1
|
Muñoz-Blat I, Pérez-Moraga R, Castillo-Marco N, Cordero T, Ochando A, Ortega-Sanchís S, Parras-Moltó M, Monfort-Ortiz R, Satorres-Perez E, Novillo B, Perales A, Gormley M, Granados-Aparici S, Noguera R, Roson B, Fisher SJ, Simón C, Garrido-Gómez T. Multi-omics-based mapping of decidualization resistance in patients with a history of severe preeclampsia. Nat Med 2025:10.1038/s41591-024-03407-7. [PMID: 39775038 DOI: 10.1038/s41591-024-03407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Endometrial decidualization resistance (DR) is implicated in various gynecological and obstetric conditions. Here, using a multi-omic strategy, we unraveled the cellular and molecular characteristics of DR in patients who have suffered severe preeclampsia (sPE). Morphological analysis unveiled significant glandular anatomical abnormalities, confirmed histologically and quantified by the digitization of hematoxylin and eosin-stained tissue sections. Single-cell RNA sequencing (scRNA-seq) of endometrial samples from patients with sPE (n = 11) and controls (n = 12) revealed sPE-associated shifts in cell composition, manifesting as a stromal mosaic state characterized by proliferative stromal cells (MMP11 and SFRP4) alongside IGFBP1+ decidualized cells, with concurrent epithelial mosaicism and a dearth of epithelial-stromal transition associated with decidualization. Cell-cell communication network mapping underscored aberrant crosstalk among specific cell types, implicating crucial pathways such as endoglin, WNT and SPP1. Spatial transcriptomics in a replication cohort validated DR-associated features. Laser capture microdissection/mass spectrometry in a second replication cohort corroborated several scRNA-seq findings, notably the absence of stromal to epithelial transition at a pathway level, indicating a disrupted response to steroid hormones, particularly estrogens. These insights shed light on potential molecular mechanisms underpinning DR pathogenesis in the context of sPE.
Collapse
Affiliation(s)
- Irene Muñoz-Blat
- Carlos Simon Foundation, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | | | | | | | | | | | | | - Rogelio Monfort-Ortiz
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Elena Satorres-Perez
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Blanca Novillo
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Alfredo Perales
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Matthew Gormley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| | - Sofia Granados-Aparici
- INCLIVA Health Research Institute, Valencia, Spain
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Noguera
- INCLIVA Health Research Institute, Valencia, Spain
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Susan J Fisher
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Science, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA, USA
| | - Carlos Simón
- Carlos Simon Foundation, Valencia, Spain.
- INCLIVA Health Research Institute, Valencia, Spain.
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain.
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Tamara Garrido-Gómez
- Carlos Simon Foundation, Valencia, Spain.
- INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
2
|
Huang J, Feng L, Huang J, Zhang G, Liao S. Unveiling sialoglycans' immune mastery in pregnancy and their intersection with tumor biology. Front Immunol 2024; 15:1479181. [PMID: 39759524 PMCID: PMC11695303 DOI: 10.3389/fimmu.2024.1479181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Sialylation is a typical final step of glycosylation, which is a prevalent post-translational modification of proteins. Sialoglycans, the products of sialylation, are located on the outmost of cells and participate in pivotal biological processes. They have been identified as glyco-immune checkpoints and are currently under rigorous investigation in the field of tumor research. It is noteworthy that the exploration of sialoglycans in tumor and pregnancy contexts was both initiated in the 1960s. Mechanisms in these two conditions exhibit similarities. Trophoblast infiltration during pregnancy gets controlled, while tumor invasion is uncontrolled. The maternal-fetal immunotolerance balances acceptance of the semiallogeneic fetus and resistance against "non-self" antigen attack simultaneously. Tumors mask themselves with sialoglycans as "don't eat me" signals to escape immune surveillance. The trophoblastic epithelium is covered with sialoglycans, which have been demonstrated to play an immune regulatory role throughout the entire pregnancy. Immune abnormalities are commonly recognized as an important reason for miscarriages. Therapeutic strategies that desialylation and targeting receptors of sialoglycans have been studied in tumors, while agents that target glyco-immune checkpoints have not been studied in pregnancy. Thus, investigating the roles of sialoglycans in pregnancy and their intersection with tumors may facilitate the development of novel therapies targeting glyco-immune checkpoints for the treatment of pregnancy-related diseases, such as miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jianmei Huang
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Feng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Qi L, Qian L, Yu X, Qiu K. SIRT6 mitigates oxidative stress and RSL3-induced ferroptosis in HTR-8/SVneo cells. Tissue Cell 2024; 93:102639. [PMID: 39642638 DOI: 10.1016/j.tice.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Dysregulation in placental trophoblast cells frequently results in oxidative stress, culminating in pregnancy-related complications. While iron is essential for fetal development, cellular ferroptosis due to elevated iron levels might mediate the emergence of preeclampsia (PE), presenting significant risks during gestation. We found abnormally activated oxidative stress and increased iron concentration in the placental tissues of PE patients. Subsequently, we treated placental trophoblasts with hydrogen peroxide and RSL3 to induce oxidative stress and ferroptosis models. The results revealed that SIRT6 overexpression activates the Nrf2/HO-1 pathway, restores the oxidative imbalance of the cells, and protects the cells from ferroptosis. Meanwhile, activation of the Nrf2/HO-1 pathway alone showed similar results. Thus, we posit that SIRT6, via the Nrf2/HO-1 pathway, alleviates cellular oxidative stress and diminishes ferroptosis, offering a novel therapeutic avenue for PE.
Collapse
Affiliation(s)
- Lifang Qi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Liyan Qian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Xiaoting Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Kan Qiu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China.
| |
Collapse
|
4
|
Liu J, Li W, Wang J, Bai L, Xu J, Chen X, Wang S, Li L, Xu X. IL-32 regulates trophoblast invasion through miR-205-NFκB-MMP2/9 axis contributing to the pregnancy-induced hypertension†. Biol Reprod 2024; 111:780-799. [PMID: 39101465 DOI: 10.1093/biolre/ioae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Interleukin-32 is a species-specific cytokine that plays an important role in inflammation, cancer, and other diseases; however, its role in reproductive and pregnancy-related diseases remains unknown. This study aimed to investigate the role of interleukin-32 in reproductive and pregnancy-related diseases. Placental tissues from patients with pregnancy-induced hypertension, healthy pregnant women, and trophoblast lines were analysed. Interleukin-32 expression was quantified via polymerase chain reaction and immunohistochemistry, and functional assays were performed after interleukin-32 modulation. Interleukin-32 was identified only in placental mammals, such as Carnivora, Cetartiodactyla, Chiroptera, Dermoptera, Lagomorpha, Perissodactyla, and Primates via bioinformatics. Immunohistochemistry and polymerase chain reaction revealed that interleukin-32 was highly expressed in human placental villi, poorly expressed in decidua and endometrial tissues, and was not detected in mouse tissues. Second, interleukin-32 upregulates miR-205 expression by increasing DROSHA expression, and miR-205 promotes interleukin-32 expression by targeting its promoter region. Interleukin-32 and miR-205 significantly enhanced the invasion ability of HTR8/SVneo cells (a trophoblast cell line) and the tube formation ability of human umbilical vein endothelial cells. Through quantitative reverse transcription polymerase chain reaction and western blotting, the interleukin-32/miR-205 loop increased MMP2 and MMP9 expression in HTR-8/SVneo cells via the nuclear factor kappa B signaling pathway. Finally, using quantitative reverse transcription polymerase chain reaction, interleukin-32 and miR-205 expression levels were significantly lower in the placentas of patients with pregnancy-induced hypertension than in women with normal pregnancies. In conclusion, interleukin-32 regulates trophoblast invasion through the miR-205-nuclear factor kappa B-MMP2/9 pathway, which is involved in pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology(Shanxi Medical University), Ministry of Education, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Wenlong Li
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Jinjuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Lina Bai
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Jing Xu
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Xihua Chen
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
| | - Shufang Wang
- Department of Forensic Medicine, Xinxiang Medical University, Jinhui Road 191#, Xinxiang, 453003, Henan, China
| | - Li Li
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology(Shanxi Medical University), Ministry of Education, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
| |
Collapse
|
5
|
Hernández González LL, Pérez-Campos Mayoral L, Hernández-Huerta MT, Mayoral Andrade G, Martínez Cruz M, Ramos-Martínez E, Pérez-Campos Mayoral E, Cruz Hernández V, Antonio García I, Matias-Cervantes CA, Avendaño Villegas ME, Lastre Domínguez CM, Romero Díaz C, Ruiz-Rosado JDD, Pérez-Campos E. Targeting Neutrophil Extracellular Trap Formation: Exploring Promising Pharmacological Strategies for the Treatment of Preeclampsia. Pharmaceuticals (Basel) 2024; 17:605. [PMID: 38794175 PMCID: PMC11123764 DOI: 10.3390/ph17050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophils, which constitute the most abundant leukocytes in human blood, emerge as crucial players in the induction of endothelial cell death and the modulation of endothelial cell responses under both physiological and pathological conditions. The hallmark of preeclampsia is endothelial dysfunction induced by systemic inflammation, in which neutrophils, particularly through the formation of neutrophil extracellular traps (NETs), play a pivotal role in the development and perpetuation of endothelial dysfunction and the hypertensive state. Considering the potential of numerous pharmaceutical agents to attenuate NET formation (NETosis) in preeclampsia, a comprehensive assessment of the extensively studied candidates becomes imperative. This review aims to identify mechanisms associated with the induction and negative regulation of NETs in the context of preeclampsia. We discuss potential drugs to modulate NETosis, such as NF-κβ inhibitors, vitamin D, and aspirin, and their association with mutagenicity and genotoxicity. Strong evidence supports the notion that molecules involved in the activation of NETs could serve as promising targets for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Leticia Lorena Hernández González
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Faculty of Biological Systems and Technological Innovation, Autonomous University “Benito Juárez” of Oaxaca, Oaxaca 68125, Mexico
| | - Laura Pérez-Campos Mayoral
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - María Teresa Hernández-Huerta
- CONAHCyT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
| | - Gabriel Mayoral Andrade
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - Margarito Martínez Cruz
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
| | - Edgar Ramos-Martínez
- School of Sciences, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico;
| | - Eduardo Pérez-Campos Mayoral
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | | | | | - Carlos Alberto Matias-Cervantes
- CONAHCyT, Faculty of Medicine and Surgery, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (M.T.H.-H.); (C.A.M.-C.)
| | - Miriam Emily Avendaño Villegas
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
| | | | - Carlos Romero Díaz
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Research Center, Faculty of Medicine UNAM-UABJO, Autonomous University “Benito Juárez” of Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (G.M.A.); (E.P.-C.M.)
| | - Juan de Dios Ruiz-Rosado
- Kidney and Urinary Tract Research Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Eduardo Pérez-Campos
- National Technology of Mexico/IT Oaxaca, Oaxaca de Juárez, Oaxaca 68030, Mexico; (L.L.H.G.); (M.M.C.); (C.M.L.D.); (C.R.D.)
- Clinical Pathology Laboratory, “Eduardo Pérez Ortega”, Oaxaca 68000, Mexico
| |
Collapse
|
6
|
Jiang Y, Geng Y, Gao R, Chen Z, Chen J, Mu X, Zhang Y, Yin X, Chen X, Li F, He J. Maternal exposure to ZIF-8 derails placental function by inducing trophoblast pyroptosis through neutrophils activation in mice. Food Chem Toxicol 2024; 187:114604. [PMID: 38508570 DOI: 10.1016/j.fct.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Adverse environmental factors during maternal gestation pose a threat to pregnancy. Environmental factors, particularly nanoparticles, can impact pregnancy by causing damage to the placenta. Compared to early gestation, foetuses in late gestation are more robustly developed and at lower risk of adverse effects from environmental factors. Delivery systems for targeted therapy during pregnancy is predominantly focused on their application in late gestation. Zeolitic imidazolate framework-8 (ZIF-8) holds great potential for targeted drug therapy. To evaluate the value of ZIF-8 in targeted treatment of disorders associated with late gestation, it is crucial to investigate the biological effects of ZIF-8 exposure during late gestation. Here, a mouse model exposed to ZIF-8 particles at different doses (5, 10, and 15 mg/kg) during late gestation was constructed. We found that ZIF-8 particles were deposited in the uterus of pregnant mice. ZIF-8 could trigger placental neutrophil aggregation and induce inflammation, which led to trophoblast pyroptosis and impair placental function, adversely affecting the foetus. Neutrophil depletion alleviated placental and foetal damage induced by ZIF-8. This study provides a novel mechanistic view of the reproductive toxicity induced by ZIF-8 and may offer clues to reduce the latent harm of adverse environmental factors to pregnancy.
Collapse
Affiliation(s)
- Yu Jiang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Zhuxiu Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xin Yin
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Huang X, Li Y, Tong X, Wu Y, Zhang R, Sheng L, Xu J, Yu Z, Chen Z, Sun T, Wang F, Yang Q, Li Z, Gao C, Ma L, Ding H, Zang S, Yang N, Zhang TN, Liu J. Increased Circulating IL-32 Is Associated With Placenta Macrophage-derived IL-32 and Gestational Diabetes Mellitus. J Clin Endocrinol Metab 2024; 109:333-343. [PMID: 37708356 DOI: 10.1210/clinem/dgad531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Placenta-derived inflammation plays a vital role in the pathophysiology of gestational diabetes mellitus (GDM). IL-32 is a novel pro-inflammatory cytokine and metabolic regulator involved in the development of metabolic disease. We investigated the effect of IL-32 in GDM. MATERIALS AND METHODS First-trimester C-reactive protein (CRP) level was monitored in a case-control study of 186 women with GDM and 186 women without. Placental tissue was lysed and analyzed by high-resolution liquid chromatography-tandem mass spectrometry. Circulating level of inflammatory cytokines IL-32, IL-6, and TNF-α were measured by ELISA kits. The expression of placenta-derived macrophages, inflammatory cytokines, and related pathway proteins were assessed by reverse transcriptase-quantitative PCR, western blot, immunohistochemistry, or immunofluorescence. RESULTS First-trimester CRP level in peripheral blood was closely associated with glucose and insulin resistance index and was an independent correlation with the development of GDM. High-resolution liquid chromatography-tandem mass spectrometry revealed that placenta-derived CRP expression was dramatically elevated in women with GDM. Interestingly, the expression of placenta-derived IL-32 was also increased and located in the macrophages of placental tissue. Meanwhile, the expression of IL-6, TNF-α, and p-p38 were up-regulated in the placental tissues with GDM. Either IL-6 or TNF-α was colocated with IL-32 in the placental tissue. Importantly, circulating IL-32 throughout pregnancy was increased in GDM and was related to placental-derived IL-32 expression, circulating IL-6, and TNF-α, glucose and insulin resistance index. CONCLUSION Increased circulating IL-32 throughout pregnancy was closely associated with placenta macrophage-derived IL-32 expression and GDM. First trimester IL-32 level in peripheral blood may serve to predict the development of GDM.
Collapse
Affiliation(s)
- Xinmei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xiaoxu Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueyue Wu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Li Sheng
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Jiong Xu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zhiyan Yu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zaoping Chen
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Tiange Sun
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Fang Wang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Qian Yang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zhangyan Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Cuijun Gao
- Department of Obstetrics, Wujing Hospital, Shanghai 200241, China
| | - Ling Ma
- Department of Obstetrics, Wujing Hospital, Shanghai 200241, China
| | - Heyuan Ding
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
8
|
Yu Z, Zhang W, Wang Y, Gao M, Zhang M, Yao D, Qiao C, Cui X, Jia R. Extracellular Vesicles Derived from Human Umbilical Cord MSC Improve Vascular Endothelial Function in In Vitro and In Vivo Models of Preeclampsia through Activating Arginine Metabolism. Mol Pharm 2023; 20:6429-6440. [PMID: 37903292 PMCID: PMC10699303 DOI: 10.1021/acs.molpharmaceut.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Endothelial cell damage is an important feature of preeclampsia (PE). Human umbilical mesenchymal stem-cell-derived extracellular vesicles (HUMSCs-derived EVs) have been shown to have therapeutic effects on a variety of diseases and tissue damage. However, the therapeutic effect of HUMSCs-derived EVs on endothelial injury in PE remains unclear. This study explored the possible mechanism of HUMSCs-derived EVs in the treatment of endothelial cell injury. Tumor necrosis factor α- and lipopolysaccharide-induced endothelial dysfunction models were used to evaluate the therapeutic effect of HUMSCs-derived EVs on endothelial injury. We further constructed PE mouse models to explore the function of HUMSCs-derived EVs in vivo. The changes of metabolites in endothelial cells after HUMSCs-derived EVs treatment were analyzed by metabolomics analysis and further validated by cell experiments. HUMSCs-derived EVs treatment can alleviate endothelial cell injury in PE, involving cell proliferation, migration, angiogenesis, and anti-inflammatory. Importantly, administration of HUMSCs-derived EVs improves hypertension and proteinuria in PE mice, alleviates kidney damage, and promotes vascularization in the placenta. Furthermore, metabolomics analysis found that the arginine metabolic pathway is activated after HUMSCs-derived EVs treatment. We also observed increased arginine level, nitric oxide content, and nitric oxide synthase activity, and further experiments proved that activating the arginine metabolic pathway could alleviate endothelial dysfunction. Our results reveal that HUMSCs-derived EVs could ameliorate PE endothelial dysfunction by activating the arginine metabolic pathway and may serve as a therapeutic method for treating PE.
Collapse
Affiliation(s)
- Zhaoer Yu
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Wei Zhang
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Yixiao Wang
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Mingming Gao
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Min Zhang
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Dan Yao
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Chengping Qiao
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Xianwei Cui
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| | - Ruizhe Jia
- Department
of Obstetrics and Gynecology, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
- Nanjing
Maternal and Child Health Institute, Women’s
Hospital of Nanjing Medical University, Nanjing Maternity and Child
Health Care Hospital, Nanjing 210004, China
| |
Collapse
|
9
|
Rimboeck J, Gruber M, Weigl M, Huber P, Lunz D, Petermichl W. Obesity Correlates with Chronic Inflammation of the Innate Immune System in Preeclampsia and HELLP Syndrome during Pregnancy. Biomedicines 2023; 11:2851. [PMID: 37893224 PMCID: PMC10604126 DOI: 10.3390/biomedicines11102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
HELLP syndrome is characterized by hemolysis, elevated liver enzymes, and a low platelet count and poses an increased risk to the pregnant woman and the unborn child. Individual risk factors such as obesity may alter immunocompetence and influence the course of preeclampsia (PE) or HELLP syndrome. Blood samples were collected from 21 pregnant women (7 healthy, 6 with PE, and 8 with HELLP syndrome) and polymorphonuclear neutrophils (PMNs) were subsequently isolated. Production of radical oxygen species (ROS), cell movement, and NETosis were assessed by live-cell imaging. Surface protein expression and oxidative burst were analyzed by flow cytometry. PE and HELLP patients had significantly higher BMI compared to the healthy control group. Depending on the expression of CD11b, CD62L, and CD66b on PMNs, a surface protein activation sum scale (SPASS) was calculated. PMNs from patients with high SPASS values showed prolonged and more targeted migration with delayed ROS production and NETosis. Obesity is associated with a chronic inflammatory state, which in combination with immunological triggers during pregnancy could modulate PMN functions. Pregnant women with higher BMI tend to have higher SPASS values, indicating activation of the innate immune system that could co-trigger PE or HELLP syndrome.
Collapse
Affiliation(s)
- Julia Rimboeck
- Department of Anesthesiology, University Hospital of Regensburg, 93042 Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Hospital of Regensburg, 93042 Regensburg, Germany
| | - Marco Weigl
- University Department of Obstetrics and Gynecology at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, 93049 Regensburg, Germany
| | - Pia Huber
- Department of Anesthesiology, University Hospital of Regensburg, 93042 Regensburg, Germany
| | - Dirk Lunz
- Department of Anesthesiology, University Hospital of Regensburg, 93042 Regensburg, Germany
| | - Walter Petermichl
- Department of Anesthesiology, University Hospital of Regensburg, 93042 Regensburg, Germany
| |
Collapse
|
10
|
Li A, Zhao M, Yang Z, Fang Z, Qi W, Zhang C, Zhou M, Guo J, Li S, Wang X, Zhang M. 6-Gingerol alleviates placental injury in preeclampsia by inhibiting oxidative stress via BNIP3/LC3 signaling-mediated trophoblast mitophagy. Front Pharmacol 2023; 14:1243734. [PMID: 37900164 PMCID: PMC10611501 DOI: 10.3389/fphar.2023.1243734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background and aims: Preeclampsia (PE) is the leading cause of maternal and fetal morbidity and mortality worldwide. Apoptosis of trophoblast cells induced by oxidative stress is a principal reason of placental injury in PE. 6-Gingerol, an antioxidant from ginger, plays an important role in many disease models, but its effect on obstetric diseases has not been elucidated. In this study, we investigated the protective effect of 6-gingerol against placental injury. Methods: In vitro hypoxia/reoxygenation (H/R) model of HTR8/Svneo cells and preeclamptic mice model were established to simulate PE. The effects of 6-Gingerol on PE were evaluated by morphological detection, biochemical analysis, and Western blot. Results: We found that H/R treatment induced cell apoptosis, increased the production of reactive oxygen species, malondialdehyde and lactate dehydrogenase, and decreased superoxide dismutase in trophoblast. In addition, the polarization of mitochondrial membrane potential and the cellular calcium flux were also destroyed under H/R condition, which also activated BCL2-interacting protein 3 (BNIP3) and provoked excessive mitophagy. Importantly, 6-Gingerol reversed these corrosive effects. Furthermore, the placenta damage in PE-like mouse caused by the cell apoptosis, oxidative stress and mitophagy was mitigated by 6-Gingerol. Conclusion: These findings suggest that 6-Gingerol exerts a protective effect against placental injury in PE by reducing oxidative stress and inhibiting excessive mitophagy caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zexin Yang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Weiyi Qi
- Department of Clinical Medicine, Shandong First Medical University, Jinan, China
| | - Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
11
|
Liu D, Hu Y. IL-32-driven neutrophil activation in preeclampsia. Cell Mol Immunol 2023; 20:976-977. [PMID: 36973485 PMCID: PMC10387468 DOI: 10.1038/s41423-023-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- Dan Liu
- National Regional Medical Center for Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, China
| | - Yali Hu
- National Regional Medical Center for Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, China.
| |
Collapse
|
12
|
Yao S, Zhou Z, Wang L, Lv H, Liu D, Zhu Q, Zhang X, Zhao G, Hu Y. Targeting endometrial inflammation in intrauterine adhesion ameliorates endometrial fibrosis by priming MSCs to secrete C1INH. iScience 2023; 26:107201. [PMID: 37456855 PMCID: PMC10344943 DOI: 10.1016/j.isci.2023.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/21/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Intrauterine adhesion (IUA) is a common cause of uterine infertility and its histopathologic characteristic is endometrial fibrosis. A shortage of stem cells in the endometrial basalis has been recognized as a common cause of IUA development because approximately 90% of patients suffer from IUA after endometrial injury. In this study, we provide evidence that persistent inflammation is the main contributor to endometrial fibrosis in IUA patients. We further found that treating an IUA-like mouse model with ITI-hUC-MSCs (hUC-MSCs reprogrammed by IL-1β, TNF-α and IFN-γ) significantly decreased endometrial inflammation and fibrosis. Mechanistically, high levels of complement 1 inhibitor (C1INH) secreted by ITI-hUC-MSCs prevented inflammation from inducing profibrotic CD301+ macrophage polarization by downregulating the JAK-STAT signaling pathway. In conclusion, persistent inflammation in the endometria of IUA patients provides macrophage polarization with a profibrotic niche to promote endometrial fibrosis, and the powerful immunomodulatory effects of ITI-hUC-MSCs improve the immune microenvironment of endometrial regeneration.
Collapse
Affiliation(s)
- Simin Yao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhenhua Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Limin Wang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haining Lv
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Zhu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiwen Zhang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Ongun MC, Tonyali NV, Kaplan O, Deger I, Celebier M, Basci Akduman NE, Sahin D, Yucel A, Babaoglu MO. Effects of genetic polymorphisms of CYP2J2, CYP2C9, CYP2C19, CYP4F2, CYP4F3 and CYP4A11 enzymes in preeclampsia and gestational hypertension. Placenta 2023; 137:88-95. [PMID: 37141740 DOI: 10.1016/j.placenta.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the effects of cytochrome P450 (CYP) 2J2, CYP2C9, CYP2C19 and CYP4F2, CYP4F3 and CYP4A11 genetic polymorphisms in preeclampsia and gestational hypertension (GHT) patients in a sample of Turkish population. MATERIALS-METHODS Patients (n = 168; 110 GHT and 58 preeclampsia) and healthy pregnant women (n = 155, controls) participated in the study. For genotyping, polymerase chain reaction (PCR) and restriction analysis (RFLP) were used. Substance levels were measured using LC-MS. RESULTS Plasma DHET levels in GHT and preeclampsia patients were significantly lower than those in the control group (62.7%, 66.3% vs.100.0%, respectively, p < 0.0001). An increase in CYP2J2*7 allele frequency was observed in the preeclampsia group, as compared to GHT group (12.1% vs. 4.5%; odds ratio, O.R. = 2.88, p < 0.01). The frequencies of CYP2C19*2 and*17 alleles were higher in GHT group as compared to the control group (17.7% vs. 11.6%, O.R. = 1.99, p < 0.01; and 28.6% vs.18.4%, O.R. = 2.03, p < 0.01, respectively). An increased frequency of CYP4F3 rs3794987 G allele was found in GHT group as compared to the control group (48.0% vs. 38.0%; O.R. = 1.53, p < 0.01). DISCUSSION DHET plasma levels were significantly reduced in hypertensive pregnant groups as compared to the control group. The allele frequency distributions for CYP2J2*7, CYP2C19 *2, *17 and CYP4F3 rs3794987 were significantly different in hypertensive pregnant patients as compared to the healthy control subjects. Our results may suggest that investigated genetic polymorphisms may be useful in diagnosis and clinical management of GHT and preeclampsia patients.
Collapse
Affiliation(s)
- Mert C Ongun
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| | | | - Ozan Kaplan
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Ilter Deger
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| | - Mustafa Celebier
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | | | - Dilek Sahin
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Aykan Yucel
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Melih O Babaoglu
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| |
Collapse
|
14
|
Tomasi M, Cherubini A, Pelusi S, Margarita S, Bianco C, Malvestiti F, Miano L, Romeo S, Prati D, Valenti L. Circulating Interlukin-32 and Altered Blood Pressure Control in Individuals with Metabolic Dysfunction. Int J Mol Sci 2023; 24:ijms24087465. [PMID: 37108628 PMCID: PMC10138906 DOI: 10.3390/ijms24087465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Fatty liver disease is most frequently related to metabolic dysfunction (MAFLD) and associated comorbidities, heightening the risk of cardiovascular disease, and is associated with higher hepatic production of IL32, a cytokine linked with lipotoxicity and endothelial activation. The aim of this study was to examine the relationship between circulating IL32 concentration and blood pressure control in individuals with metabolic dysfunction at high risk of MAFLD. IL32 plasma levels were measured by ELISA in 948 individuals with metabolic dysfunction enrolled in the Liver-Bible-2021 cohort. Higher circulating IL32 levels were independently associated with systolic blood pressure (estimate +0.008 log10 per 1 mmHg increase, 95% c.i. 0.002-0.015; p = 0.016), and inversely correlated with antihypertensive medications (estimate -0.189, 95% c.i. -0.291--0.088, p = 0.0002). Through multivariable analysis, IL32 levels predicted both systolic blood pressure (estimate 0.746, 95% c.i 0.173-1.318; p = 0.010) and impaired blood pressure control (OR 1.22, 95% c.i. 1.09-1.38; p = 0.0009) independently of demographic and metabolic confounders and of treatment. This study reveals that circulating IL32 levels are associated with impaired blood pressure control in individuals at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Melissa Tomasi
- Precision Medicine Lab-Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessandro Cherubini
- Precision Medicine Lab-Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Serena Pelusi
- Precision Medicine Lab-Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Sara Margarita
- Precision Medicine Lab-Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cristiana Bianco
- Precision Medicine Lab-Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Lorenzo Miano
- Precision Medicine Lab-Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Graecia, 88100 Catanzaro, Italy
| | - Daniele Prati
- Precision Medicine Lab-Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luca Valenti
- Precision Medicine Lab-Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
15
|
Yang X, Yu L, Ding Y, Yang M. Diagnostic signature composed of seven genes in HIF-1 signaling pathway for preeclampsia. BMC Pregnancy Childbirth 2023; 23:233. [PMID: 37020283 PMCID: PMC10074875 DOI: 10.1186/s12884-023-05559-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
PURPOSE In this study, we explored the relationship of genes in HIF-1 signaling pathway with preeclampsia and establish a logistic regression model for diagnose preeclampsia using bioinformatics analysis. METHOD Two microarray datasets GSE75010 and GSE35574 were downloaded from the Gene Expression Omnibus database, which was using for differential expression analysis. DEGs were performed the Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene set enrichment analysis (GSEA). Then we performed unsupervised consensus clustering analysis using genes in HIF-1 signaling pathway, and clinical features and immune cell infiltration were compared between these clusters, as well as the least absolute shrinkage and selection operator (LASSO) method to screened out key genes to constructed logistic regression model, and receiver operating characteristic (ROC) curve was plotted to evaluate the accuracy of the model. RESULTS 57 DEGs were identified, of which GO, KEGG and analysis GSEA showed DEGs were mostly involved in HIF-1 signaling pathway. Two subtypes were identified of preeclampsia and 7 genes in HIF1-signaling pathway were screened out to establish the logistic regression model for discrimination preeclampsia from controls, of which the AUC are 0.923 and 0.845 in training and validation datasets respectively. CONCLUSION Seven genes (including MKNK1, ARNT, FLT1, SERPINE1, ENO3, LDHA, BCL2) were screen out to build potential diagnostic model of preeclampsia.
Collapse
Affiliation(s)
- Xun Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
16
|
Wang Z, Liu D, Dai Y, Li R, Zheng Y, Zhao G, Wang J, Diao Z, Cao C, Lv H, Gu N, Zhou H, Ding H, Li J, Zhu X, Duan H, Shen L, Zhang Q, Chen J, Hu H, Wang X, Zheng M, Zhou Y, Hu Y. Elevated Placental microRNA-155 Is a Biomarker of a Preeclamptic Subtype. Hypertension 2023; 80:370-384. [PMID: 36519433 DOI: 10.1161/hypertensionaha.122.19914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Preeclampsia is a complicated syndrome with marked heterogeneity. The biomarker-based classification for this syndrome is more constructive to the targeted prevention and treatment of preeclampsia. It has been reported that preeclamptic patients had elevated microRNA-155 (miR-155) in placentas or circulation. Here, we investigated the characteristics of patients with high placental miR-155 (pl-miR-155). METHODS Based on the 95th percentile (P95) of pl-miR-155 in controls, preeclamptic patients were divided into high miR-155 group (≥P95) and normal miR-155 group (<P95). The changes of placental pathology, clinical manifestations, and placental transcriptome of preeclamptic patients were clustered by t-distributed stochastic neighbor embedding and hierarchical clustering analysis. The placental restricted miR-155 overexpression mouse model was constructed, and the phenotype, placental pathology, and transcriptome were evaluated. Furthermore, the therapeutic potential of antagonist of miR-155 was explored by administrating with antagomir-155. RESULTS About one-third of preeclamptic patients had high pl-miR-155 expression, which was positively correlated with circulating miR-155 levels. These patients could be clustered as 1 group, according to clinical manifestation, placental pathology, or transcriptomes by t-distributed stochastic neighbor embedding and hierarchical clustering analysis. Further, the pregnant mice with placental restricted miR-155 overexpression could simulate the changes of clinical signs, pathology, and transcriptome of placentas in patients with high pl-miR-155. AntagomiR-155 treatment relieved the preeclampsia-like phenotype and improved the placental vascular development in mice. CONCLUSIONS There is at least 1 type of preeclampsia with upregulated miR-155 presenting more severe clinical manifestations. MiR-155 may be a potential therapeutic target in patients with high pl-miR-155.
Collapse
Affiliation(s)
- Zhiyin Wang
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Dan Liu
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Yimin Dai
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Ruotian Li
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (R.L.)
| | - Yaowu Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, China (Y.Z.)
| | - Guangfeng Zhao
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Jingmei Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (J.W.)
| | - Zhenyu Diao
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Chenrui Cao
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Haining Lv
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Ning Gu
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Hang Zhou
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Hailin Ding
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Jie Li
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Xiangyu Zhu
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Honglei Duan
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Li Shen
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Qun Zhang
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Jing Chen
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Huilian Hu
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, The Affiliated BenQ Hospital of Nanjing Medical University, China (X.W.)
| | - Mingming Zheng
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| | - Yan Zhou
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco (Y.Z.)
| | - Yali Hu
- From the Center for Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, China (Z.W., D.L., Y.D., G.Z., Z.D., C.C., H.L., N.G., H.Z., H.D., J.L., X.Z., H.D., L.S., Q.Z., J.C., H.H., M.Z., Y.H.)
| |
Collapse
|
17
|
Duan H, Hu Y. CD81, a new actor in the development of preeclampsia. Cell Mol Immunol 2021; 18:2061. [PMID: 33980992 PMCID: PMC8322397 DOI: 10.1038/s41423-021-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Honglei Duan
- Department of Obstetrics and Gynecology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|