1
|
Liu H, Shaw-Saliba K, Westerbeck J, Jacobs D, Fenstermacher K, Chao CY, Gong YN, Powell H, Ma Z, Mehoke T, Ernlund AW, Dziedzic A, Vyas S, Evans J, Sauer LM, Wu CC, Chen SH, Rothman RE, Thielen P, Chen KF, Pekosz A. Effect of human H3N2 influenza virus reassortment on influenza incidence and severity during the 2017-18 influenza season in the USA: a retrospective observational genomic analysis. THE LANCET. MICROBE 2024; 5:100852. [PMID: 38734029 PMCID: PMC11338072 DOI: 10.1016/s2666-5247(24)00067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND During the 2017-18 influenza season in the USA, there was a high incidence of influenza illness and mortality. However, no apparent antigenic change was identified in the dominant H3N2 viruses, and the severity of the season could not be solely attributed to a vaccine mismatch. We aimed to investigate whether the altered virus properties resulting from gene reassortment were underlying causes of the increased case number and disease severity associated with the 2017-18 influenza season. METHODS Samples included were collected from patients with influenza who were prospectively recruited during the 2016-17 and 2017-18 influenza seasons at the Johns Hopkins Hospital Emergency Departments in Baltimore, MD, USA, as well as from archived samples from Johns Hopkins Health System sites. Among 647 recruited patients with influenza A virus infection, 411 patients with whole-genome sequences were available in the Johns Hopkins Center of Excellence for Influenza Research and Surveillance network during the 2016-17 and 2017-18 seasons. Phylogenetic trees were constructed based on viral whole-genome sequences. Representative viral isolates of the two seasons were characterised in immortalised cell lines and human nasal epithelial cell cultures, and patients' demographic data and clinical outcomes were analysed. FINDINGS Unique H3N2 reassortment events were observed, resulting in two predominant strains in the 2017-18 season: HA clade 3C.2a2 and clade 3C.3a, which had novel gene segment constellations containing gene segments from HA clade 3C.2a1 viruses. The reassortant re3C.2a2 viruses replicated with faster kinetics and to a higher peak titre compared with the parental 3C.2a2 and 3C.2a1 viruses (48 h vs 72 h). Furthermore, patients infected with reassortant 3C.2a2 viruses had higher Influenza Severity Scores than patients infected with the parental 3C.2a2 viruses (median 3·00 [IQR 1·00-4·00] vs 1·50 [1·00-2·00]; p=0·018). INTERPRETATION Our findings suggest that the increased severity of the 2017-18 influenza season was due in part to two intrasubtypes, cocirculating H3N2 reassortant viruses with fitness advantages over the parental viruses. This information could help inform future vaccine development and public health policies. FUNDING The Center of Excellence for Influenza Research and Response in the US, National Science and Technology Council, and Chang Gung Memorial Hospital in Taiwan.
Collapse
Affiliation(s)
- Hsuan Liu
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason Westerbeck
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Jacobs
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chia-Yu Chao
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Harrison Powell
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zexu Ma
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Mehoke
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Amanda W Ernlund
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Amanda Dziedzic
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Siddhant Vyas
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jared Evans
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Lauren M Sauer
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chin-Chieh Wu
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Hui Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Thielen
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Kuan-Fu Chen
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, Taiwan; Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Andrew Pekosz
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Yang XY, Gong QL, Li YJ, Ata EB, Hu MJ, Sun YY, Xue ZY, Yang YS, Sun XP, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang WT, Wang CF. The global prevalence of highly pathogenic avian influenza A (H5N8) infection in birds: A systematic review and meta-analysis. Microb Pathog 2023; 176:106001. [PMID: 36682670 DOI: 10.1016/j.micpath.2023.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The zoonotic pathogen avian influenza A H5N8 causes enormous economic losses in the poultry industry and poses a serious threat to the public health. Here, we report the first systematic review and meta-analysis of the worldwide prevalence of birds. We filtered 45 eligible articles from seven databases. A random-effects model was used to analyze the prevalence of H5N8 in birds. The pooled prevalence of H5N8 in birds was 1.6%. In the regions, Africa has the highest prevalence (8.0%). Based on the source, village (8.3%) was the highest. In the sample type, the highest prevalence was organs (79.7%). In seasons, the highest prevalence was autumn (28.1%). The largest prevalence in the sampling time was during 2019 or later (7.0%). Furthermore, geographical factors also were associated with the prevalence. Therefore, we recommend site-specific prevention and control tools for this strain in birds and enhance the surveillance to reduce the spread of H5N8.
Collapse
Affiliation(s)
- Xue-Yao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Dep., Vet. Res. Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Man-Jie Hu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yong-Yang Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Zhi-Yang Xue
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ying-Shi Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xue-Pan Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
3
|
Chang N, Zhang C, Mei X, Du F, Li J, Zhang L, Du H, Yun F, Aji D, Shi W, Bi Y, Ma Z. Novel reassortment 2.3.4.4b H5N8 highly pathogenic avian influenza viruses circulating in Xinjiang, China. Prev Vet Med 2021; 199:105564. [PMID: 34959041 DOI: 10.1016/j.prevetmed.2021.105564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
In 2016, H5N8 avian influenza viruses of clade 2.3.4.4b were detected at Qinghai Lake, China. Afterwards, the viruses of this clade rapidly spread to Asia, Europe, and Africa via migratory birds, and caused massive deaths in poultry and wild birds globally. In this study, four H5N8 isolates (abbreviated as 001, 002, 003, and 004) were isolated from the live poultry market in Xinjiang in 2017. Phylogenetic analysis showed that the hemagglutinin genes of the four isolates belonged to clade 2.3.4.4b, while the viral gene segments were from multiple geographic origins. For 002, the polymerase acidic gene had the highest sequence homology (99.55 %) with H5N8 virus identified from green-winged teal in Egypt in 2016, and the remaining genes exhibited the highest sequence homologies (99.18-100 %) with those of H5N8 viruses isolated from domestic duck sampled in Siberia in 2016. The polymerase basic 1 gene clustered together with H5N8 virus identified from painted stork of India in 2016, and the remaining genes had relatively close genetic relationships with H5N8 viruses identified from the duck of Siberia in 2016 and turkey in Italy in 2017. For the other three isolates, the nucleoprotein gene of 001 had the highest sequence homology (98.82 %) and relatively close genetic relationship with H9N2 viruses identified from poultry in Vietnam and Cambodia in 2015-2017, and all the remaining genes had the highest sequence homologies (99.18 %-99.58 %) and relatively close genetic relationships with H5N8 viruses identified from poultry and waterfowl sampled in African countries in 2017 and swan sampled in China in 2016. Multiple basic amino acids were observed at cleavage sites in the hemagglutinin proteins of the H5N8 isolates, indicating high pathogenicity. In addition, the L89V, G309D, R477G, I495V, A676T and I504V mutations in the polymerase basic 2 protein, N30D and T215A mutations in the matrix 1 protein, P42S mutation, and 80-84 amino acid deletion in the nonstructural 1 protein were detected in all isolates. These mutations were associated with increased virulence and polymerase activity in mammals. Therefore, our results indicate that the H5N8 isolates involved multiple introductions of reassorted viruses, and also revealed that the wetlands of Northern Tianshan Mountain may play a key role in H5N8 AIVs disseminating among Central China, the Eurasian continent, and East African Countries.
Collapse
Affiliation(s)
- Nana Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Cheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, 100101, China
| | - Xindi Mei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Fei Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Juan Li
- Key Laboratory of Etiology and Emerging Infections Disease in Shandong First Medical University, Taian, 271016, China
| | - Lijuan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Han Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Fengze Yun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Dilihuma Aji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Emerging Infections Disease in Shandong First Medical University, Taian, 271016, China
| | - Yuhai Bi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, 100101, China.
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
4
|
Li X, Lv X, Li Y, Xie L, Peng P, An Q, Fu T, Qin S, Cui Y, Zhang C, Qin R, Qu F, Zhao Z, Wang M, Xu Q, Li Y, Yang G, Chen G, Zhang J, Zheng H, Ma E, Zhou R, Zeng X, Wang Y, Hou Z, Wang Y, Chu D, Li Y, Chai H. Emergence, prevalence, and evolution of H5N8 avian influenza viruses in central China, 2020. Emerg Microbes Infect 2021; 11:73-82. [PMID: 34825854 PMCID: PMC8725850 DOI: 10.1080/22221751.2021.2011622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Highly pathogenic influenza A(H5N8) viruses have caused several worldwide outbreaks in birds and are able cross the species barrier to infect humans, posing a substantial threat to public health. After the first detection of H5N8 viruses in deceased swans in Inner Mongolia, we performed early warning and active monitoring along swan migration routes in central China. We isolated and sequenced 42 avian influenza viruses, including 40 H5N8 viruses, 1 H5N2 virus, and 1 H9N2 virus, in central China. Our H5N8 viruses isolated in swan stopover sites and wintering grounds showed high nucleotide homologies in the whole genome, revealing a common evolutionary source. Phylogenetic analysis revealed that the H5 viruses of clade 2.3.4.4b prevalent in 2020 have further diverged into two sub-clades: b1 and b2. The phylogeographic analysis also showed that the viruses of sub-clade b2 most likely originated from poultry in Russia. Notably, whooper swans were found to be responsible for the introduction of sub-clade b2 viruses in central China; whooper and tundra swans play a role in viral spread in the Yellow River Basin and the Yangtze River Basin, respectively. Our findings highlight swans as an indicator species for transborder spreading and monitoring of the H5N8 virus.
Collapse
Affiliation(s)
- Xiang Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Xinru Lv
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Yi Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Linhong Xie
- National Forestry and Grassland Administration, General Station for Surveillance of Wildlife Disease & Wildlife Borne Diseases, Shenyang, People's Republic of China
| | - Peng Peng
- National Forestry and Grassland Administration, General Station for Surveillance of Wildlife Disease & Wildlife Borne Diseases, Shenyang, People's Republic of China
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Tian Fu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Siyuan Qin
- National Forestry and Grassland Administration, General Station for Surveillance of Wildlife Disease & Wildlife Borne Diseases, Shenyang, People's Republic of China
| | - Yuan Cui
- Sanmenxia Administration of the National Nature Reserve of the Yellow River Wetland, Sanmenxia, People's Republic of China
| | - Chengbo Zhang
- Ordos Forestry and Grassland Administration, Ordos, People's Republic of China
| | - Rongxiu Qin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Fengyi Qu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Zhenliang Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Meixi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Qiuzi Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Yong Li
- Research and Development Center, Hubei Wildlife Rescue, Wuhan, People's Republic of China
| | - Guoxiang Yang
- Research and Development Center, Hubei Wildlife Rescue, Wuhan, People's Republic of China
| | - Guang Chen
- Research and Development Center, Hubei Wildlife Rescue, Wuhan, People's Republic of China
| | - Jun Zhang
- Research and Development Center, Hubei Wildlife Rescue, Wuhan, People's Republic of China
| | - Hesong Zheng
- Research and Development Center, Hubei Wildlife Rescue, Wuhan, People's Republic of China
| | - Enda Ma
- Bayannur Forestry and Grassland Administration, Bayannur, People's Republic of China
| | - Ruifang Zhou
- Bayannur Forestry and Grassland Administration, Bayannur, People's Republic of China
| | - Xiangwei Zeng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Yulong Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Yajun Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Dong Chu
- National Forestry and Grassland Administration, General Station for Surveillance of Wildlife Disease & Wildlife Borne Diseases, Shenyang, People's Republic of China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
5
|
Isolation and Identification of a Highly Pathogenic Avian Influenza H5N6 Virus from Migratory Waterfowl in Western Mongolia. J Wildl Dis 2021; 58:211-214. [PMID: 34699593 DOI: 10.7589/jwd-d-21-00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
In April 2020, two Whooper Swans (Cygnus cygnus) and one Swan Goose (Anser cygnoides) were found dead at three different locations in western Mongolia. Virus isolation from organs taken from the carcasses and full genome sequencing revealed that all three birds were positive for highly pathogenic H5N6 avian influenza virus (HPAIV) belonging to subclade 2.3.4.4h. Confirming similar reports from central Mongolia and western China, these findings have important implications for the monitoring, control, and management of HPAIVs in wild bird and commercial poultry populations in Mongolia.
Collapse
|
6
|
Zhang Q, Mei X, Zhang C, Li J, Chang N, Aji D, Shi W, Bi Y, Ma Z. Novel reassortant 2.3.4.4B H5N6 highly pathogenic avian influenza viruses circulating among wild, domestic birds in Xinjiang, Northwest China. J Vet Sci 2021; 22:e43. [PMID: 34170087 PMCID: PMC8318794 DOI: 10.4142/jvs.2021.22.e43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background The H5 avian influenza viruses (AIVs) of clade 2.3.4.4 circulate in wild and domestic birds worldwide. In 2017, nine strains of H5N6 AIVs were isolated from aquatic poultry in Xinjiang, Northwest China. Objectives This study aimed to analyze the origin, reassortment, and mutations of the AIV isolates. Methods AIVs were isolated from oropharyngeal and cloacal swabs of poultry. Identification was accomplished by inoculating isolates into embryonated chicken eggs and performing hemagglutination tests and reverse transcription polymerase chain reaction (RT-PCR). The viral genomes were amplified with RT-PCR and then sequenced. The sequence alignment, phylogenetic, and molecular characteristic analyses were performed by using bioinformatic software. Results Nine isolates originated from the same ancestor. The viral HA gene belonged to clade 2.3.4.4B, while the NA gene had a close phylogenetic relationship with the 2.3.4.4C H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated from shoveler ducks in Ningxia in 2015. The NP gene was grouped into an independent subcluster within the 2.3.4.4B H5N8 AIVs, and the remaining six genes all had close phylogenetic relationships with the 2.3.4.4B H5N8 HPAIVs isolated from the wild birds in China, Egypt, Uganda, Cameroon, and India in 2016–2017, Multiple basic amino acid residues associated with HPAIVs were located adjacent to the cleavage site of the HA protein. The nine isolates comprised reassortant 2.3.4.4B HPAIVs originating from 2.3.4.4B H5N8 and 2.3.4.4C H5N6 viruses in wild birds. Conclusions These results suggest that the Northern Tianshan Mountain wetlands in Xinjiang may have a key role in AIVs disseminating from Central China to the Eurasian continent and East African.
Collapse
Affiliation(s)
- Qian Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xindi Mei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Cheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing 100101, China
| | - Juan Li
- Key Laboratory of Etiology and Emerging infections Disease in Shandong First Medical University, Taian 271016, China
| | - Nana Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Dilihuma Aji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Emerging infections Disease in Shandong First Medical University, Taian 271016, China
| | - Yuhai Bi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing 100101, China.
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
7
|
Qi Y, Guo W, Liu C, Li S, Chen X. Maternal transfer of antibodies specific for avian influenza viruses in captive whooper swans (Cygnus cygnus). Comp Immunol Microbiol Infect Dis 2021; 76:101644. [PMID: 33836315 DOI: 10.1016/j.cimid.2021.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
The transfer of maternal antibodies to offspring can effectively protect against avian influenza virus (AIV) infection during early life in chickens and can prevent AIV spread by decreasing the overall percentage of the avian population susceptible to this pathogen. Herein, we evaluated maternal antibody transfer dynamics in whooper swans (Cygnus cygnus), which represent an important AIV host species. In total, 57 eggs from 19 nests were collected to study the relationship between egg yolk AIV-specific antibody concentrations and factors including egg size, laying order, maternal serum AIV antibody titer, and maternal body condition. Overall, we found that AIV-specific antibodies were present in the serum of 63.2 % of surveyed female swans and were transferred to 50.8 % of analyzed eggs. We found maternal AIV-specific antibody concentration and body weight to be positively correlated with egg yolk AIV antibody concentration, whereas egg laying order was negatively correlated with yolk antibody titer. Overall, these findings maternal transfer of AIV-specific antibodies may function as a key mechanism governing the dynamics of AIV infection in swan populations.
Collapse
Affiliation(s)
- Yanping Qi
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, Anhui, China; College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Weina Guo
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Chang Liu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, Anhui, China; College of Animal Science, Anhui Science and Technology University, Fengyang, China; Laboratory of Pork Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Fengyang, Anhui, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China; Laboratory of Pork Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Fengyang, Anhui, China
| | - Xuelong Chen
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, Anhui, China; College of Animal Science, Anhui Science and Technology University, Fengyang, China.
| |
Collapse
|
8
|
Yamaji R, Saad MD, Davis CT, Swayne DE, Wang D, Wong FYK, McCauley JW, Peiris JSM, Webby RJ, Fouchier RAM, Kawaoka Y, Zhang W. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev Med Virol 2020; 30:e2099. [PMID: 32135031 PMCID: PMC9285678 DOI: 10.1002/rmv.2099] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/05/2023]
Abstract
The panzootic caused by A/goose/Guangdong/1/96‐lineage highly pathogenic avian influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013 onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to cause panzootic waves of unprecedented magnitude among avian species accompanied by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses have expanded in distinct geographical and evolutionary pathways likely via long distance migratory bird dispersal onto several continents and by poultry trade among neighboring countries. Coupled with regional circulation, the viruses have evolved further by reassorting with local viruses. As of February 2019, there have been 23 cases of humans infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date, no HPAI A(H5) virus has caused sustainable human‐to‐human transmission. However, due to the lack of population immunity in humans and ongoing evolution of the virus, there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pandemic if the ability to transmit efficiently among humans was gained. Therefore, multisectoral collaborations among the animal, environmental, and public health sectors are essential to conduct risk assessments and develop countermeasures to prevent disease and to control spread. In this article, we describe an assessment of the likelihood of clade 2.3.4.4 A(H5) viruses gaining human‐to‐human transmissibility and impact on human health should such human‐to‐human transmission occur. This structured analysis assessed properties of the virus, attributes of the human population, and ecology and epidemiology of these viruses in animal hosts.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Magdi D Saad
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| | - Charles T Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Swayne
- Department of Agriculture, OIE Collaborating Centre for Research on Emerging Avian Diseases, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China
| | - Frank Y K Wong
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, UK
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wenqing Zhang
- Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, WHO, Geneva, Switzerland
| |
Collapse
|
9
|
Hassan KE, El-Kady MF, El-Sawah AAA, Luttermann C, Parvin R, Shany S, Beer M, Harder T. Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transbound Emerg Dis 2019; 68:21-36. [PMID: 31297991 DOI: 10.1111/tbed.13281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Christine Luttermann
- Institute of Immunology Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Rokshana Parvin
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| |
Collapse
|
10
|
Antigua KJC, Choi WS, Baek YH, Song MS. The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx. Microorganisms 2019; 7:microorganisms7060156. [PMID: 31146461 PMCID: PMC6616411 DOI: 10.3390/microorganisms7060156] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as “H5Nx” viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses’ pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.
Collapse
Affiliation(s)
- Khristine Joy C Antigua
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
11
|
Ma L, Liu H, Wang R, Jin T, Liu D, Gao GF, Chen Q. Low Pathogenic Avian Influenza A (H5N7) Virus Isolated from a Domestic Duck in Dongting Lake Wetland of China, 2016. Virol Sin 2019; 34:97-101. [PMID: 30610572 DOI: 10.1007/s12250-018-0081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Runkun Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - George Fu Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
12
|
Al-Ghadeer H, Chu DK, Rihan EM, Abd-Allah EM, Gu H, Chin AW, Qasim IA, Aldoweriej A, Alharbi SS, Al-Aqil MA, Al-Sahaf A, Abdel Rahman SS, Aljassem AH, Abdul-Al A, Aljasir MR, Alhammad YM, Kasem S, Peiris M, Zaki AZ, Poon LL. Circulation of Influenza A(H5N8) Virus, Saudi Arabia. Emerg Infect Dis 2018; 24:1961-1964. [PMID: 29943727 PMCID: PMC6154161 DOI: 10.3201/eid2410.180846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza A(H5N8) viruses have been detected in several continents. However, limited viral sequence data are available from countries in the Middle East. We report full-genome analyses of highly pathogenic H5N8 viruses recently detected in different provinces in Saudi Arabia.
Collapse
|
13
|
Adlhoch C, Brouwer A, Kuiken T, Mulatti P, Smietanka K, Staubach C, Willeberg P, Barrucci F, Verdonck F, Amato L, Baldinelli F. Avian influenza overview November 2017 - February 2018. EFSA J 2018; 16:e05240. [PMID: 32625858 PMCID: PMC7009675 DOI: 10.2903/j.efsa.2018.5240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Between 16 November 2017 and 15 February 2018, one highly pathogenic avian influenza (HPAI) A(H5N6) and five HPAI A(H5N8) outbreaks in poultry holdings, two HPAI A(H5N6) outbreaks in captive birds and 22 HPAI A(H5N6) wild bird events were reported within Europe. There is a lower incursion of HPAI A(H5N6) in poultry compared to HPAI A(H5N8). There is no evidence to date that HPAI A(H5N6) viruses circulating in Europe are associated with clades infecting humans. Clinical signs in ducks infected with HPAI A(H5N8) seemed to be decreasing, based on reports from Bulgaria. However, HPAI A(H5N8) is still present in Europe and is widespread in neighbouring areas. The majority of mortality events of wild birds from HPAIV A(H5) in this three-month period involved single birds. This indicates that the investigation of events involving single dead birds of target species is important for comprehensive passive surveillance for HPAI A(H5). Moreover, 20 low pathogenic avian influenza (LPAI) outbreaks were reported in three Member States. The risk of zoonotic transmission to the general public in Europe is considered to be very low. The first human case due to avian influenza A(H7N4) was notified in China underlining the threat that newly emerging avian influenza viruses pose for transmission to humans. Close monitoring is required of the situation in Africa and the Middle East with regards to HPAI A(H5N1) and A(H5N8). Uncontrolled spread of virus and subsequent further genetic evolution in regions geographically connected to Europe may increase uncertainty and risk for further dissemination of virus. The risk of HPAI introduction from Third countries via migratory wild birds to Europe is still considered much lower for wild birds crossing the southern borders compared to birds crossing the north-eastern borders, whereas the introduction via trade is still very to extremely unlikely.
Collapse
|