PMID: 38541064 PMCID: PMC10971463 DOI: 10.3390/jpm14030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
The field of transplantation, including the specialized area of vascularized composite allotransplantation (VCA), has been transformed since the first hand transplant in 1998. The major challenge in VCA comes from the need for life-long immunosuppressive therapy due to its non-vital nature and a high rate of systemic complications. Ongoing research is focused on immunosuppressive therapeutic strategies to avoid toxicity and promote donor-specific tolerance. This includes studying the balance between tolerance and effector mechanisms in immune modulation, particularly the role of costimulatory signals in T lymphocyte activation. Costimulatory signals during T cell activation can have either stimulatory or inhibitory effects. Interfering with T cell activation through costimulation blockade strategies shows potential in avoiding rejection and prolonging the survival of transplanted organs. This review paper aims to summarize current data on the immunologic role of costimulatory blockade in the field of transplantation. It focuses on strategies that can be applied in vascularized composite allotransplantation, offering insights into novel methods for enhancing the success and safety of these procedures.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | | | | | - Răzvan Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Ioan Lascăr
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Cristian Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
11
|
Liu Y, Ouyang Y, Yu L, Wang P, Peng Z, Liu H, Zhao S, Wang H, Zhou Z, Deng Y, Liu Y, Xie J. Novel approach for enhancing skin allograft survival by bioadhesive nanoparticles loaded with rapamycin. Int J Pharm 2024; 651:123742. [PMID: 38151102 DOI: 10.1016/j.ijpharm.2023.123742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Skin graft rejection is a significant challenge in skin allografts for skin defects, particularly in extensive burn injury patients when autografts are insufficient. Enhancing the survival duration of allogeneic skin grafts can improve the success rate of subsequent autologous skin grafting, thereby promoting the therapeutic efficacy for wound healing. Rapamycin (Rapa), a potent immunosuppressant with favorable efficacy in organ transplantation, is limited by its systemic administration-associated toxicity and side effects. Therefore, addressing the short survival time of allogeneic skin grafts and minimizing the toxicity related to systemic application of immunosuppressive agents is an urgent requirement. Here, we present a topical formulation based on bioadhesive poly (lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs) with surface-modified encapsulation of Rapamycin (Rapa/BNPs), applied for local immunosuppression in a murine model of allogeneic skin grafts. Our Rapa/BNPs significantly prolong nanoparticle retention, reduce infiltration of T lymphocytes and macrophages, decrease the level of pro-inflammatory cytokines and ultimately extend skin allograft survival with little systemic toxicity compared to free Rapa or Rapamycin-loaded non-bioadhesive nanoparticles (Rapa/NNPs) administration. In conclusion, Rapa/BNPs effectively deliver local immunosuppression and demonstrate potential for enhancing skin allograft survival while minimizing localized inflammation, thus potentially increasing patient survival rates for various types of skin defects.
Collapse
Affiliation(s)
- Yiling Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yaqi Ouyang
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Liu Yu
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Peng Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhangwen Peng
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Hengdeng Liu
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shixin Zhao
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hanwen Wang
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziheng Zhou
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yang Deng
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China.
| | - Yang Liu
- Department of School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China; Department of School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China.
| | - Julin Xie
- Department of Burn and Wound Repair Surgery, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Sun J(A, Adil A, Biniazan F, Haykal S. Immunogenicity and tolerance induction in vascularized composite allotransplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1350546. [PMID: 38993748 PMCID: PMC11235364 DOI: 10.3389/frtra.2024.1350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.
Collapse
Affiliation(s)
- Jiahui (Angela) Sun
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Ren D, Chen J, Yu M, Yi C, Hu X, Deng J, Guo S. Emerging strategies for tissue engineering in vascularized composite allotransplantation: A review. J Tissue Eng 2024; 15:20417314241254508. [PMID: 38826796 PMCID: PMC11143860 DOI: 10.1177/20417314241254508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Vascularized composite allotransplantation (VCA), which can effectively improve quality of life, is a promising therapy for repair and reconstruction after face or body trauma. However, intractable issues are associated with VCA, such as the inevitable multiple immunogenicities of different tissues that cause severe rejection, the limited protocols available for clinical application, and the shortage of donor sources. The existing regimens used to extend the survival of patients receiving VCAs and suppress rejection are generally the lifelong application of immunosuppressive drugs, which have side effects. Consequently, studies aiming at tissue engineering methods for VCA have become a topic. In this review, we summarize the emerging therapeutic strategies for tissue engineering aimed to prolong the survival time of VCA grafts, delay the rejection and promote prevascularization and tissue regeneration to provide new ideas for future research on VCA treatment.
Collapse
Affiliation(s)
- Danyang Ren
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Department of Plastic Surgery, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueqing Hu
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Knoedler L, Knoedler S, Allam O, Remy K, Miragall M, Safi AF, Alfertshofer M, Pomahac B, Kauke-Navarro M. Application possibilities of artificial intelligence in facial vascularized composite allotransplantation-a narrative review. Front Surg 2023; 10:1266399. [PMID: 38026484 PMCID: PMC10646214 DOI: 10.3389/fsurg.2023.1266399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Facial vascularized composite allotransplantation (FVCA) is an emerging field of reconstructive surgery that represents a dogmatic shift in the surgical treatment of patients with severe facial disfigurements. While conventional reconstructive strategies were previously considered the goldstandard for patients with devastating facial trauma, FVCA has demonstrated promising short- and long-term outcomes. Yet, there remain several obstacles that complicate the integration of FVCA procedures into the standard workflow for facial trauma patients. Artificial intelligence (AI) has been shown to provide targeted and resource-effective solutions for persisting clinical challenges in various specialties. However, there is a paucity of studies elucidating the combination of FVCA and AI to overcome such hurdles. Here, we delineate the application possibilities of AI in the field of FVCA and discuss the use of AI technology for FVCA outcome simulation, diagnosis and prediction of rejection episodes, and malignancy screening. This line of research may serve as a fundament for future studies linking these two revolutionary biotechnologies.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand- and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Omar Allam
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Katya Remy
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Maximilian Miragall
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Ali-Farid Safi
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Berkane Y, Hayau J, Filz von Reiterdank I, Kharga A, Charlès L, Mink van der Molen AB, Coert JH, Bertheuil N, Randolph MA, Cetrulo CL, Longchamp A, Lellouch AG, Uygun K. Supercooling: A Promising Technique for Prolonged Organ Preservation in Solid Organ Transplantation, and Early Perspectives in Vascularized Composite Allografts. FRONTIERS IN TRANSPLANTATION 2023; 2:1269706. [PMID: 38682043 PMCID: PMC11052586 DOI: 10.3389/frtra.2023.1269706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 05/01/2024]
Abstract
Ex-vivo preservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Justine Hayau
- Division of Plastic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Irina Filz von Reiterdank
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anil Kharga
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Abele B. Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Mark A. Randolph
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Alban Longchamp
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Arav A, Li S, Friedman O, Solodeev I, Aouizerate J, Kedar D, Antonio MD, Natan D, Gur E, Shani N. Long-Term Survival and Functional Recovery of Cryopreserved Vascularized Groin Flap and Below-the-Knee Rat Limb Transplants. Rejuvenation Res 2023; 26:180-193. [PMID: 37427425 DOI: 10.1089/rej.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Effective cryopreservation of large tissues, limbs, and organs has the potential to revolutionize medical post-trauma reconstruction options and organ preservation and transplantation procedures. To date, vitrification and directional freezing are the only viable methods for long-term organ or tissue preservation, but are of limited clinical relevance. This work aimed to develop a vitrification-based approach that will enable the long-term survival and functional recovery of large tissues and limbs following transplantation. The presented novel two-stage cooling process involves rapid specimen cooling to subzero temperatures, followed by gradual cooling to the vitrification solution (VS) and tissue glass transition temperature. Flap cooling and storage were only feasible at temperatures equal to or slightly lower than the VS Tg (i.e., -135°C). Vascularized rat groin flaps and below-the-knee (BTK) hind limb transplants cryopreserved using this approach exhibited long-term survival (>30 days) following transplantation to rats. BTK-limb recovery included hair regrowth, normal peripheral blood flow, and normal skin, fat, and muscle histology. Above all, BTK limbs were reinnervated, enabling rats to sense pain in the cryopreserved limb. These findings provide a strong foundation for the development of a long-term large-tissue, limb and organ preservation protocol for clinical use.
Collapse
Affiliation(s)
- Amir Arav
- A.A. Technology Ltd., Tel Aviv, Israel
| | - Shujun Li
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Or Friedman
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Solodeev
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jessie Aouizerate
- The Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Daniel Kedar
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marie De Antonio
- Neuromuscular Reference Center, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Eyal Gur
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Shani
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Mavragani A, Gacki-Smith J, Kuramitsu B, Downey M, Nordstrom MJ, Luken M, Riggleman T, Fichter S, Altema W, Brucker JB, Cooney CM, Dumanian G, Jensen S, Levan M, Tintle SM, Brandacher G, Gordon EJ. A Patient-Centered Website (Within Reach) to Foster Informed Decision-making About Upper Extremity Vascularized Composite Allotransplantation: Development and Usability Study. JMIR Form Res 2023; 7:e44144. [PMID: 36749618 PMCID: PMC9944141 DOI: 10.2196/44144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Upper extremity (UE) vascularized composite allotransplantation (VCA; hand transplantation) is a reconstructive treatment option for patients with UE loss. Approximately 37 UE VCAs have been performed in the United States to date; thus, little is known about long-term psychosocial outcomes and whether the benefits outweigh the risks. To make an informed treatment decision, patients must understand the procedure, risks, and potential benefits of UE VCA. However, few educational resources are publicly available providing unbiased, comprehensive information about UE VCA. OBJECTIVE This paper described the development of a neutral, and accessible, educational website supporting informed decision-making about UE VCA as a treatment option for individuals with UE amputations. METHODS Website content development was informed by 9 focus groups conducted with individuals with UE amputations at 3 study sites. After initial website development, we conducted usability testing to identify ways to improve navigability, design, content, comprehension, and cultural sensitivity. Participants were administered the After-Scenario Questionnaire to assess user performance after completing navigational tasks, System Usability Scale to measure the perceived usability of the website, and Net Promoter Score to measure user satisfaction. Quantitative data were analyzed using descriptive statistics. Qualitative data were analyzed using rapid thematic analysis. RESULTS A total of 44 individuals with UE amputations participated in focus groups (n=37, 84%) and usability testing (n=14, 32%). Most participants in the focus groups and usability testing were male (24/37, 65% and 11/14, 79%, respectively) and White (27/37, 73% and 9/14, 64%, respectively), had unilateral limb loss (22/37, 59% and 12/14, 86%, respectively), and had mean ages of 48 (SD 9.2) and 50 (SD 12.0) years, respectively. Focus group results are organized into accessibility, website design, website development, website tone and values, sitemap, terminology, images and videos, and tables and graphics. Usability testing revealed that participants had a positive impression of the website. The mean After-Scenario Questionnaire score of 1.3 to 2.3 across task scenarios indicated high satisfaction with website usability, the mean System Usability Scale score of 88.9 indicated user satisfaction with website usability, and the mean Net Promoter Score of 9.6 indicated that users were enthusiastic and would likely refer individuals to the website. CONCLUSIONS The findings suggest that our educational website, Within Reach, provides neutral, patient-centered information and may be a useful resource about UE VCA for individuals with UE amputations, their families, and health care professionals. Health care professionals may inform UE VCA candidates about Within Reach to supplement current VCA education processes. Within Reach serves as a resource about treatment options for patients preparing for scheduled or recovering from traumatic UE amputations. Future research should assess whether Within Reach improves knowledge about UE VCA and enhances informed decision-making about UE VCA as a treatment option.
Collapse
Affiliation(s)
| | - Jessica Gacki-Smith
- Center for Health Services and Outcomes Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brianna Kuramitsu
- Center for Health Services and Outcomes Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Max Downey
- Center for Surgical and Transplant Applied Research (C-STAR), NYU Langone Transplant Institute, New York University Grossman School of Medicine Department of Surgery, New York, NY, United States
| | - Michelle J Nordstrom
- Uniformed Services University of the Health Sciences, Center for Rehabilitation Sciences Research, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Michelle Luken
- Uniformed Services University of the Health Sciences, Center for Rehabilitation Sciences Research, Walter Reed National Military Medical Center, Bethesda, MD, United States.,Henry M Jackson Foundation, Bethesda, MD, United States
| | - Tiffany Riggleman
- Uniformed Services University of the Health Sciences, Center for Rehabilitation Sciences Research, Walter Reed National Military Medical Center, Bethesda, MD, United States.,Henry M Jackson Foundation, Bethesda, MD, United States
| | - Shannon Fichter
- Uniformed Services University of the Health Sciences, Center for Rehabilitation Sciences Research, Walter Reed National Military Medical Center, Bethesda, MD, United States.,Henry M Jackson Foundation, Bethesda, MD, United States
| | - Withney Altema
- Uniformed Services University of the Health Sciences, Center for Rehabilitation Sciences Research, Walter Reed National Military Medical Center, Bethesda, MD, United States.,Henry M Jackson Foundation, Bethesda, MD, United States
| | - James B Brucker
- Department of Medical Social Sciences and Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Carisa M Cooney
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Gregory Dumanian
- Department of Medical Social Sciences and Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sally Jensen
- Department of Medical Social Sciences and Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Macey Levan
- Center for Surgical and Transplant Applied Research (C-STAR), NYU Langone Transplant Institute, New York University Grossman School of Medicine Department of Surgery, New York, NY, United States
| | - Scott M Tintle
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Elisa J Gordon
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.,Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
19
|
Regulatory T Cells: Liquid and Living Precision Medicine for the Future of VCA. Transplantation 2023; 107:86-97. [PMID: 36210500 DOI: 10.1097/tp.0000000000004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transplant rejection remains a challenge especially in the field of vascularized composite allotransplantation (VCA). To blunt the alloreactive immune response' stable levels of maintenance immunosupression are required. However' the need for lifelong immunosuppression poses the risk of severe side effects, such as increased risk of infection, metabolic complications, and malignancies. To balance therapeutic efficacy and medication side effects, immunotolerance promoting immune cells (especially regulatory T cells [Treg]) have become of great scientific interest. This approach leverages immune system mechanisms that usually ensure immunotolerance toward self-antigens and prevent autoimmunopathies. Treg can be bioengineered to express a chimeric antigen receptor or a T-cell receptor. Such bioengineered Treg can target specific antigens and thereby reduce unwanted off-target effects. Treg have demonstrated beneficial clinical effects in solid organ transplantation and promising in vivo data in VCAs. In this review, we summarize the functional, phenotypic, and immunometabolic characteristics of Treg and outline recent advancements and current developments regarding Treg in the field of VCA and solid organ transplantation.
Collapse
|
20
|
Rodrigue JR, Shenkel J, Boger M, Pomahac B, Fleishman A. Video Messaging to Increase Vascularized Composite Allograft Donation Willingness in United States Military Veterans. Transplant Direct 2022; 8:e1355. [PMID: 36204186 PMCID: PMC9531254 DOI: 10.1097/txd.0000000000001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022] Open
Abstract
Expansion of vascularized composite allograft (VCA) transplantation depends on the public's willingness to donate VCA organs, including face, extremities, and genitourinary organs. This study evaluated the effectiveness of video messaging on VCA donation willingness in US military veterans, a key stakeholder in VCA transplantation. Methods Participants (n = 556) were randomized to 1 of 3 VCA video messaging interventions (informational, testimonial, or blended), a general (non-VCA) organ donation video message, or a control (nondonation) video message. Questionnaires were completed at pre- and postintervention and at 3-wk follow-up. Results Veterans exposed to any VCA video messaging were more likely to express VCA donation willingness (69%, n = 203/296) than those exposed to general donation messaging (53%, n = 47 of 89; P = 0.006) or No Donation Messaging (37%, n = 36 of 97; P < 0.001). A significantly higher proportion of participants who received Blended VCA Messaging were willing to be VCA donors, compared with the Informational VCA Messaging group (79% versus 61%, P = 0.006). Each VCA messaging video resulted in a significant pre- to postintervention increase in the proportion of participants willing to donate their own face, hands, and legs (P < 0.03). Conclusions Brief educational videos focused on VCA transplantation can have a demonstrable and verifiable impact on rates of VCA donation willingness in veterans.
Collapse
Affiliation(s)
- James R. Rodrigue
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Jessica Shenkel
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Bohdan Pomahac
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT
| | - Aaron Fleishman
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Tacrolimus before CTLA4Ig and rapamycin promotes vascularized composite allograft survival in MGH miniature swine. Transpl Immunol 2022; 75:101696. [PMID: 35987329 DOI: 10.1016/j.trim.2022.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND We evaluated the outcome of vertical rectus abdominus myocutaneous flap (VRAM) allotransplantation in a mini-pig model, using a combined co-stimulation blockade (Co-SB) and mechanistic target of rapamycin inhibition (mTORi)-based regimen, with or without preceding calcineurin inhibition (CNI). MATERIALS AND METHODS VRAM allotransplants were performed between SLA-mismatched MGH miniature swine. Group A (n = 2) was treated continuously with the mTOR inhibitor rapamycin from day -1 in combination with the Co-SB agent cytotoxic T lymphocyte antigen 4-Ig (CTLA4-Ig) from post-operative day (POD) 0. In group B (n = 3), animals received tacrolimus daily from POD 0 to POD 13, followed by rapamycin daily from POD 7 and CTLA4-Ig weekly from POD 7-28. Graft rejection was determined by Banff criteria and host cellular and humoral immunity monitored. RESULTS In group A, allografts developed grade-I acute rejection by POD 2 and POD 7, and reached grade-IV by POD 17 and POD 20, respectively. By contrast, in group B, two allografts demonstrated grade-I rejection on POD 30 and grade-IV on POD 74, while the third exhibited grade-I rejection starting on POD 50, though this animal had to be euthanized on POD 58 due to Pneumocystis jirovecii infection. Time-to-event incidence of grade-I rejection was significantly lower in group A compared to group B. During the first 3 weeks post-transplant, no significant differences in anti-donor immunity were observed between the groups. CONCLUSION A short course of CNI, followed by combined Co-SB and mTORi significantly delays acute rejection of VRAM allografts in SLA-mismatched miniature swine.
Collapse
|
22
|
Kim M, Fisher DT, Bogner PN, Sharma U, Yu H, Skitzki JJ, Repasky EA. Manipulating adrenergic stress receptor signalling to enhance immunosuppression and prolong survival of vascularized composite tissue transplants. Clin Transl Med 2022; 12:e996. [PMID: 35994413 PMCID: PMC9394753 DOI: 10.1002/ctm2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Vascularized composite tissue allotransplantation (VCA) to replace limbs or faces damaged beyond repair is now possible. The resulting clear benefit to quality of life is a compelling reason to attempt this complex procedure. Unfortunately, the high doses of immunosuppressive drugs required to protect this type of allograft result in significant morbidity and mortality giving rise to ethical concerns about performing this surgery in patients with non-life-threatening conditions. Here we tested whether we could suppress anti-graft immune activity by using a safe β2 -adrenergic receptor (AR) agonist, terbutaline, to mimic the natural immune suppression generated by nervous system-induced signalling through AR. METHODS A heterotopic hind limb transplantation model was used with C57BL/6 (H-2b) as recipients and BALB/c (H-2d) mice as donors. To test the modulation of the immune response, graft survival was investigated after daily intraperitoneal injection of β2 -AR agonist with and without tacrolimus. Analyses of immune compositions and quantification of pro-inflammatory cytokines were performed to gauge functional immunomodulation. The contributions to allograft survival of β2 -AR signalling in donor and recipient tissue were investigated with β2 -AR-/- strains. RESULTS Treatment with the β2 -AR agonist delayed VCA rejection, even with a subtherapeutic dose of tacrolimus. β2 -AR agonist decreased T-cell infiltration into the transplanted grafts and decreased memory T-cell populations in recipient's circulation. In addition, decreased levels of inflammatory cytokines (IFN-γ, IL-6, TNF-α, CXCL-1/10 and CCL3/4/5/7) were detected following β2 -AR agonist treatment, and there was a decreased expression of ICAM-1 and vascular cell adhesion molecule-1 in donor stromal cells. CONCLUSIONS β2 -AR agonist can be used safely to mimic the natural suppression of immune responses, which occurs during adrenergic stress-signalling and thereby can be used in combination regimens to reduce the dose needed of toxic immunosuppressive drugs such as tacrolimus. This strategy can be further evaluated for feasibility in the clinic.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Daniel T. Fisher
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Paul N. Bogner
- Department of PathologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Umesh Sharma
- Department of Medicine, Division of CardiologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Han Yu
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Joseph J. Skitzki
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Elizabeth A. Repasky
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| |
Collapse
|
23
|
Valdivia E, Rother T, Yuzefovych Y, Hack F, Wenzel N, Blasczyk R, Krezdorn N, Figueiredo C. Genetic modification of limbs using ex vivo machine perfusion. Hum Gene Ther 2021; 33:460-471. [PMID: 34779223 DOI: 10.1089/hum.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic engineering is a promising tool to repair genetic disorders, improve graft function or to reduce immune responses towards the allografts. Ex vivo organ perfusion systems have the potential to mitigate ischemic-reperfusion injury, prolong preservation time or even rescue organ function. We aim to combine both technologies to develop a modular platform allowing the genetic modification of vascularized composite (VC) allografts. Rat hind limbs were perfused ex vivo under subnormothermic conditions with lentiviral vectors. Specific perfusion conditions such as controlled pressure, temperature and flow rates were optimized to support the genetic modification of the limbs. Genetic modification was detected in vascular, muscular and dermal limb tissues. Remarkably, skin follicular and interfollicular keratinocytes as well as endothelial cells (ECs) showed stable transgene expression. Furthermore, levels of injury markers such as lactate, myoglobin and lactate dehydrogenase (LDH) as well as histological analyses showed that ex vivo limb perfusion with lentiviral vectors did not cause tissue damage and limb cytokine secretion signatures were not significantly affected. The use of ex vivo VC perfusion in combination with lentiviral vectors allows an efficient and stable genetic modification of limbs representing a robust platform to genetically engineer limbs towards increasing graft survival after transplantation.
Collapse
Affiliation(s)
- Emilio Valdivia
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Tamina Rother
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Yuliia Yuzefovych
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Franziska Hack
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nadine Wenzel
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Rainer Blasczyk
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nicco Krezdorn
- Hannover Medical School, 9177, Clinic for Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover, Niedersachsen, Germany;
| | - Constanca Figueiredo
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| |
Collapse
|
24
|
Datta S, Fitzpatrick AM, Haykal S. Preservation solutions for attenuation of ischemia-reperfusion injury in vascularized composite allotransplantation. SAGE Open Med 2021; 9:20503121211034924. [PMID: 34367640 PMCID: PMC8312154 DOI: 10.1177/20503121211034924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Vascularized composite allotransplantation represents the final level of the reconstructive ladder, offering treatment options for severe tissue loss and functional deficiencies. Vascularized composite allotransplantation is particularly susceptible to ischemia–reperfusion injury and requires preservation techniques when subjected to extended storage times prior to transplantation. While static cold storage functions to reduce ischemic damage and is widely employed in clinical settings, there exists no consensus on the ideal preservation solution for vascularized composite allotransplantation. This review aims to highlight current clinical and experimental advances in preservation solution development and their critical role in attenuating ischemia–reperfusion injury in the context of vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Shaishav Datta
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Aisling M Fitzpatrick
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Grajek M, Bula D, Zeman M, Maciejewski A. Limitations and limits and of vascularized composite allotransplantations: can we reach the holy grail? Curr Opin Organ Transplant 2020; 25:609-614. [PMID: 33105202 DOI: 10.1097/mot.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In recent times, vascularized composite allotransplantation (VCA) have been gaining more attention and applications. Currently, VCA are at the highest level of the reconstruction pyramid, and thus the effects expected after them are intended to outweigh what the 'classical' reconstructive surgery can offer us, including even the most advanced microsurgical techniques. RECENT FINDINGS Over 40 patients have received a partial or full-face transplant. Others have received penis, uterus, larynx, abdominal wall, and lower extremity transplants. Each type of VCA has its own problems and limitations. However, resolving the limits defined by immunosuppression and improved donor selection would revolutionize all of them. SUMMARY Defining the limits and limitations of given procedures will not only allow for better preparation of transplant teams but will also help in determining the direction of future research.
Collapse
Affiliation(s)
- Maciej Grajek
- Oncological and Reconstructive Surgery Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | | | | |
Collapse
|
26
|
Giannis D, Moris D, Cendales LC. Costimulation Blockade in Vascularized Composite Allotransplantation. Front Immunol 2020; 11:544186. [PMID: 33042138 PMCID: PMC7527523 DOI: 10.3389/fimmu.2020.544186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Vascular composite allotransplantation (VCA) is a field under research and has emerged as an alternative option for the repair of severe disfiguring defects that result from infections or traumatic amputation in a selected group of patients. VCA is performed in centers with appropriate expertise, experience and adequate resources to effectively manage the complexity and complications of this treatment. Lifelong immunosuppressive therapy, immunosuppression associated complications, and the effects of the host immune response in the graft are major concerns in VCA. VCA is considered a quality of life transplant and the risk-benefit ratio is dissimilar to life saving transplants. Belatacept seems a promising drug that prolongs patient and graft survival in kidney transplantation and it could also be an alternative approach to VCA immunosuppression. In this review, we are summarizing current literature about the role of costimulation blockade, with a focus on belatacept in VCA.
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Dimitrios Moris
- Duke Surgery, Duke University Medical Center, Durham, NC, United States
| | - Linda C. Cendales
- Duke Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
27
|
Gao C, Wang X, Lu J, Li Z, Jia H, Chen M, Chang Y, Liu Y, Li P, Zhang B, Du X, Qi F. Mesenchymal stem cells transfected with sFgl2 inhibit the acute rejection of heart transplantation in mice by regulating macrophage activation. Stem Cell Res Ther 2020; 11:241. [PMID: 32552823 PMCID: PMC7301524 DOI: 10.1186/s13287-020-01752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have become a promising candidate for cell-based immune therapy for acute rejection (AR) after heart transplantation due to possessing immunomodulatory properties. In this study, we evaluated the efficacy of soluble fibronectin-like protein 2 (sFgl2) overexpressing mesenchymal stem cells (sFgl2-MSCs) in inhibiting AR of heart transplantation in mice by regulating immune tolerance through inducing M2 phenotype macrophage polarization. Methods and results The sFgl2, a novel immunomodulatory factor secreted by regulatory T cells, was transfected into MSCs to enhance their immunosuppressive functions. After being co-cultured for 72 h, the sFgl2-MSCs inhibited M1 polarization whereas promoted M2 of polarization macrophages through STAT1 and NF-κB pathways in vitro. Besides, the sFgl2-MSCs significantly enhanced the migration and phagocytosis ability of macrophages stimulated with interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Further, the application potential of sFgl2-MSCs in AR treatment was demonstrated by heterotopic cardiac transplantation in mice. The tissue damage and macrophage infiltration were evaluated by H&E and immunohistochemistry staining, and the secretion of inflammatory cytokines was analyzed by ELISA. The results showed that sFgl2-MSCs injected intravenously were able to locate in the graft, promote the M2 polarization of macrophages in vivo, regulate the local and systemic immune response, significantly protect tissues from damaging, and finally prolonged the survival time of mice heart grafts. Conclusion sFgl2-MSCs ameliorate AR of heart transplantation by regulating macrophages, which provides a new idea for the development of anti-AR treatment methods after heart transplantation.
Collapse
Affiliation(s)
- Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Xiaodong Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Zhilin Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Haowen Jia
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Minghao Chen
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Yuchen Chang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, 300052, China
| | - Xuezhi Du
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, 300052, China.
| |
Collapse
|
28
|
Matsunaga T, Azuma H, Tullius SG. Immunosuppression in vascularized composite allotransplant: the search for an effective and safe treatment continues. Transpl Int 2020; 33:1291-1293. [PMID: 32348589 DOI: 10.1111/tri.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Vascularized composite allotransplantation versus solid organ transplantation: innate-adaptive immune interphase. Curr Opin Organ Transplant 2020; 24:714-720. [PMID: 31577596 DOI: 10.1097/mot.0000000000000705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA), a life-enhancing treatment for patients with complex tissue defects, trauma or illness, expounds upon the foundation of solid organ transplantation (SOT), the gold standard in end-stage organ failure. As innate and adaptive immunity remain the fundamental concern, this review highlights divergent immunobiology responses in VCA and SOT recipients. RECENT FINDINGS Host innate immune activation drives peritransplant tissue ischemia-reperfusion injury (IRI). Despite the direct relationship between ischemia-reperfusion (IR)-stress and cell-mediated acute rejection, the mechanism of how IRI may affect VCA loss needs investigation. With skin grafts being highly immunogenic, the incidence of cell-mediated rejection is higher in VCA than SOT; whereas ex-vivo perfusion may exert cytoprotection against IRI in VCA and SOT. New treatment concepts, such as topical immunosuppression or cell-based tolerogenic therapies, may avoid systemic immunosuppression in VCA. Although antibody-mediated rejection is relatively rare in VCA and its disease seems to be distinct from that in SOT, little is known as to whether and how IRI may influence humoral immune rejection cascade in VCA or SOT. SUMMARY Further understanding of the innate-adaptive immune crosstalk should contribute to much needed development of novel therapies to improve VCA outcomes, based on strategies established in SOT.
Collapse
|
30
|
The many shades of macrophages in regulating transplant outcome. Cell Immunol 2020; 349:104064. [PMID: 32061375 DOI: 10.1016/j.cellimm.2020.104064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 11/23/2022]
Abstract
The shift of emphasis from short-term to long-term graft outcomes has led to renewed interests in how the innate immune cells regulate transplant survival, an area that is traditionally dominated by T cells in the adaptive system. This shift is driven largely by the limited efficacy of current immunosuppression protocols which primarily target T cells in preventing chronic graft loss, as well as by the rapid advance of basic sciences in the realm of innate immunity. In fact, the innate immune cells have emerged as key players in the allograft response in various models, contributing to both graft rejection and graft acceptance. Here, we focus on the macrophages, highlighting their diversity, plasticity and emerging features in transplant models, as well as recent developments in our studies of diverse subsets of macrophages. We also discuss challenges, unsolved questions, and emerging approaches in therapeutically modulating macrophages in further improvement of transplant outcomes.
Collapse
|
31
|
Ma T, Luan S, Tao R, Lu D, Guo L, Liu J, Shu J, Zhou X, Han Y, Jia Y, Li G, Zhang H, Han W, Han Y, Li H. Targeted Migration of Human Adipose-Derived Stem Cells to Secondary Lymphoid Organs Enhances Their Immunomodulatory Effect and Prolongs the Survival of Allografted Vascularized Composites. Stem Cells 2019; 37:1581-1594. [PMID: 31414513 DOI: 10.1002/stem.3078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
The targeted delivery of therapeutic agents to secondary lymphoid organs (SLOs), which are the niches for immune initiation, provides an unprecedented opportunity for immune intolerance induction. The alloimmune rejection postvascularized composite allotransplantation (VCA) is mediated by T lymphocytes. Human adipose-derived stem cells (hASCs) possess the superiority of convenient availability and potent immunoregulatory property, but their therapeutic results in the VCA are unambiguous thus far. Chemokine receptor 7 (CCR7) can specifically guide immune cells migrating into SLOs. There, the genes of CCR7-GFP or GFP alone were introduced into hASCs by lentivirus. hASCs/CCR7 maintained the multidifferentiation and immunoregulatory abilities, but it gained the migration capacity elicited by secondary lymphoid organ chemokine (SCL) (CCR7 ligand) in vitro. Noteworthily, intravenously infused hASCs/CCR7 targetedly relocated in the T-cell aggression area in SLOs. In a rat VCA model, hASCs/GFP transfusion had a rare effect on the allografted vascularized composite. However, hASCs/CCR7 infusion potently prolonged the grafts' survival time. The ameliorated pathologic exhibition and the regulated inflammatory cytokines in the peripheral blood were also observed. The altered axis of Th1/Th2 and Tregs/Th17 in SLOs may underlie the downregulated rejection response. Moreover, the proteomic examination of splenic T lymphocytes also confirmed that hASCs/CCR7 decreased the proteins related to cytokinesis, lymphocyte proliferation, differentiation, and apoptotic process. In conclusion, our present study demonstrated that targeted migration of hASCs/CCR7 to SLOs highly intensifies their in vivo immunomodulatory effect in the VCA model for the first time. We believe this SLO-targeting strategy may improve the clinical therapeutic efficacy of hASC for allogeneic and autogenic immune disease. Stem Cells 2019;37:1581-1594.
Collapse
Affiliation(s)
- Tian Ma
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China.,Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - ShaoLiang Luan
- Department of Vascular Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Di Lu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing, People's Republic of China
| | - LingLi Guo
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - JieJie Liu
- Department of Molecular Biology, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jun Shu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - XiangBin Zhou
- Department of Stomatology, The Third Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - YuDi Han
- Department of Burn and Plastic Surgery, The Seventh Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - YiQing Jia
- Department of Emergency, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Guo Li
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hui Zhang
- Department of Plastic Surgery, The Second Hospital of Shanxi Medical University, Shanxi, People's Republic of China
| | - WeiDong Han
- Department of Molecular Biology, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing, People's Republic of China
| |
Collapse
|
32
|
Huang H, Zhang X, Zhang C, Chen H, Ling Q, Zheng S. The time-dependent shift in the hepatic graft and recipient macrophage pool following liver transplantation. Cell Mol Immunol 2019; 17:412-414. [PMID: 31243358 DOI: 10.1038/s41423-019-0253-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Haitao Huang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueyou Zhang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Qi Ling
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.
| | - Shusen Zheng
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.
| |
Collapse
|