1
|
Xu F, Wu Q, Yang L, Sun H, Li J, An Z, Li H, Wu H, Song J, Chen W, Wu W. Modification of gut and airway microbiota on ozone-induced airway inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176604. [PMID: 39353487 DOI: 10.1016/j.scitotenv.2024.176604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Ground-level ozone (O3) has been shown to induce airway inflammation, the underlying mechanisms remain unclear. The aim of this study was to determine whether gut and airway microbiota dysbiosis, and airway metabolic alterations were associated with O3-induced airway inflammation. Thirty-six 8-week-old male C57BL/6 N mice were divided into 2 groups: sterile water group and broad-spectrum antibiotics group (Abx). Each group was further divided into two subgroups, filtered air group (Air) and O3 group (O3), with 9 mice in each subgroup. Mice in the Air and O3 groups were exposed to filtered air or 1 ppm O3, 4 h/d for 5 consecutive days, respectively. Mice in Abx + Air and Abx + O3 groups were exposed to filtered air or O3, respectively, after drinking broad-spectrum Abx. 24 h after the final O3 exposure, mouse feces and bronchoalveolar lavage fluids (BALF) were collected and subjected to measurements of airway oxidative stress and inflammation biomarkers, 16S rRNA sequencing and metabolite profiling. Hematoxylin-eosin staining of lung tissues was applied to examine the pathological changes of lung tissue. The results showed that O3 exposure resulted in airway oxidative stress and inflammation, as well as gut and airway microbiota dysbiosis, and airway metabolism alteration. Abx pre-treatment markedly changed gut and airway microbiota and promoted O3-induced metabolic disorder and airway inflammation. Spearman correlation analyses indicated that inter-related gut and airway microbiota dysbiosis and airway metabolic disorder were associated with O3-induced airway inflammation. Together, inhaled O3 causes airway inflammation, which may implicate gut and airway microbiota dysbiosis and airway metabolic alterations.
Collapse
Affiliation(s)
- Fei Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qiong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Han Sun
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
2
|
Lu J, Mao H, Tan Y, Luo G. Associations of Dietary Intake of Vitamin B6 and Plasma Pyridoxal 5'-Phosphate Level With Depression in US Adults: Findings From NHANES 2005-2010. Brain Behav 2024; 14:e70128. [PMID: 39508477 PMCID: PMC11541856 DOI: 10.1002/brb3.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Evidence regarding the associations of pyridoxal 5'-phosphate level in plasma and dietary intake of vitamin B6 with depression risk is scarce. Accordingly, we investigated the aforementioned associations in US adults. METHODS This is a cross-sectional study that included data from two independent samples of 12,716 and 11,967 individuals (aged ≥ 20 years) participating in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2010. The associations of the pyridoxal 5'-phosphate level in plasma and dietary intake of vitamin B6 with depression risk were examined through multivariable logistic regression. In addition, we determined dose-response associations by fitting restricted cubic splines to the data. RESULTS In the multivariable model, the highest quarter of dietary intake of vitamin B6 was associated with a significantly lower risk of depression compared to the lowest quarter (OR = 0.63, 95% CI: 0.50, 0.79, p < 0.001). Similarly, the highest quartile of plasma PLP levels was linked to a reduced risk of depression compared to the lowest quartile (OR = 0.76, 95% CI: 0.62, 0.93, p < 0.01). With increasing quartiles of dietary intake of vitamin B6 and plasma PLP levels, the risk of depression also decreased accordingly (all p for trend < 0.01). Furthermore, the correlation analysis revealed that for every 1-SD increase in the level of plasma lutein + zeaxanthin and dietary intake of vitamin B6, the risk of depression showed a decreasing trend (all p < 0.01). The interaction test results indicated that the dietary consumption of vitamin B6 did not significantly interact with any of the stratification factors (all p for interaction > 0.05). Moreover, no significant interaction was found between the amount of plasma PLP and any hierarchical factors (all p for interaction > 0.05), except for gender-based subgroup analysis (p for interaction > 0.05). The dose-response relationship results showed a linear decrease trend in the relationship between dietary vitamin B6 intake and plasma pyridoxal 5'-phosphate with the risk of depression. CONCLUSIONS Plasma PLP levels and dietary vitamin B6 intake in the highest quartiles are associated with a lower risk of depression. These findings support the promotion of a balanced diet rich in vitamin B6. However, future randomized controlled trials are necessary to confirm the effects of vitamin B6 supplementation on depression risk. We should aim for a healthy and balanced diet in terms of nutritional supplementation.
Collapse
Affiliation(s)
- Jinhong Lu
- Department of General SurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Huina Mao
- Nursing DepartmentZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yulei Tan
- Department of General SurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Guizhi Luo
- Department of General SurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Wang J, Liang Y, Xue A, Xiao J, Zhao X, Cao S, Li P, Dong J, Li Y, Xu Z, Yang L. Intratumoral CXCL13 + CD160 + CD8 + T cells promote the formation of tertiary lymphoid structures to enhance the efficacy of immunotherapy in advanced gastric cancer. J Immunother Cancer 2024; 12:e009603. [PMID: 39244216 PMCID: PMC11381742 DOI: 10.1136/jitc-2024-009603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Stage IV gastric cancer is a highly heterogeneous and lethal tumor with few therapeutic strategies. The combination of programmed cell death protein 1 inhibitors and chemotherapy is currently the standard frontline treatment regimen for advanced gastric cancer. Nevertheless, it remains a great challenge to screen the beneficiaries of immunochemotherapy and expand indications for this treatment regimen. METHODS We conducted a pathological assessment to ascertain the importance of tertiary lymphoid structures based on the tissue samples collected from patients with stage IV gastric cancer (n=15) both prior to and following immunochemotherapy treatment. Additionally, we used spatial (n=10) and single-cell transcriptional analysis (n=97) to investigate the key regulators of tertiary lymphoid structures (TLSs). Multiplex immunofluorescence and image analysis (n=34) were performed to explore the association between tumor-infiltrating CXCL13+ CD160+ CD8+ T cells and TLSs. The relationship between CXCL13+ CD160+ CD8+ T cells and the responsiveness to immunotherapy was also evaluated by multiplex immunofluorescence and image analysis approaches (n=15). Furthermore, we explored the intrinsic characteristics of CXCL13+ CD160+ CD8+ T cells through various experimental techniques, including quantitative reverse transcription-PCR, western blot, and flow cytometry. RESULTS We found that responders exhibited higher levels of TLSs and CXCL13+ CD160+ CD8+ T cells in biopsy tissues prior to immunochemotherapy compared with non-responders. Following conversion therapy, responders also had a higher percentage of mature TLSs and a higher number of CXCL13+ CD160+ CD8+ T cells in surgical resections. Moreover, we discovered that vitamin B6 in CD160+ CD8+ T cells could reduce the ubiquitination modification of HIF-1α by MDM2, thereby attenuating the degradation of HIF-1α. Consequently, this led to the transcriptional upregulation of CXCL13 expression, facilitating the recruitment of CXCR5+ B cells and the formation of TLSs. CONCLUSION The number and maturity of TLSs, along with the extent of CXCL13+ CD160+ CD8+ T-cell infiltration, might function as potential indicators for assessing the effectiveness of immunotherapy in treating gastric malignancies. Furthermore, our research suggests that vitamin B6 could enhance the secretion of CXCL13 by CD160+ CD8+ T cells by reducing the degradation of HIF-1α. Additionally, we demonstrate that vitamin B6 supplementation or targeting pyridoxal kinase could substantially improve the efficacy of immunotherapies for gastric cancer.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Liang
- Southeast University, Nanjing, Jiangsu, China
| | - Ao Xue
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Zhao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuqing Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengyu Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiacheng Dong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Gu S, Wang R, Zhang W, Wen C, Chen C, Liu S, Lei Q, Zhang P, Zeng S. The production, function, and clinical applications of IL-33 in type 2 inflammation-related respiratory diseases. Front Immunol 2024; 15:1436437. [PMID: 39301028 PMCID: PMC11410612 DOI: 10.3389/fimmu.2024.1436437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Epithelial-derived IL-33 (Interleukin-33), as a member of alarm signals, is a chemical substance produced under harmful stimuli that can promote innate immunity and activate adaptive immune responses. Type 2 inflammation refers to inflammation primarily mediated by Type 2 helper T cells (Th2), Type 2 innate lymphoid cells (ILC2), and related cytokines. Type 2 inflammation manifests in various forms in the lungs, with diseases such as asthma and chronic obstructive pulmonary disease chronic obstructive pulmonary disease (COPD) closely associated with Type 2 inflammation. Recent research suggests that IL-33 has a promoting effect on Type 2 inflammation in the lungs and can be regarded as an alarm signal for Type 2 inflammation. This article provides an overview of the mechanisms and related targets of IL-33 in the development of lung diseases caused by Type 2 inflammation, and summarizes the associated treatment methods. Analyzing lung diseases from a new perspective through the alarm of Type 2 inflammation helps to gain a deeper understanding of the pathogenesis of these related lung diseases. This, in turn, facilitates a better understanding of the latest treatment methods and potential therapeutic targets for diseases, with the expectation that targeting lL-33 can propose new strategies for disease prevention.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruixuan Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wantian Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Wang S, Zhong S, Huang Y, Zhu S, Chen S, Wang R, Wangmo S, Peng B, Lv H, Yang J, Ma L, Ling Z, Zhang Y, Sui P, Sun B. MDM2 Is Essential to Maintain the Homeostasis of Epithelial Cells by Targeting p53. J Innate Immun 2024; 16:397-412. [PMID: 39134014 PMCID: PMC11521410 DOI: 10.1159/000539824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/28/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION MDM2 is known as the primary negative regulator of p53, and MDM2 promotes lung cancer fibrosis and lung injury through p53-dependent and p53-independent pathways. However, the mechanism by which MDM2 influences the pathogenesis of asthma is unknown. In this study, we investigated the function of MDM2 in lung epithelial cells in type 2 lung inflammation. METHODS We used type II alveolar epithelial cell-specific heterozygous knockout of Mdm2 mice to validate its function. Then papain-induced asthma model was established, and changes in inflammation were observed by measuring immunohistochemistry and flow cytometry analysis. RESULTS In this study, we knockdown the mouse Mdm2 gene in type 2 alveolar epithelial cells. We demonstrated that heterozygous Mdm2 gene-deleted mice were highly susceptible to protease allergen papain-induced pulmonary inflammation characterized by increased ILC2 numbers, IL-5 and IL-13 cytokine levels, and lung pathology. A mechanistic study showed that following the decreased expression of Mdm2 in lung epithelial cells and A549 cell line, p53 was overactivated, and the expression of its downstream genes p21, Puma, and Noxa was elevated, which resulted in apoptosis. After Mdm2 knockdown, the mRNA expression of inflammation-related gene IL-25, HMGB1, and TNF-α were increased, which further amplified the downstream ILC2 response and lung inflammation. CONCLUSION These results indicate that Mdm2 maintains the homeostasis of lung epithelial cells by targeting P53 and regulates the function of lung epithelial cells under type 2 lung inflammation.
Collapse
Affiliation(s)
- Su Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shufen Zhong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Songling Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuangfeng Chen
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ran Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sonam Wangmo
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Bo Peng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houkun Lv
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Jichao Yang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an Jiao Tong University, Xi’an, China
| | - Pengfei Sui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bing Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
6
|
Fang Z, Hu Q, Liu W. Vitamin B6 alleviates osteoarthritis by suppressing inflammation and apoptosis. BMC Musculoskelet Disord 2024; 25:447. [PMID: 38844896 PMCID: PMC11155127 DOI: 10.1186/s12891-024-07530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Although various anti-inflammatory medicines are widely recommended for osteoarthritis (OA) treatment, no significantly clinical effect has been observed. This study aims to examine the effects of vitamin B6, a component that has been reported to be capable of alleviating inflammation and cell death in various diseases, on cartilage degeneration in OA. METHODS Collagen-induced arthritis (CIA) mice model were established and the severity of OA in cartilage was determined using the Osteoarthritis Research Society International (OARSI) scoring system. The mRNA and protein levels of indicators associated with extracellular matrix (ECM) metabolism, apoptosis and inflammation were detected. The effect of vitamin B6 (VB6) on the mice were assessed using HE staining and masson staining. The apoptosis rate of cells was assessed using TdT-mediated dUTP nick end labeling. RESULTS Our results showed a trend of improved OARSI score in mice treated with VB6, which remarkably inhibited the hyaline cartilage thickness, chondrocyte disordering, and knees hypertrophy. Moreover, the VB6 supplementation reduced the protein expression of pro-apoptosis indicators, including Bax and cleaved caspase-3 and raised the expression level of anti-apoptosis marker Bcl-2. Importantly, VB6 improved ECM metabolism in both in vivo and in vitro experiments. CONCLUSIONS This study demonstrated that VB6 alleviates OA through regulating ECM metabolism, inflammation and apoptosis in chondrocytes and CIA mice. The findings in this study provide a theoretical basis for targeted therapy of OA, and further lay the theoretical foundation for studies of mechanisms of VB6 in treating OA.
Collapse
Affiliation(s)
- Zhaoyi Fang
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qingxiang Hu
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Wenxin Liu
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
7
|
Tu Z, Liu M, Xu C, Wei Y, Lu T, Xiao Y, Li H, Zhang S, Xie X, Li J, Wen W. Functional 2D Nanoplatforms Alleviate Eosinophilic Chronic Rhinosinusitis by Modulating Eosinophil Extracellular Trap Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307800. [PMID: 38477549 PMCID: PMC11109617 DOI: 10.1002/advs.202307800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Indexed: 03/14/2024]
Abstract
The therapeutic outcomes of patients with eosinophilic chronic rhinosinusitis (ECRS) remain unsatisfactory, largely because the underlying mechanisms of eosinophilic inflammation are uncertain. Here, it is shown that the nasal secretions of ECRS patients have high eosinophil extracellular trap (EET) and cell-free DNA (cfDNA) levels. Moreover, the cfDNA induced EET formation by activating toll-like receptor 9 (TLR9) signaling. After demonstrating that DNase I reduced eosinophilic inflammation by modulating EET formation, linear polyglycerol-amine (LPGA)-coated TiS2 nanosheets (TLPGA) as functional 2D nanoplatforms with low cytotoxicity, mild protein adsorption, and increased degradation rate is developed. Due to the more flexible linear architecture, TLPGA exhibited higher cfDNA affinity than the TiS2 nanosheets coated with dendritic polyglycerol-amine (TDPGA). TLPGA reduced cfDNA levels in the nasal secretions of ECRS patients while suppressing cfDNA-induced TLR9 activation and EET formation in vitro. TLPGA displayed exceptional biocompatibility, preferential nasal localization, and potent inflammation modulation in mice with eosinophilic inflammation. These results highlight the pivotal feature of the linear molecular architecture and 2D sheet-like nanostructure in the development of anti-inflammation nanoplatforms, which can be exploited for ECRS treatment.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Ming Liu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Changyi Xu
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yi Wei
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Tong Lu
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yongqiang Xiao
- ENT instituteEye & ENT HospitalFudan UniversityShanghai201114China
| | - Hongxia Li
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Shuaiyin Zhang
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Xinran Xie
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Jian Li
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Weiping Wen
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| |
Collapse
|
8
|
He PY, Wu MY, Zheng LY, Duan Y, Fan Q, Zhu XM, Yao YM. Interleukin-33/serum stimulation-2 pathway: Regulatory mechanisms and emerging implications in immune and inflammatory diseases. Cytokine Growth Factor Rev 2024; 76:112-126. [PMID: 38155038 DOI: 10.1016/j.cytogfr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.
Collapse
Affiliation(s)
- Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Emergency Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiao-Mei Zhu
- Tissue Repair and Regeneration Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Turnquist HR. Vitamin B-reath easier: vitamin B6 derivatives reduce IL-33 to limit lung inflammation. Cell Mol Immunol 2023; 20:1527-1529. [PMID: 37587227 PMCID: PMC10687051 DOI: 10.1038/s41423-023-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023] Open
Affiliation(s)
- Hēth R Turnquist
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine; Department of Immunology, and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|