1
|
Mentor G, Farrar DS, Di Chiara C, Dufour MSK, Valois S, Taillefer S, Drouin O, Renaud C, Kakkar F. The Effect of Age and Comorbidities: Children vs. Adults in Their Response to SARS-CoV-2 Infection. Viruses 2024; 16:801. [PMID: 38793682 PMCID: PMC11126068 DOI: 10.3390/v16050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
While children have experienced less severe coronavirus disease (COVID-19) after SARS-CoV-2 infection than adults, the cause of this remains unclear. The objective of this study was to describe the humoral immune response to COVID-19 in child vs. adult household contacts, and to identify predictors of the response over time. In this prospective cohort study, children with a positive SARS-CoV-2 polymerase chain reaction (PCR) test (index case) were recruited along with their adult household contacts. Serum IgG antibodies against SARS-CoV-2 S1/S2 spike proteins were compared between children and adults at 6 and 12 months after infection. A total of 91 participants (37 adults and 54 children) from 36 families were enrolled. Overall, 78 (85.7%) participants were seropositive for anti-S1/S2 IgG antibody at 6 months following infection; this was higher in children than in adults (92.6% vs. 75.7%) (p = 0.05). Significant predictors of a lack of SARS-CoV-2 seropositivity were age ≥ 25 vs. < 12 years (odds ratio [OR] = 0.23, p = 0.04), presence of comorbidities (vs. none, adjusted OR = 0.23, p = 0.03), and immunosuppression (vs. immunocompetent, adjusted OR = 0.17, p = 0.02).
Collapse
Affiliation(s)
- Girlande Mentor
- CHU Sainte-Justine, Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3T 1C5, Canada; (G.M.); (O.D.)
| | - Daniel S. Farrar
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada (C.D.C.)
| | - Costanza Di Chiara
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada (C.D.C.)
- Division of Infectious Diseases, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
| | - Mi-Suk Kang Dufour
- Unité de Recherche Clinique Appliqué, Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
| | - Silvie Valois
- Centre D’infectiologie Mère-Enfant, Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.V.)
| | - Suzanne Taillefer
- Centre D’infectiologie Mère-Enfant, Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.V.)
| | - Olivier Drouin
- CHU Sainte-Justine, Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3T 1C5, Canada; (G.M.); (O.D.)
| | - Christian Renaud
- Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Fatima Kakkar
- CHU Sainte-Justine, Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3T 1C5, Canada; (G.M.); (O.D.)
- Centre D’infectiologie Mère-Enfant, Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.V.)
| |
Collapse
|
2
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and COVID-19-therapeutic opportunities at the host/virus interface during cell entry. Life Sci Alliance 2024; 7:e202302453. [PMID: 38388172 PMCID: PMC10883773 DOI: 10.26508/lsa.202302453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid development of vaccines to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been critical to reduce the severity of COVID-19. However, the continuous emergence of new SARS-CoV-2 subtypes highlights the need to develop additional approaches that oppose viral infections. Targeting host factors that support virus entry, replication, and propagation provide opportunities to lower SARS-CoV-2 infection rates and improve COVID-19 outcome. This includes cellular cholesterol, which is critical for viral spike proteins to capture the host machinery for SARS-CoV-2 cell entry. Once endocytosed, exit of SARS-CoV-2 from the late endosomal/lysosomal compartment occurs in a cholesterol-sensitive manner. In addition, effective release of new viral particles also requires cholesterol. Hence, cholesterol-lowering statins, proprotein convertase subtilisin/kexin type 9 antibodies, and ezetimibe have revealed potential to protect against COVID-19. In addition, pharmacological inhibition of cholesterol exiting late endosomes/lysosomes identified drug candidates, including antifungals, to block SARS-CoV-2 infection. This review describes the multiple roles of cholesterol at the cell surface and endolysosomes for SARS-CoV-2 entry and the potential of drugs targeting cholesterol homeostasis to reduce SARS-CoV-2 infectivity and COVID-19 disease severity.
Collapse
Affiliation(s)
- Thomas Grewal
- https://ror.org/0384j8v12 School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Mai Khanh Linh Nguyen
- https://ror.org/0384j8v12 School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Christa Buechler
- https://ror.org/01226dv09 Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
3
|
Fracella M, Mancino E, Nenna R, Virgillito C, Frasca F, D'Auria A, Sorrentino L, Petrarca L, La Regina D, Matera L, Di Mattia G, Caputo B, Antonelli G, Pierangeli A, Viscidi RP, Midulla F, Scagnolari C. Age-related transcript changes in type I interferon signaling in children and adolescents with long COVID. Eur J Immunol 2024; 54:e2350682. [PMID: 38522030 DOI: 10.1002/eji.202350682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
SARS-CoV-2 typically causes mild symptoms in children, but evidence suggests that persistent immunopathological changes may lead to long COVID (LC). To explore the interplay between LC and innate immunity, we assessed the type I interferon (IFN-I) response in children and adolescents with LC symptoms (LC; n = 28). This was compared with age-matched SARS-CoV-2 recovered participants without LC symptoms (MC; n = 28) and healthy controls (HC; n = 18). We measured the mRNA expression of IFN-I (IFN-α/β/ε/ω), IFN-I receptor (IFNAR1/2), and ISGs (ISG15, ISG56, MxA, IFI27, BST2, LY6E, OAS1, OAS2, OAS3, and MDA5) in PBMCs collected 3-6 months after COVID-19. LC adolescents (12-17 years) had higher transcript levels of IFN-β, IFN-ε, and IFN-ω than HC, whereas LC children (6-11 years) had lower levels than HC. In adolescents, increased levels of IFN-α, IFN-β, and IFN-ω mRNAs were found in the LC group compared with MC, while lower levels were observed in LC children than MC. Adolescents with neurological symptoms had higher IFN-α/β mRNA levels than MC. LC and MC participants showed decreased expression of ISGs and IFNAR1, but increased expression of IFNAR2, than HC. Our results show age-related changes in the expression of transcripts involved in the IFN-I signaling pathway in children and adolescents with LC.
Collapse
Affiliation(s)
- Matteo Fracella
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Enrica Mancino
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Raffaella Nenna
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Frasca
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandra D'Auria
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Leonardo Sorrentino
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Laura Petrarca
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Domenico La Regina
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Luigi Matera
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Greta Di Mattia
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Beniamino Caputo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Pierangeli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fabio Midulla
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Ratcliffe H, Tiley KS, Longet S, Tonry C, Roarty C, Watson C, Amirthalingam G, Vichos I, Morey E, Douglas NL, Marinou S, Plested E, Aley PK, Galiza E, Faust SN, Hughes S, Murray C, Roderick MR, Shackley F, Oddie S, Lee TW, Turner DP, Raman M, Owens S, Turner PJ, Cockerill H, Lopez Bernal J, Ijaz S, Poh J, Shute J, Linley E, Borrow R, Hoschler K, Brown KE, Carroll MW, Klenerman P, Dunachie SJ, Ramsay M, Voysey M, Waterfield T, Snape MD. Serum HCoV-spike specific antibodies do not protect against subsequent SARS-CoV-2 infection in children and adolescents. iScience 2023; 26:108500. [PMID: 38089581 PMCID: PMC10711458 DOI: 10.1016/j.isci.2023.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 02/15/2024] Open
Abstract
SARS-CoV-2 infections in children are generally asymptomatic or mild and rarely progress to severe disease and hospitalization. Why this is so remains unclear. Here we explore the potential for protection due to pre-existing cross-reactive seasonal coronavirus antibodies and compare the rate of antibody decline for nucleocapsid and spike protein in serum and oral fluid against SARS-CoV-2 within the pediatric population. No differences in seasonal coronaviruses antibody concentrations were found at baseline between cases and controls, suggesting no protective effect from pre-existing immunity against seasonal coronaviruses. Antibodies against seasonal betacoronaviruses were boosted in response to SARS-CoV-2 infection. In serum, anti-nucleocapsid antibodies fell below the threshold of positivity more quickly than anti-spike protein antibodies. These findings add to our understanding of protection against infection with SARS-CoV-2 within the pediatric population, which is important when considering pediatric SARS-CoV-2 immunization policies.
Collapse
Affiliation(s)
- Helen Ratcliffe
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Karen S. Tiley
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claire Tonry
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Cathal Roarty
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Chris Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | | | - Iason Vichos
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Ella Morey
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Naomi L. Douglas
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Spyridoula Marinou
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Emma Plested
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Parvinder K. Aley
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Eva Galiza
- St Georges Hospital NHS Foundation Trust
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine and Institute of Life Sciences, University of Southampton
- National Immunisation Schedule Evaluation Consortium
| | - Stephen Hughes
- Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Clare Murray
- Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | - Sam Oddie
- Bradford Teaching Hospitals NHS Foundation Trust
| | | | - David P.J. Turner
- School of Life Sciences, University of Nottingham
- Nottingham University Hospitals NHS Trust
| | | | - Stephen Owens
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust
| | - Paul J. Turner
- National Heart & Lung Institute, Imperial College London
| | | | | | | | | | | | | | | | | | | | - Miles W. Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford BRC
| | - Susanna J. Dunachie
- National Institute for Health Research (NIHR) Oxford BRC
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Merryn Voysey
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Thomas Waterfield
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast- School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | - Matthew D. Snape
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
- National Immunisation Schedule Evaluation Consortium
- West Suffolk NHS Foundation Trust
| |
Collapse
|
5
|
Medić S, Anastassopoulou C, Lozanov-Crvenković Z, Dragnić N, Petrović V, Ristić M, Pustahija T, Tsakris A, Ioannidis JPA. Incidence, Risk, and Severity of SARS-CoV-2 Reinfections in Children and Adolescents Between March 2020 and July 2022 in Serbia. JAMA Netw Open 2023; 6:e2255779. [PMID: 36780157 PMCID: PMC9926322 DOI: 10.1001/jamanetworkopen.2022.55779] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
IMPORTANCE During the COVID-19 pandemic, children and adolescents were massively infected worldwide. In 2022, reinfections became a main feature of the endemic phase of SARS-CoV-2, so it is important to understand the epidemiology and clinical impact of reinfections. OBJECTIVE To assess the incidence, risk, and severity of pediatric SARS-CoV-2 reinfection. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study used epidemiologic data of documented SARS-CoV-2 infections from the surveillance database of the Institute for Public Health of Vojvodina. A total of 32 524 children and adolescents from Vojvodina, Serbia, with laboratory-confirmed SARS-CoV-2 infection between March 6, 2020, and April 30, 2022, were followed up for reinfection until July 31, 2022. MAIN OUTCOMES AND MEASURES Incidence rates of documented SARS-CoV-2 reinfection per 1000 person-months, estimated risk of documented reinfection 90 days or more after laboratory confirmation of primary infection, reinfection severity, hospitalizations, and deaths. RESULTS The study cohort included 32 524 children and adolescents with COVID-19 (mean [SD] age, 11.2 [4.9] years; 15 953 [49.1%] male), including 964 children (3.0%) who experienced documented reinfection. The incidence rate of documented reinfections was 3.2 (95% CI, 3.0-3.4) cases per 1000 person-months and was highest in adolescents aged 12 to 17 years (3.4; 95% CI, 3.2-3.7). Most reinfections (905 [93.9%]) were recorded in 2022. The cumulative reinfection risk was 1.3% at 6 months, 1.9% at 9 months, 4.0% at 12 months, 6.7% at 15 months, 7.2% at 18 months, and 7.9% after 21 months. Pediatric COVID-19 cases were generally mild. The proportion of severe clinical forms decreased from 14 (1.4%) in initial episodes to 3 (0.3%) in reinfections. Reinfected children were approximately 5 times less likely to have severe disease during reinfection compared with initial infection (McNemar odds ratio, 0.2; 95% CI, 0.0-0.8). Pediatric reinfections rarely led to hospitalization (0.5% vs 1.3% during primary infections), and none resulted in death. CONCLUSIONS AND RELEVANCE This cohort study found that the SARS-CoV-2 reinfection risk remained substantially lower for children and adolescents compared with adults as of July 2022. Pediatric infections were mild, and reinfections were even milder than primary infections.
Collapse
Affiliation(s)
- Snežana Medić
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nataša Dragnić
- Department of Social Medicine and Health Statistics With Informatics, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Informatics and Biostatistics, Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Vladimir Petrović
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Mioljub Ristić
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Tatjana Pustahija
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Disease Control and Prevention, Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - John P. A. Ioannidis
- Department of Medicine, Stanford University, Stanford, California
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
- Department of Biomedical Data Science, Stanford University, Stanford, California
- Department of Statistics, Stanford University, Stanford, California
| |
Collapse
|