1
|
Huang H, Liu B, Chen M, Qin Y, Li J, Li S, Xu X. Treatment of non-small cell lung cancer with Yiqi Buxue prescriptions combined with adjuvant chemotherapy on the cancer therapy-related cardiovascular toxicity: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117665. [PMID: 38159818 DOI: 10.1016/j.jep.2023.117665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/18/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The treatment and prognosis of patients with non-small cell lung cancer (NSCLC) was affected by the occurrence of cancer therapy-related cardiovascular toxicity (CTR-CVT). Yiqi Buxue prescriptions were a class of traditional single or compounded formulations that have become a consensus for NSCLC. There was no clear information and or summary available for Yiqi Buxue prescriptions combined with adjuvant chemotherapy for NSCLC in reducing CTR-CVT. AIM OF THE STUDY To systematically evaluate the Yiqi Buxue prescriptions combined with adjuvant chemotherapy in reducing CTR-CVT for patients with NSCLC. MATERIALS AND METHODS Search strategies were developed to identify relevant randomized controlled trials (RCTs) in PubMed, Embase, Web of Science, The Cochrane Library, China National Knowledge Infrastructure (CNKI), SinoMed and WanFang Data from database inception date to October 2022. The methodological quality of evidence was assessed using the Cochrane risk of bias (ROBs) assessment tool, and the meta-analysis was analyzed using RevMan 5.3. RESULTS A total of 9 studies were included. Compared with the adjuvant chemotherapy group, Yiqi Buxue prescriptions combined with adjuvant chemotherapy group showed no statistically significant in reducing CTR-CVT (RR 0.67, 95%CI 0.11 to 3.93, P = 0.65) and in CD4+/CD8+(MR 0.32, 95%CI -0.13 to 0.77, P = 0.16). However, it significantly improved the objective response rate (ORR) (RR 1.57, 95%CI 1.32 to 1.87, P < 0.00001), disease control rate (DCR) (RR 1.25, 95%CI 1.15 to 1.35, P < 0.00001), Karnofsky performance status (KPS) improvement rate (RR 1.34, 95%CI 1.16 to 1.55, P < 0.0001), CD3+ (MR 4.17, 95%CI 3.68 to 4.66, P < 0.00001), CD4+ (MR 4.87, 95%CI 4.28 to 5.46, P < 0.00001), and CD8+ (MR 3.12, 95%CI 2.57 to 3.67, P < 0.00001). CONCLUSIONS The current RCTs are hampered by small sample sizes and poor methodological quality. More rigorously designed and large sample RCTs with primary outcome of CTR-CVT are needed to investigate the effectiveness of Yiqi Buxue prescriptions combined with adjuvant chemotherapy in reducing CTR-CVT for patients with NSCLC.
Collapse
Affiliation(s)
- Hangxing Huang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China.
| | - Beicheng Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China; Department of Urology, Wuhan Asia General Hospital, Wuhan, Hubei, 430081, China.
| | - Mengzhen Chen
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China.
| | - Yanfang Qin
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China.
| | - Jianyu Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China.
| | - Simin Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China.
| | - Xue Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China.
| |
Collapse
|
2
|
Li Y, Gu Y, Yang P, Wang Y, Yu X, Li Y, Jin Z, Xu L. CD69 is a Promising Immunotherapy and Prognosis Prediction Target in Cancer. Immunotargets Ther 2024; 13:1-14. [PMID: 38223406 PMCID: PMC10787557 DOI: 10.2147/itt.s439969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy utilizing T cells that attack tumors is a promising strategy for treatment, but immune suppressive T cell subsets, such as regulatory T cell (Treg), and immune checkpoint molecules, including programmed death-1 (PD-1), can suppress the intensity of a T cell immune reaction and thereby impair tumor clearance. Cluster of differentiation 69 (CD69), known as an early leukocyte activation marker, can be used as a measure or early marker of T cell activation. In recent years, the functions of CD69 in the regulation of Treg/Th17 (T helper cell 17) differentiation and in the tissue retention of T cells have attracted considerable interest. These functions are related to the role of CD69 in immune suppression in tumor environments (TME). In this review, we first summarized current perspectives in the biological function of CD69 and demonstrated that CD69 acts as a regulator of T cell activation, differentiation, retention, and exhaustion. Then, we discussed recent advances in understanding of CD69 deficiency and anti-CD69 antibody administration and shed light on the value of targeting on CD69 for cancer immunotherapy and prognosis prediction.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yinfeng Gu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Pengyue Yang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yan Wang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xibao Yu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zhenyi Jin
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
3
|
Martens P, Cooper LT, Tang WHW. Diagnostic Approach for Suspected Acute Myocarditis: Considerations for Standardization and Broadening Clinical Spectrum. J Am Heart Assoc 2023; 12:e031454. [PMID: 37589159 PMCID: PMC10547314 DOI: 10.1161/jaha.123.031454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Myocarditis is most recognized in patients with moderate to severe, recent-onset heart failure. However, less typical presentations including myocardial infarction with normal coronary arteries and arrhythmias are important manifestations but less commonly recognized to be caused by myocarditis. Most cases of myocarditis can be self-limiting without specific treatment; however, appropriate identification of risk during the diagnostic process of myocarditis and once a diagnosis is established is of primordial importance to identify patients in need for more specific follow-up and management. We propose a flexible, multitiered approach to the diagnostic process, allowing for capturing of the spectrum of myocarditis at an early time-point, individualized use of diagnostic resources through disease severity phenotyping, and providing structured follow-up care once myocarditis is confirmed. Such diagnostic processes allow for identification of specific etiologies with potential therapeutic consequences or allows for the comprehension of disease chronicity by understanding genetic contributions or elements of persistent immune dysregulation and degree of cardiac damage. The article highlights the evolving field of immunophenotyping in myocarditis, generating a potential for the development of targeted therapeutic approaches. Currently long-term follow-up should be titrated to the refined risk assessments of patients with a diagnosis of myocarditis and includes arrhythmia monitoring and imaging when the results will likely impact management. Genetic testing should be considered in selected cases, and histologic diagnosis may be considered in nonresponders even at later stages.
Collapse
Affiliation(s)
- Pieter Martens
- Department of Cardiovascular MedicineHeart Vascular and Thoracic Institute, Cleveland ClinicClevelandOHUSA
| | - Leslie T. Cooper
- Department of Cardiovascular MedicineMayo ClinicJacksonvilleFLUSA
| | - W. H. Wilson Tang
- Department of Cardiovascular MedicineHeart Vascular and Thoracic Institute, Cleveland ClinicClevelandOHUSA
| |
Collapse
|
4
|
Rodríguez-Galán A, Dosil SG, Hrčková A, Fernández-Messina L, Feketová Z, Pokorná J, Fernández-Delgado I, Camafeita E, Gómez MJ, Ramírez-Huesca M, Gutiérrez-Vázquez C, Sánchez-Cabo F, Vázquez J, Vaňáčová Š, Sánchez-Madrid F. ISG20L2: an RNA nuclease regulating T cell activation. Cell Mol Life Sci 2023; 80:273. [PMID: 37646974 PMCID: PMC10468436 DOI: 10.1007/s00018-023-04925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
ISG20L2, a 3' to 5' exoribonuclease previously associated with ribosome biogenesis, is identified here in activated T cells as an enzyme with a preferential affinity for uridylated miRNA substrates. This enzyme is upregulated in T lymphocytes upon TCR and IFN type I stimulation and appears to be involved in regulating T cell function. ISG20L2 silencing leads to an increased basal expression of CD69 and induces greater IL2 secretion. However, ISG20L2 absence impairs CD25 upregulation, CD3 synaptic accumulation and MTOC translocation towards the antigen-presenting cell during immune synapsis. Remarkably, ISG20L2 controls the expression of immunoregulatory molecules, such as AHR, NKG2D, CTLA-4, CD137, TIM-3, PD-L1 or PD-1, which show increased levels in ISG20L2 knockout T cells. The dysregulation observed in these key molecules for T cell responses support a role for this exonuclease as a novel RNA-based regulator of T cell function.
Collapse
Affiliation(s)
- Ana Rodríguez-Galán
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara G Dosil
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Hrčková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lola Fernández-Messina
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Zuzana Feketová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Julie Pokorná
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Irene Fernández-Delgado
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Emilio Camafeita
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel José Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Ramírez-Huesca
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Štěpánka Vaňáčová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Francisco Sánchez-Madrid
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
5
|
Xie Y, Zhang Y, Wang T, Liu Y, Ma J, Wu S, Duan C, Qiao W, Cheng K, Lu L, Zhuang R, Bian K. Ablation of CD226 on CD4+ T cells modulates asthma progress associated with altered IL-10 response and gut microbiota. Int Immunopharmacol 2023; 118:110051. [PMID: 36989896 DOI: 10.1016/j.intimp.2023.110051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
To investigate the role of the costimulatory molecule CD226 in asthma pathogenesis, we produced a CD4+ T-cell-specific CD226 knockout mice model (Cd226ΔCD4) and induced airway allergic inflammation by administering ovalbumin (OVA). Our results revealed alleviated lung inflammation, decreased levels of OVA-specific IgE, and increased levels of IL-10 in the serum of Cd226ΔCD4 mice (P < 0.05). Moreover, IL-10 levels in CD4+ T cells were significantly elevated in the mediastinal lymph node, spleen, and Peyer's patches in the Cd226ΔCD4 mice compared with those in controls (P < 0.05 to P < 0.01). Notably, there was a significantly higher IL-10 mRNA levels in the large intestine of the mice (P < 0.05). The protective effect of CD226 deficiency is also associated with the accumulation of gut TCRγδ+ intraepithelial lymphocytes and reversion of the gut microbiome dysbiosis. The Bacteroidetes-to-Firmicutes ratio and the abundance of Akkermansia increased in the absence of CD226 after OVA treatment. Our data reveal the synchronous changes in the lung and intestine in OVA-treated CD226-knockout mice, supporting the gut-lung axis concept and providing evidence for novel therapeutic approaches for asthma.
Collapse
|
6
|
T-Cell Mineralocorticoid Receptor Deficiency Attenuates Pathologic Ventricular Remodelling After Myocardial Infarction. Can J Cardiol 2023; 39:593-604. [PMID: 36669686 DOI: 10.1016/j.cjca.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mineralocorticoid receptor (MR) antagonists have been widely used to treat heart failure (HF). Studies have shown that MR in T cells plays important roles in hypertension and myocardial hypertrophy. However, the function of T-cell MR in myocardial infarction (MI) has not been elucidated. METHODS In this study, we used T-cell MR knockout (TMRKO) mouse to investigate the effects of T-cell MR deficiency on MI and to explore the underlying mechanisms. Echocardiography and tissue staining were used to assess cardiac function, fibrosis, and myocardial apoptosis after MI. Flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect immune cell infiltration and inflammation. RESULTS T-cell MR deficiency significantly improved cardiac function, promoted myocardial repair, and inhibited myocardial apoptosis, fibrosis, and inflammation after MI. Luminex assays revealed that TMRKO mice had significantly lower levels of interferon-gamma (IFN-γ) and interleukin-6 (IL-6) in serum and infarcted myocardium than littermate control mice. In cultured splenic T cells, MR deficiency suppressed IL-6 expression, whereas MR overexpression enhanced IL-6 expression. Chromatin immunoprecipitation (ChIP) assay demonstrated that MR bound to the MR response element on the promoter of IL-6 gene. Finally, T-cell MR deficiency significantly suppressed accumulation of macrophages in infarcted myocardium and differentiation of proinflammatory macrophages, thereby alleviating the consequences of MI. CONCLUSIONS T-cell MR deficiency improved pathologic ventricular remodelling after MI, likely through inhibition of accumulation and differentiation of proinflammatory macrophages. At the molecular level, MR may work through IFN-γ and IL-6 in T cells to exert functions in MI.
Collapse
|
7
|
Walther R, Wehner R, Tunger A, Julius U, Schatz U, Tselmin S, Bornstein SR, Schmitz M, Graessler J. Repeated lipoprotein apheresis and immune response: Effects on different immune cell populations. Ther Apher Dial 2022; 26 Suppl 1:18-28. [PMID: 36468334 DOI: 10.1111/1744-9987.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atherosclerosis is considered a chronic inflammation of arterial vessels with the involvement of several immune cells causing severe cardiovascular diseases. Lipoprotein apheresis (LA) improves cardiovascular conditions of patients with severely disturbed lipid metabolism. In this context, little is known about the impact of LA on various immune cell populations, especially over time. METHODS Immune cells of 18 LA-naïve patients starting weekly LA treatment were analyzed before and after four apheresis cycles over the course of 24 weeks by flow cytometry. RESULTS AND CONCLUSIONS An acute lowering effect of LA on T cell and natural killer (NK) cell subpopulations expressing CD69 was observed. The non-classical and intermediate monocyte subsets as well as HLA-DR+ 6-sulfo LacNAc+ monocytes were significantly reduced during the apheresis procedure. We conclude that LA has the capacity to alter various immune cell subsets. However, LA has mainly short-term effects than long-term consequences on proportions of immune cells.
Collapse
Affiliation(s)
- Romy Walther
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ulrike Schatz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sergey Tselmin
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Juergen Graessler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
Jiménez-Alejandre R, Ruiz-Fernández I, Martín P. Pathophysiology of Immune Checkpoint Inhibitor-Induced Myocarditis. Cancers (Basel) 2022; 14:4494. [PMID: 36139654 PMCID: PMC9497311 DOI: 10.3390/cancers14184494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have recently emerged as strong therapies for a broad spectrum of cancers being the first-line treatment for many of them, even improving the prognosis of malignancies that were considered untreatable. This therapy is based on the administration of monoclonal antibodies targeting inhibitory T-cell receptors, which boost the immune system and prevent immune evasion. However, non-specific T-cell de-repression can result in a wide variety of immune-related adverse events (irAEs), including gastrointestinal, endocrine, and dermatologic, with a smaller proportion of these having the potential for fatal outcomes such as neurotoxicity, pulmonary toxicity, and cardiotoxicity. In recent years, alarm has been raised about cardiotoxicity as it has the highest mortality rate when myocarditis develops. However, due to the difficulty in diagnosing this cardiac condition and the lack of clinical guidelines for the management of cardiovascular disease in patients on therapy with ICIs, early detection of myocarditis has become a challenge in these patients. In this review we outline the mechanisms of tolerance by which this fatal cardiomyopathy may develop in selected cancer patients treated with ICIs, summarize preclinical models of the disease that will allow the development of more accurate strategies for its detection and treatment, and discuss the challenges in the future to decrease the risks of its development with better decision making in susceptible patients.
Collapse
Affiliation(s)
| | | | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| |
Collapse
|
9
|
Jiménez-Fernández M, Rodríguez-Sinovas C, Cañes L, Ballester-Servera C, Vara A, Requena S, de la Fuente H, Martínez-González J, Sánchez-Madrid F. CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4 + T lymphocytes. Cell Mol Life Sci 2022; 79:468. [PMID: 35930205 PMCID: PMC9355928 DOI: 10.1007/s00018-022-04481-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
The mechanisms that control the inflammatory–immune response play a key role in tissue remodelling in cardiovascular diseases. T cell activation receptor CD69 binds to oxidized low-density lipoprotein (oxLDL), inducing the expression of anti-inflammatory NR4A nuclear receptors and modulating inflammation in atherosclerosis. To understand the downstream T cell responses triggered by the CD69-oxLDL binding, we incubated CD69-expressing Jurkat T cells with oxLDL. RNA sequencing revealed a differential gene expression profile dependent on the presence of CD69 and the degree of LDL oxidation. CD69-oxLDL binding induced the expression of NR4A receptors (NR4A1 and NR4A3), but also of PD-1. These results were confirmed using oxLDL and a monoclonal antibody against CD69 in CD69-expressing Jurkat and primary CD4 + lymphocytes. CD69-mediated induction of PD-1 and NR4A3 was dependent on NFAT activation. Silencing NR4A3 slightly increased PD-1 levels, suggesting a potential regulation of PD-1 by this receptor. Moreover, expression of PD-1, CD69 and NR4A3 was increased in human arteries with chronic inflammation compared to healthy controls, with a strong correlation between PD-1 and CD69 mRNA expression (r = 0.655 P < 0.0001). Moreover, PD-1 was expressed in areas enriched in CD3 infiltrating T cells. Our results underscore a novel mechanism of PD-1 induction independent of TCR signalling that might contribute to the role of CD69 in the modulation of inflammation and vascular remodelling in cardiovascular diseases.
Collapse
Affiliation(s)
- María Jiménez-Fernández
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Rodríguez-Sinovas
- Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), IIB-Sant Pau, Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laia Cañes
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain
| | - Carme Ballester-Servera
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain
| | - Alicia Vara
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain
| | - Silvia Requena
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain
| | - Hortensia de la Fuente
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Martínez-González
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain. .,Instituto de Investigaciones Biomédicas de Barcelona - Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB-Sant Pau, C/ Rosselló, 161, 08036, Barcelona, Spain.
| | - Francisco Sánchez-Madrid
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), c/ Diego de León, 62, 28006, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. .,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
10
|
Dong H, Qi Y, Kong X, Wang Z, Fang Y, Wang J. PD-1/PD-L1 Inhibitor-Associated Myocarditis: Epidemiology, Characteristics, Diagnosis, Treatment, and Potential Mechanism. Front Pharmacol 2022; 13:835510. [PMID: 35517794 PMCID: PMC9062035 DOI: 10.3389/fphar.2022.835510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) induce T-cell activation against cancer cells, and due to their anti-tumor function in multiple cancers, ICIs have been considered an important option for oncotherapy. PD-1/PD-L1 inhibitors are now widely used as ICIs for many types of cancers in clinical practices. Myocarditis induced by anti-PD-1/PD-L1 agents is uncommon but shows potentially fatal toxicity. In this review, we attempted to conclude the incidence, characteristics, diagnosis, and treatments, as well as illustrate the potential pathogenesis from the perspectives of T-lymphocyte infiltration, disturbance of regulatory T cells, cytokines, macrophage-mediated inflammatory response, and synergistic effect of PD-1/PD-L1 and CTLA4.
Collapse
Affiliation(s)
- Hao Dong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|