1
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Huang CY, Su SB, Chen KT. A review of enterovirus-associated hand-foot and mouth disease: preventive strategies and the need for a global enterovirus surveillance network. Pathog Glob Health 2024:1-11. [PMID: 39229797 DOI: 10.1080/20477724.2024.2400424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Enterovirus (EV)-associated hand, foot, and mouth disease (HFMD) is a significant public health issue worldwide, commonly occurring in children five years of age or younger. The leading causes of most HFMD cases are EVs, which are members of the Picornaviridae family. The typical clinical manifestations of EV-associated HFMD are febrile presentations with mucosal herpangina, oral ulcerations, and skin rashes on the hands and feet. The majority of HFMD cases resolve without consequence; however, a subset progresses to severe neurological and cardiopulmonary complications, which can be fatal. In the past two decades, EV-associated HFMD has received significant attention. In this review, we organize published papers and provide updates on epidemiology, pathogenesis, surveillance, and vaccine developments for EV-associated HFMD. The impact of EV-associated HFMD is increasing globally. Developing efficacious vaccines has become a priority for preventing EV infections without adequate treatment. Simultaneously, emerging EV infections (including EV-D68, EV-A71, Coxsackieviruses, and echoviruses) are increasing, highlighting the need to create a vigilant surveillance system for EV infections worldwide.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Kamau E, Bessaud M, Majumdar M, Martin J, Simmonds P, Harvala H. Estimating prevalence of Enterovirus D111 in human and non-human primate populations using cross-sectional serology. J Gen Virol 2023; 104:001915. [PMID: 37910158 PMCID: PMC10768692 DOI: 10.1099/jgv.0.001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Enteroviruses primarily affect young children with a varying severity of disease. Recent outbreaks of severe respiratory and neurological disease due to EV-D68 and EV-A71, as well as atypical hand-foot-and-mouth-disease due to CVA6, have brought to light the potency of enteroviruses to emerge as severe human pathogens. Enterovirus D111 (EV-D111) is an enteric pathogen initially detected in Central Africa in human and wildlife samples and was recently detected in environmental samples. The natural history and epidemiology of EV-D111 are poorly studied. Here, the presence of serum neutralizing antibodies to EV-D111 was estimated in human and wildlife samples from five countries. We report high prevalence of neutralizing antibodies measured against EV-D111 in human populations (range, 55-83 %), a proxy for previous infection, which indicates active virus circulation in absence of detection in clinical cases and a high number of undiagnosed infections. Notably, seroprevalence in samples from the UK varied by age and was higher in children and older adults (1-5 and >60 years old), but lower in ages 11-60. EV-D111 seroprevalence in apes and Old World monkeys was 50 % (33-66 %), which also suggests prior exposure and supports existing knowledge of enterovirus circulation in wild and captive apes and Old World monkeys. Generally, reported cases of infection likely underestimate the prevalence of infection particularly when the knowledge of community transmission is limited. Continued serologic surveillance and detection of EV-D111 in clinical and environmental samples will allow for a more robust assessment of EV-D111 epidemiology.
Collapse
Affiliation(s)
- Everlyn Kamau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mael Bessaud
- Institut Pasteur-Unité de Biologie des Virus Entériques, Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines, Paris, France
| | - Manasi Majumdar
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Javier Martin
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Heli Harvala
- Microbiology Services, NHS Blood Transfusion, London, UK
| |
Collapse
|
4
|
Narat V, Salmona M, Kampo M, Heyer T, Rachik AS, Mercier-Delarue S, Ranger N, Rupp S, Ambata P, Njouom R, Simon F, Le Goff J, Giles-Vernick T. Higher convergence of human-great ape enteric eukaryotic viromes in central African forest than in a European zoo: a One Health analysis. Nat Commun 2023; 14:3674. [PMID: 37339968 DOI: 10.1038/s41467-023-39455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Human-animal pathogenic transmissions threaten both human and animal health, and the processes catalyzing zoonotic spillover and spillback are complex. Prior field studies offer partial insight into these processes but overlook animal ecologies and human perceptions and practices facilitating human-animal contact. Conducted in Cameroon and a European zoo, this integrative study elucidates these processes, incorporating metagenomic, historical, anthropological and great ape ecological analyses, and real-time evaluation of human-great ape contact types and frequencies. We find more enteric eukaryotic virome sharing between Cameroonian humans and great apes than in the zoo, virome convergence between Cameroonian humans and gorillas, and adenovirus and enterovirus taxa as most frequently shared between Cameroonian humans and great apes. Together with physical contact from hunting, meat handling and fecal exposure, overlapping human cultivation and gorilla pillaging in forest gardens help explain these findings. Our multidisciplinary study identifies environmental co-use as a complementary mechanism for viral sharing.
Collapse
Affiliation(s)
- Victor Narat
- Eco-anthropologie, MNHN/CNRS/Univ. Paris Cité, Paris, France
| | - Maud Salmona
- Virology, AP-HP, Hôpital Saint Louis, Paris, France
- INSIGHT U976, INSERM, Université Paris Cité, Paris, France
| | - Mamadou Kampo
- Anthropology and Ecology of Disease Emergence Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | | | | | - Noémie Ranger
- Laboratoire de virologie, Institut fédératif de Biologie, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Stephanie Rupp
- Department of Anthropology, City University of NewYork - Lehman College, NewYork, NY, USA
| | - Philippe Ambata
- Ministry of Agriculture and Rural Development, Yaounde, Cameroon
| | | | - François Simon
- Virology, AP-HP, Hôpital Saint Louis, Paris, France
- INSIGHT U976, INSERM, Université Paris Cité, Paris, France
| | - Jérôme Le Goff
- Virology, AP-HP, Hôpital Saint Louis, Paris, France.
- INSIGHT U976, INSERM, Université Paris Cité, Paris, France.
| | - Tamara Giles-Vernick
- Anthropology and Ecology of Disease Emergence Unit, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
5
|
Azevedo LSD, França Y, Viana E, Medeiros RS, Morillo SG, Guiducci R, Ribeiro CD, Vieira HR, Barrio-Nuevo KM, Cunha MS, Guerra JM, Silva DDMCE, Filho VBD, Araújo ELL, Ferreira SRS, Batista CF, Silva GCDD, Nogueira ML, Ahagon CM, Moreira RC, Cunha L, Morais VS, da Costa AC, Luchs A. Lack of molecular evidence of fecal-borne viruses in capybaras from São Paulo state, Brazil, 2018-2020: a minor public health issue. Braz J Microbiol 2023; 54:543-551. [PMID: 36342660 PMCID: PMC9640885 DOI: 10.1007/s42770-022-00859-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Capybara (Hydrochoerus hydrochaeris) is the world's largest rodent species distributed throughout South America. These animals are incredibly tolerant to anthropogenic environments and are occupying large urban centers. Capybaras are known to carry potentially zoonotic agents, including R. rickettsia, Leishmania spp., Leptospira spp., Trypanosoma spp., Salmonella spp., Toxoplasma gondii, and rabies virus. Focusing on the importance of monitoring potential sources of emerging zoonotic viruses and new viral reservoirs, the aim of the present study was to assess the presence of fecal-borne viruses in the feces of capybaras living in urban parks in São Paulo state, Brazil. A total of 337 fecal samples were collected between 2018 and 2020 and screened for the following: (i) Rotavirus group A (RVA) by ELISA; (ii) non-RVA species and Picobirnavirus (PBV) using PAGE; (iii) Human Bocaparvovirus (HBoV), Bufavirus (BuV), Tusavirus (TuV), and Cutavirus (CuV) qPCR; (iv) Human Enterovirus (EV), Norovirus GII (NoV), and Hantavirus by in houses RT-qPCR; (v) SARS-CoV-2 via commercial RT-qPCR kit assay; and (vi) Astrovirus (AstV) and Adenovirus (AdV) using conventional nested (RT)-PCRs. All fecal samples tested were negative for fecal-borne viruses. This study adds further evidence that the fecal-borne viruses is a minor public health issue in Brazilian capybaras, at least during the surveillance period and surveyed areas. Continuous monitoring of sylvatic animals is essential to prevent and control the emergence or re-emergence of newly discovered virus as well as viruses with known zoonotic potential.
Collapse
Affiliation(s)
| | - Yasmin França
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Ellen Viana
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | | | - Raquel Guiducci
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Cibele Daniel Ribeiro
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Heloisa Rosa Vieira
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Mariana Sequetin Cunha
- Vector Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Juliana Mariotti Guerra
- Quantitative Pathology Laboratory, Pathology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | | | - Emerson Luiz Lima Araújo
- General Coordination of Public Health, Laboratories of the Strategic Articulation, Department of the Health, Surveillance Secretariat, Ministry of Health (CGLAB/DAEVS/SVS-MS), Brasília, Brazil
| | | | | | | | | | - Cintia Mayumi Ahagon
- Blood and Sexual Diseases - Retrovirus Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Lia Cunha
- Hepatitis Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Vanessa Santos Morais
- Medical Parasitology Laboratory (LIM/46), Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Luchs
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
- Centro de Virologia, Núcleo de Doenças Entéricas, Instituto Adolfo Lutz, Av. Dr Arnaldo, nº 355, São Paulo, SP, 01246-902, Brasil.
| |
Collapse
|
6
|
Faleye T, Adewumi M, Japhet M, George U, David O, Oluyege A, Adeniji J, Famurewa O. Enterovirus species B isolates recovered from children with acute flaccid paralysis in Nigeria, 2010 and 2012. JOURNAL OF CLINICAL VIROLOGY PLUS 2022. [DOI: 10.1016/j.jcvp.2022.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Antiviral Effect of Bovine Lactoferrin against Enterovirus E. Molecules 2022; 27:molecules27175569. [PMID: 36080333 PMCID: PMC9457561 DOI: 10.3390/molecules27175569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022] Open
Abstract
Enterovirus E (EV-E), a representative of the Picornaviridae family, endemically affects cattle across the world, typically causing subclinical infections. However, under favorable conditions, severe or fatal disorders of the respiratory, digestive, and reproductive systems may develop. There is no specific treatment for enterovirus infections in humans or animals, and only symptomatic treatment is available. The aim of this study was to determine the in vitro antiviral effect of bovine lactoferrin (bLF) against enterovirus E using virucidal, cytopathic effect inhibition, and viral yield reduction assays in MDBK cells. The influence of lactoferrin on the intracellular viral RNA level was also determined. Surprisingly, lactoferrin did not have a protective effect on cells, although it inhibited the replication of the virus during the adsorption and post-adsorption stages (viral titres reduced by 1–1.1 log). Additionally, a decrease in the viral RNA level in cells (by up to 75%) was observed. More detailed studies are needed to determine the mechanism of bovine lactoferrin effect on enterovirus E. However, this highly biocompatible protein ensures some degree of protection against infection by bovine enterovirus, which is particularly important for young animals that receive this protein in their mother’s milk.
Collapse
|
8
|
Olasunkanmi OI, Mageto J, Avala Ntsigouaye J, Yi M, Fei Y, Chen Y, Chen S, Xu W, Lin L, Zhao W, Wang Y, Zhong ZH. Novel Antiviral Activity of Ethyl 3-Hydroxyhexanoate Against Coxsackievirus B Infection. Front Microbiol 2022; 13:875485. [PMID: 35495645 PMCID: PMC9048257 DOI: 10.3389/fmicb.2022.875485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 01/26/2023] Open
Abstract
Coxsackievirus group B (CVB) is a member of the genus Enterovirus in the family Picornaviridae. CVB infection has been implicated as a major etiologic agent of viral myocarditis, dilated cardiomyopathy, meningitis, and pancreatitis among children and young adults. Until date, no antiviral agent has been licensed for the treatment of Coxsackievirus infection. In an effort to identify antiviral agents against diseases caused by the CVB, we found that ethyl 3-hydroxyhexanoate (EHX), a volatile compound present in fruits and food additives, is a potent antiviral compound. In this study, we demonstrated that EHX treatment significantly inhibits CVB replication both in vivo and in vitro. Furthermore, EHX possesses antiviral activity at 50% effective concentration (EC50) of 1.2 μM and 50% cytotoxicity (CC50) of 25.6 μM, yielding a selective index (SI) value as high as 20.8. Insights into the mechanism of antiviral activity of EHX showed that it acts at the step of viral RNA replication. Since EHX has received approval as food additives, treatment of CVB-related infections with EHX might be a safe therapeutic option and may be a promising strategy for the development of semi-synthetic antiviral drugs for viral diseases.
Collapse
Affiliation(s)
| | - James Mageto
- Department of Microbiology, Harbin Medical University, Harbin, China
| | | | - Ming Yi
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Sijia Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Zhao-Hua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Wang I, Gupta SK, Ems G, Jayawardena N, Strauss M, Bostina M. Cryo-EM Structure of a Possum Enterovirus. Viruses 2022; 14:v14020318. [PMID: 35215909 PMCID: PMC8879876 DOI: 10.3390/v14020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses (EVs) represent a substantial concern to global health. Here, we present the cryo-EM structure of a non-human enterovirus, EV-F4, isolated from the Australian brushtail possum to assess the structural diversity of these picornaviruses. The capsid structure, determined to ~3 Å resolution by single particle analysis, exhibits a largely smooth surface, similar to EV-F3 (formerly BEV-2). Although the cellular receptor is not known, the absence of charged residues on the outer surface of the canyon suggest a different receptor type than for EV-F3. Density for the pocket factor is clear, with the entrance to the pocket being smaller than for other enteroviruses.
Collapse
Affiliation(s)
- Ivy Wang
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada;
| | | | - Guillaume Ems
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Faculté des Sciences, Université de Namur, 5000 Namur, Belgium
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada;
- Correspondence: (M.S.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (G.E.); (N.J.)
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.S.); (M.B.)
| |
Collapse
|
10
|
Ramani S, Ko D, Kim B, Cho C, Kim W, Jo C, Lee CK, Kang J, Hur S, Park S. Technical requirements for cultured meat production: a review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:681-692. [PMID: 34447948 PMCID: PMC8367405 DOI: 10.5187/jast.2021.e45] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
Environment, food, and disease have a selective force on the present and future
as well as our genome. Adaptation of livestock and the environmental nexus,
including forest encroachment for anthropological needs, has been proven to
cause emerging infectious diseases. Further, these demand changes in meat
production and market systems. Meat is a reliable source of protein, with a
majority of the world population consumes meat. To meet the increasing demands
of meat production as well as address issues, such as current environmental
pollution, animal welfare, and outbreaks, cellular agriculture has emerged as
one of the next industrial revolutions. Lab grown meat or cell cultured meat is
a promising way to pursue this; however, it still needs to resemble traditional
meat and be assured safety for human consumption. Further, to mimic the
palatability of traditional meat, the process of cultured meat production starts
from skeletal muscle progenitor cells isolated from animals that proliferate and
differentiate into skeletal muscle using cell culture techniques. Due to several
lacunae in the current approaches, production of muscle replicas is not possible
yet. Our review shows that constant research in this field will resolve the
existing constraints and enable successful cultured meat production in the near
future. Therefore, production of cultured meat is a better solution that looks
after environmental issues, spread of outbreaks, antibiotic resistance through
the zoonotic spread, food and economic crises.
Collapse
Affiliation(s)
| | - Deunsol Ko
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Bosung Kim
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Changjun Cho
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Woosang Kim
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | | | - Sunjin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
11
|
Gray GC, Robie ER, Studstill CJ, Nunn CL. Mitigating Future Respiratory Virus Pandemics: New Threats and Approaches to Consider. Viruses 2021; 13:637. [PMID: 33917745 PMCID: PMC8068197 DOI: 10.3390/v13040637] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite many recent efforts to predict and control emerging infectious disease threats to humans, we failed to anticipate the zoonotic viruses which led to pandemics in 2009 and 2020. The morbidity, mortality, and economic costs of these pandemics have been staggering. We desperately need a more targeted, cost-efficient, and sustainable strategy to detect and mitigate future zoonotic respiratory virus threats. Evidence suggests that the transition from an animal virus to a human pathogen is incremental and requires a considerable number of spillover events and considerable time before a pandemic variant emerges. This evolutionary view argues for the refocusing of public health resources on novel respiratory virus surveillance at human-animal interfaces in geographical hotspots for emerging infectious diseases. Where human-animal interface surveillance is not possible, a secondary high-yield, cost-efficient strategy is to conduct novel respiratory virus surveillance among pneumonia patients in these same hotspots. When novel pathogens are discovered, they must be quickly assessed for their human risk and, if indicated, mitigation strategies initiated. In this review, we discuss the most common respiratory virus threats, current efforts at early emerging pathogen detection, and propose and defend new molecular pathogen discovery strategies with the goal of preempting future pandemics.
Collapse
Affiliation(s)
- Gregory C. Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore 169856, Singapore
- Global Health Center, Duke Kunshan University, Kunshan 215316, China
| | - Emily R. Robie
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Caleb J. Studstill
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Charles L. Nunn
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
Wang M, Zhu L, Fan J, Yan J, Dun Y, Yu R, Liu L, Zhang S. Rules governing genetic exchanges among viral types from different Enterovirus A clusters. J Gen Virol 2021; 101:1145-1155. [PMID: 32762804 PMCID: PMC7879560 DOI: 10.1099/jgv.0.001479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The species Enterovirus A (EV-A) consists of two conventional clusters and one unconventional cluster. At present, sequence analysis shows no evidence of recombination between conventional and unconventional EV-A types. However, the factors underlying this genetic barrier are unclear. Here, we systematically dissected the genome components linked to these peculiar phenomena, using the viral reverse genetic tools. We reported that viral capsids of the unconventional EV-A types expressed poorly in human cells. The trans-encapsidation outputs across conventional and unconventional EV-A types were also with low efficiency. However, replicons of conventional types bearing exchanged 5'-untranslated region (UTR) or non-structural regions from the unconventional types were replication-competent. Furthermore, we created a viable recombinant EVA71 (conventional type) with its P3 region replaced by that from EVA89 (unconventional type). Thus, our data for the first time reveal the potential for fertile genetic exchanges between conventional and unconventional EV-A types. It also discloses that the mysterious recombination barriers may lie in uncoordinated capsid expression and particle assembly by different EV-A clusters.
Collapse
Affiliation(s)
- Min Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Liuyao Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Jun Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Jingjing Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Ying Dun
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Rui Yu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Lizhen Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| |
Collapse
|
13
|
Gray GC, Abdelgadir A. While We Endure This Pandemic, What New Respiratory Virus Threats Are We Missing? Open Forum Infect Dis 2021; 8:ofab078. [PMID: 33778092 PMCID: PMC7928563 DOI: 10.1093/ofid/ofab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
In this paper, we review recent human respiratory virus epidemics, their zoonotic nature, and our current inability to identify future prepandemic threats. We propose a cost-efficient, One Health surveillance strategy that will be more efficient and more sustainable than previous efforts.
Collapse
Affiliation(s)
- Gregory C Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Global Health Research Center, Duke-Kunshan University, Kunshan, China.,Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Anfal Abdelgadir
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Majumdar M, Klapsa D, Wilton T, Bujaki E, Fernandez-Garcia MD, Faleye TOC, Oyero AO, Adewumi MO, Ndiaye K, Adeniji JA, Martin J. High Diversity of Human Non-Polio Enterovirus Serotypes Identified in Contaminated Water in Nigeria. Viruses 2021; 13:v13020249. [PMID: 33562806 PMCID: PMC7914538 DOI: 10.3390/v13020249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023] Open
Abstract
Human enteroviruses (EVs) are highly prevalent in sewage and have been associated with human diseases with complications leading to severe neurological syndromes. We have used a recently developed molecular method to investigate the presence of EVs in eight samples collected in 2017–2018 from water streams contaminated by drainage channels in three different locations in Nigeria. A total of 93 human EV strains belonging to 45 different serotypes were identified, far exceeding the number of strains and serotypes found in similar samples in previous studies. Next generation sequencing analysis retrieved whole-capsid genomic nucleotide sequences of EV strains belonging to all four A, B, C, and D species. Our results further demonstrate the value of environmental surveillance for the detection of EV transmission of both serotypes commonly associated with clinical syndromes, such as EV-A71, and those that appear to circulate silently but could eventually cause outbreaks and disease. Several uncommon serotypes, rarely reported elsewhere, were detected such as EV-A119, EV-B87, EV-C116, and EV-D111. Ten EV serotypes were detected in Nigeria for the first time and two of them, CV-A12 and EV-B86, firstly described in Africa. This method can be expanded to generate whole-genome EV sequences as we show here for one EV-D111 strain. Our data revealed phylogenetic relationships of Nigerian sewage strains with EV strains reported elsewhere, mostly from African origin, and provided new insights into the whole-genome structure of emerging serotype EV-D111 and recombination events among EV-D serotypes.
Collapse
Affiliation(s)
- Manasi Majumdar
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
| | - Dimitra Klapsa
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
| | - Thomas Wilton
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
| | - Erika Bujaki
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
| | | | - Temitope Oluwasegun Cephas Faleye
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; (T.O.C.F.); (M.O.A.); (J.A.A.)
| | | | - Moses Olubusuyi Adewumi
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; (T.O.C.F.); (M.O.A.); (J.A.A.)
| | - Kader Ndiaye
- Department of Virology, Institute Pasteur, Dakar, Senegal; (M.D.F.-G.); (K.N.)
| | - Johnson Adekunle Adeniji
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; (T.O.C.F.); (M.O.A.); (J.A.A.)
- World Health Organization National Polio Laboratory, Ibadan, Oyo State, Nigeria;
| | - Javier Martin
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QG, Hertfordshire, UK; (M.M.); (D.K.); (T.W.); (E.B.)
- Correspondence:
| |
Collapse
|
15
|
Mombo IM, Boundenga L, Suquet E, Ngoubangoye B, Maganga GD, Leroy EM, Charpentier MJ, Rougeron V. Natural infection of free-ranging mandrills (Mandrillus sphinx) by enteroviruses and astroviruses in southern Gabon. Microb Pathog 2020; 150:104659. [PMID: 33249166 DOI: 10.1016/j.micpath.2020.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Enteroviruses (Picornaviridae) and astroviruses (Astroviridae) cause various diseases in humans and animals, including in non-human primates (NHPs). Some enteroviruses and astroviruses detected in NHPs are genetically related to those infecting humans, indicating the occurrence of interspecies transmissions. In this study, we screened 200 fecal samples of 56 free-ranging mandrills (Mandrillus sphinx) by nested reverse transcription-PCR with primers targeting the VP1 and RdRp genes, to evaluate the diversity of enterovirus and astrovirus infection, respectively, and the associated zoonotic risk. Overall, ten samples from six mandrills were enterovirus-positive (5%), and three samples from three mandrills were astrovirus-positive (1.5%). This is the first evidence of astrovirus infection in mandrills. Phylogenetic analyses based on the VP1 sequences revealed that all ten enterovirus sequences were part of the species Enterovirus J, suggesting low zoonotic risk. Phylogenetic analysis of the three astrovirus sequences showed that they all belonged to the Mamastrovirus genus. Two astrovirus sequences were highly divergent from all human astrovirus sequences (63.4-73% nucleotide identity), while one sequence (AstV-5) suggested cross-species transmission from humans to mandrills. Additional studies are needed to better characterize the identified astroviruses and to confirm whether mandrills are host of astroviruses than can be transmitted to humans.
Collapse
Affiliation(s)
- Illich M Mombo
- Centre International de Recherches Médicales de Franceville (CIRMF), BP769, Franceville, Gabon.
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville (CIRMF), BP769, Franceville, Gabon
| | - Eloise Suquet
- Centre International de Recherches Médicales de Franceville (CIRMF), BP769, Franceville, Gabon
| | - Barthélémy Ngoubangoye
- Centre International de Recherches Médicales de Franceville (CIRMF), BP769, Franceville, Gabon
| | - Gaël D Maganga
- Centre International de Recherches Médicales de Franceville (CIRMF), BP769, Franceville, Gabon
| | - Eric M Leroy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR5290, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394, Montpellier, France
| | - Marie J Charpentier
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR5554, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon (cc065), 34095, Montpellier, France
| | - Virginie Rougeron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR5290, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394, Montpellier, France; Centre de Recherche en Ecologie et Evolution de la Santé (CREES), 34000, Montpellier, France
| |
Collapse
|
16
|
Ijaz MK, Sattar SA, Rubino JR, Nims RW, Gerba CP. Combating SARS-CoV-2: leveraging microbicidal experiences with other emerging/re-emerging viruses. PeerJ 2020; 8:e9914. [PMID: 33194365 PMCID: PMC7485481 DOI: 10.7717/peerj.9914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, late in December 2019 is an example of an emerging zoonotic virus that threatens public health and international travel and commerce. When such a virus emerges, there is often insufficient specific information available on mechanisms of virus dissemination from animal-to-human or from person-to-person, on the level or route of infection transmissibility or of viral release in body secretions/excretions, and on the survival of virus in aerosols or on surfaces. The effectiveness of available virucidal agents and hygiene practices as interventions for disrupting the spread of infection and the associated diseases may not be clear for the emerging virus. In the present review, we suggest that approaches for infection prevention and control (IPAC) for SARS-CoV-2 and future emerging/re-emerging viruses can be invoked based on pre-existing data on microbicidal and hygiene effectiveness for related and unrelated enveloped viruses.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
- Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY, USA
| | - Syed A. Sattar
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joseph R. Rubino
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | | | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
17
|
Fieldhouse JK, Bailey ES, Toh TH, Hii KC, Mallinson KA, Ting J, Lednicky JA, Berita A, Nguyen TT, Galan D, Than ST, Wong SC, Wong TM, Blair PJ, Gray GC. Panspecies molecular assays detect viral pathogens missed by real-time PCR/reverse-transcriptase PCR among pneumonia patients, Sarawak, Malaysia. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2020; 6:13. [PMID: 32817802 PMCID: PMC7422451 DOI: 10.1186/s40794-020-00114-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
Background In a year-long pneumonia etiology study conducted June 2017 to May 2018 in Sarawak, Malaysia, 599 patients' nasopharyngeal swab specimens were studied with real-time polymerase chain reaction (rPCR)/ reverse-transcription (rRT-PCR) assays for respiratory pathogens known to contribute to the high burden of lower respiratory tract infections. The study team sought to compare real-time assay results with panspecies conventional molecular diagnostics to compare sensitivities and learn if novel viruses had been missed. Methods Specimens were studied for evidence of adenovirus (AdV), enterovirus (EV) and coronavirus (CoV) with panspecies gel-based nested PCR/RT-PCR assays. Gene sequences of specimens positive by panspecies assays were sequenced and studied with the NCBI Basic Local Alignment Search Tool software. Results There was considerable discordance between real-time and conventional molecular methods. The real-time AdV assay found a positivity of 10.4%; however, the AdV panspecies assay detected a positivity of 12.4% and the conventional AdV-Hexon assay detected a positivity of 19.6%. The CoV and EV panspecies assays similarly detected more positive specimens than the real-time assays, with a positivity of 7.8% by the CoV panspecies assay versus 4.2% by rRT-PCR, and 8.0% by the EV panspecies assay versus 1.0% by rRT-PCR. We were not able to ascertain virus viability in this setting. While most discordance was likely due to assay sensitivity for previously described human viruses, two novel, possible zoonotic AdV were detected. Conclusions The observed differences in the two modes of amplification suggest that where a problem with sensitivity is suspected, real-time assay results might be supplemented with panspecies conventional PCR/RT-PCR assays.
Collapse
Affiliation(s)
- Jane K Fieldhouse
- Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,Duke Global Health Institute, Duke University, Durham, North Carolina USA.,Institute for Global Health Sciences, University of California, San Francisco, California USA
| | - Emily S Bailey
- Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,Duke Global Health Institute, Duke University, Durham, North Carolina USA.,Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX USA
| | - Teck-Hock Toh
- Clinical Research Center, Sibu Hospital, Ministry of Health Malaysia, Sibu, Sarawak Malaysia.,Faculty of Medicine, SEGi University, Kota Damansara, Selangor Malaysia.,Department of Paediatrics, Sibu Hospital, Ministry of Health Malaysia, Sibu, Sarawak Malaysia
| | - King-Ching Hii
- Kapit Hospital, Ministry of Health Malaysia, Kapit, Sarawak Malaysia
| | - Kerry A Mallinson
- Duke Global Health Institute, Duke University, Durham, North Carolina USA
| | - Jakie Ting
- Clinical Research Center, Sibu Hospital, Ministry of Health Malaysia, Sibu, Sarawak Malaysia.,Faculty of Medicine, SEGi University, Kota Damansara, Selangor Malaysia
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida USA.,Emerging Pathogens Institute, University of Florida, Gainesville, Florida USA
| | - Antoinette Berita
- Kapit Hospital, Ministry of Health Malaysia, Kapit, Sarawak Malaysia
| | - Tham Thi Nguyen
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Diego Galan
- Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Son T Than
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - See-Chang Wong
- Faculty of Medicine, SEGi University, Kota Damansara, Selangor Malaysia.,Department of Paediatrics, Sibu Hospital, Ministry of Health Malaysia, Sibu, Sarawak Malaysia
| | - Toh-Mee Wong
- Clinical Research Center, Sibu Hospital, Ministry of Health Malaysia, Sibu, Sarawak Malaysia.,Faculty of Medicine, SEGi University, Kota Damansara, Selangor Malaysia.,Department of Medicine, Sibu Hospital, Ministry of Health Malaysia, Sibu, Sarawak Malaysia
| | | | - Gregory C Gray
- Division of Infectious Diseases, Duke University School of Medicine, DUMC Box 102359, Durham, NC 27710 USA.,Duke Global Health Institute, Duke University, Durham, North Carolina USA.,Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore.,Global Health Center, Duke Kunshan University, Kunshan, China
| |
Collapse
|
18
|
A feasibility study of conducting surveillance for swine pathogens in slurry from North Carolina swine farms. Sci Rep 2020; 10:10059. [PMID: 32572119 PMCID: PMC7308328 DOI: 10.1038/s41598-020-67313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/21/2020] [Indexed: 12/02/2022] Open
Abstract
Despite close contact between humans and animals on large scale farms, little to no infectious disease research is conducted at this interface. Our goal in this preliminary study was to explore if we could detect swine pathogens using a non-invasive, indirect approach through the study of swine slurry. From April to November 2018, 105 swine slurry samples were collected by farm personnel from waste pits at two sites on a swine farm in North Carolina. These samples were tested for DNA and RNA viruses using a real-time PCR and RT-PCR. Statistical analyses were performed to measure association between virus positive outcomes and potential predictors such as date of sample collection, weight of pigs, number of pigs in barn, temperature, and weather conditions. Overall, 86% of the samples had evidence of at least one of the targeted viruses. Ultimately, this study demonstrated the utility of conducting noninvasive surveillance for swine pathogens through the study of swine slurry. Such swine slurry surveillance may supplant the need to handle, restrain, and collect specimens directly from pigs thus providing an approach to emerging pathogen detection that appeals to the swine industry.
Collapse
|
19
|
Le YH, Nguyen KC, Coleman KK, Nguyen TT, Than ST, Phan HH, Nguyen MD, Ngu ND, Phan DT, Hoang PVM, Trieu LP, Bailey ES, Warkentien TE, Gray GC. Virus detections among patients with severe acute respiratory illness, Northern Vietnam. PLoS One 2020; 15:e0233117. [PMID: 32396550 PMCID: PMC7217455 DOI: 10.1371/journal.pone.0233117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
Severe acute respiratory illness (SARI) is a major cause of death and morbidity in low- and middle-income countries, however, the etiologic agents are often undetermined due to the lack of molecular diagnostics in hospitals and clinics. To examine evidence for select viral infections among patients with SARI in northern Vietnam, we studied 348 nasopharyngeal samples from military and civilian patients admitted to 4 hospitals in the greater Hanoi area from 2017–2019. Initial screening for human respiratory viral pathogens was performed in Hanoi, Vietnam at the National Institute of Hygiene and Epidemiology (NIHE) or the Military Institute of Preventative Medicine (MIPM), and an aliquot was shipped to Duke-NUS Medical School in Singapore for validation. Patient demographics were recorded and used to epidemiologically describe the infections. Among military and civilian cases of SARI, 184 (52.9%) tested positive for one or more respiratory viruses. Influenza A virus was the most prevalent virus detected (64.7%), followed by influenza B virus (29.3%), enterovirus (3.8%), adenovirus (1.1%), and coronavirus (1.1%). Risk factor analyses demonstrated an increased risk of influenza A virus detection among military hospital patients (adjusted OR, 2.0; 95% CI, 1.2–3.2), and an increased risk of influenza B virus detection among patients enrolled in year 2017 (adjusted OR, 7.9; 95% CI, 2.7–22.9). As influenza A and B viruses were commonly associated with SARI and are treatable, SARI patients entering these hospitals would benefit if the hospitals were able to adapt onsite molecular diagnostics.
Collapse
Affiliation(s)
- Yen H. Le
- Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Khanh C. Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Kristen K. Coleman
- Emerging Infectious Diseases Programme, Duke-National University of Singapore, Singapore
| | - Tham T. Nguyen
- Emerging Infectious Diseases Programme, Duke-National University of Singapore, Singapore
| | - Son T. Than
- Emerging Infectious Diseases Programme, Duke-National University of Singapore, Singapore
| | - Hai H. Phan
- Hai Phong Provincial Preventive Medicine Center, Hai Phong, Vietnam
| | - Manh D. Nguyen
- Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Nghia D. Ngu
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dan T. Phan
- Military Institute of Preventive Medicine, Hanoi, Vietnam
| | | | - Long P. Trieu
- Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Emily S. Bailey
- Division of Infectious Diseases, Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | | | - Gregory C. Gray
- Emerging Infectious Diseases Programme, Duke-National University of Singapore, Singapore
- Division of Infectious Diseases, Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Global Health Center, Duke Kunshan University, Kunshan, China
- * E-mail:
| |
Collapse
|
20
|
Borkenhagen LK, Fieldhouse JK, Seto D, Gray GC. Are adenoviruses zoonotic? A systematic review of the evidence. Emerg Microbes Infect 2019; 8:1679-1687. [PMID: 31749409 PMCID: PMC6882429 DOI: 10.1080/22221751.2019.1690953] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adenoviruses (AdVs) are major contributors to clinical illnesses. Novel human and animal AdVs continue to be identified and characterized. Comparative analyses using bioinformatic methods and Omics-based technologies allow insights into how these human pathogens have emerged and their potential for host cross-species transmission. Systematic review of literature published across ProQuest, Pubmed, and Web of Science databases for evidence of adenoviral zoonotic potential identified 589 citations. After removing duplicates, 327 citations were screened for relevance; of which, 74 articles received full-text reviews. Among these, 24 were included here, of which 16 demonstrated evidence of zoonotic transmission of AdVs. These documented instances of AdV crossing host species barriers between humans and non-human primate, bat, feline, swine, canine, ovine, and caprine. Eight studies sought to but did not find evidence of zoonosis. The findings demonstrate substantial evidence suggesting AdVs have previously and will continue crossing host species barriers. These have human health consequences both in terms of novel pathogen emergence and epidemic outbreaks, and of appropriate and safe use of non-human adenoviruses for therapeutics. As routine human clinical diagnostics may miss a novel cross-species adenovirus infection in humans, next generation sequencing or panspecies molecular diagnostics may be necessary to detect such incursions.
Collapse
Affiliation(s)
- Laura K Borkenhagen
- Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, USA
| | - Jane K Fieldhouse
- Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gregory C Gray
- Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, USA.,Global Health Research Center, Duke Kunshan University, Kunshan, People's Republic of China.,Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
21
|
Cagliani R, Forni D, Sironi M. Mode and tempo of human hepatitis virus evolution. Comput Struct Biotechnol J 2019; 17:1384-1395. [PMID: 31768229 PMCID: PMC6872792 DOI: 10.1016/j.csbj.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023] Open
Abstract
Human viral hepatitis, a major cause of morbidity and mortality worldwide, is caused by highly diverse viruses with different genetic, ecological, and pathogenetic features. Technological advances that allow throughput sequencing of viral genomes, as well as the development of computational tools to analyze such genome data, have largely expanded our knowledge on the host range and evolutionary history of human hepatitis viruses. Thus, with the exclusion of hepatitis D virus, close or distant relatives of these human pathogens were identified in a number of domestic and wild mammals. Also, sequences of human viral strains isolated from different geographic locations and over different time-spans have allowed the application of phylogeographic and molecular dating approaches to large viral phylogenies. In this review, we summarize the most recent insights into our understanding of the evolutionary events and ecological contexts that determined the origin and spread of human hepatitis viruses.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
22
|
Sadeuh-Mba SA, Joffret ML, Mazitchi A, Endegue-Zanga MC, Njouom R, Delpeyroux F, Gouandjika-Vasilache I, Bessaud M. Genetic and phenotypic characterization of recently discovered enterovirus D type 111. PLoS Negl Trop Dis 2019; 13:e0007797. [PMID: 31622358 PMCID: PMC6818792 DOI: 10.1371/journal.pntd.0007797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/29/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the species Enterovirus D (EV-D) remain poorly studied. The two first EV-D types (EV-D68 and EV-D70) have regularly caused outbreaks in humans since their discovery five decades ago but have been neglected until the recent occurrence of severe respiratory diseases due to EV-D68. The three other known EV-D types (EV-D94, EV-D111 and EV-D120) were discovered in the 2000s-2010s in Africa and have never been observed elsewhere. One strain of EV-D111 and all known EV-D120s were detected in stool samples of wild non-human primates, suggesting that these viruses could be zoonotic viruses. To date, EV-D111s are only known through partial genetic sequences of the few strains that have been identified so far. In an attempt to bring new pieces to the puzzle, we genetically characterized four EV-D111 strains (among the seven that have been reported until now). We observed that the EV-D111 strains from human samples and the unique simian EV-D111 strain were not phylogenetically distinct, thus suggesting a recent zoonotic transmission. We also discovered evidences of probable intertypic genetic recombination events between EV-D111s and EV-D94s. As recombination can only happen in co-infected cells, this suggests that EV-D94s and EV-D111s share common replication sites in the infected hosts. These sites could be located in the gut since the phenotypic analysis we performed showed that, contrary to EV-D68s and like EV-D94s, EV-D111s are resistant to acid pHs. We also found that EV-D111s induce strong cytopathic effects on L20B cells, a cell line routinely used to specifically detect polioviruses. An active circulation of EV-D111s among humans could then induce a high number of false-positive detection of polioviruses, which could be particularly problematic in Central Africa, where EV-D111 circulates and which is a key region for poliovirus eradication.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | - Arthur Mazitchi
- Enteric Viruses and Measles Laboratory—Institut Pasteur de Bangui—Bangui, Central African Republic
| | | | - Richard Njouom
- Virology Service—Centre Pasteur of Cameroon–Yaounde, Cameroon
| | - Francis Delpeyroux
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | | | - Maël Bessaud
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| |
Collapse
|