1
|
Lee S, Yoon SJ, Oh JH, Ryu JS, Park Y, Hwang ES. MPoMA protects against lung epithelial cell injury via p65 degradation. Biomed Pharmacother 2024; 175:116674. [PMID: 38703509 DOI: 10.1016/j.biopha.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1β, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Soheun Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Hyun Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae-Sang Ryu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunjeong Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Islam S, Shahzad SA, Ismail T, Sherani UAS, Khan KM, Fatima N, Khan SA, Mannan A. Exploring the antimicrobial and cytotoxic potential of novel chloroquine analogues. Future Med Chem 2024; 16:737-749. [PMID: 38456272 PMCID: PMC11221543 DOI: 10.4155/fmc-2023-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Aim: To synthesize novel chloroquine analogues and evaluate them for antimicrobial and cytotoxic potential. Methods: Novel analogues were synthesized from chloroquine by nucleophilic substitution reaction at the 4-amino position. Results: Analogue CS1 showed maximum antimicrobial potential (30.3 ± 0.15 mm zone) against Pseudomonas aeruginosa and produced a 19.2 ± 0.21 mm zone against Candida albicans, while CS0 produced no zone at the same concentration. Analogue CS9 has excellent cytotoxic potential (HeLa cell line), showing 100% inhibition (IC50 = 8.9 ± 1.2 μg/ml), compared with CS0 (61.9% inhibition at 30 μg/ml). Conclusion: These synthesized chloroquine analogues have excellent activity against different microbial strains and cervical cancer cell lines (HeLa) compared with their parent molecule.
Collapse
Affiliation(s)
- Shamsul Islam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sohail A Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Usman AS Sherani
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Kashif M Khan
- Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Shujaat A Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
3
|
Hao Y, Qi Z, Ge Y, Pan T, Yu L, Li P. A redox-responsive macrocycle based on the crown ether C7Te for enhanced bacterial inhibition. J Mater Chem B 2024; 12:2587-2593. [PMID: 38363549 DOI: 10.1039/d3tb02791k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Due to increasing bacterial resistance to disinfectants, there is an urgent need for new therapeutic agents and strategies to effectively inhibit bacteria. Accordingly, we have designed and synthesized a novel crown ether known as C7Te, and its oxidized form C7TeO. These compounds have demonstrated antibacterial effectiveness against Gram-negative E. coli (BL21). Notably, C7Te has the capability to enhance the inhibition of E. coli and the prevention of biofilm formation by H2O2 through a redox response. It can also effectively disrupt preformed E. coli biofilms by penetrating biofilm barriers effectively. Additionally, computer modeling of the bacterial cell membrane using nanodiscs composed of phospholipids and encircled amphipathic proteins with helical belts has revealed that C7Te can insert into and interact with phospholipids and proteins. This interaction results in the disruption of the bacterial cell membrane leading to bacterial cell death. The utilization of redox-responsive crown ethers to augment the antibacterial capabilities of H2O2-based disinfectants represents a novel approach to supramolecular bacterial inhibition.
Collapse
Affiliation(s)
- Yuchong Hao
- Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Youyi West Road 127, Xi'an, Shaanxi 710072, China.
| | - Zhenhui Qi
- Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Youyi West Road 127, Xi'an, Shaanxi 710072, China.
| | - Yan Ge
- Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Youyi West Road 127, Xi'an, Shaanxi 710072, China.
| | - Tiezheng Pan
- Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Youyi West Road 127, Xi'an, Shaanxi 710072, China.
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
4
|
Ma Y, Zhou H, Wang YR, Zhang BQ, Zhang ZJ, Peng D, An JX, Zhang SY, Luo XF, Wang GH, Ding YY, Zhao WB, Hu YM, Liu YQ. Short pathways to highly active antimicrobial: structurally diverse polyamines derivatives from Amino-Aldehyde condensation strategy. PEST MANAGEMENT SCIENCE 2023; 79:5321-5332. [PMID: 37615260 DOI: 10.1002/ps.7742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Chemical fungicides are the mainstay of plant disease control in agricultural production, but there are a very limited number of drugs that can effectively control plant diseases. Two series of secondary amine derivatives were synthesized using the diamine skeleton combined with saturated aromatic and aliphatic aldehydes, and their antibacterial and antifungal activities against plant pathogens were determined. In addition, the antimicrobial mechanism of the highly active compound A26 was preliminarily examined against Xanthomonas oryzae (Xoo). RESULTS Compound A26 exhibited the highest antibacterial potency among all the target compounds, with MIC values of 3.12, 3.12 and 12.5 μg mL-1 against Xoo, Xanthomonas axonopodis pv. Citri and Pseudomonas sollamacearum, respectively. In addition, compound A26 had powerful curative and protective effects against Xoo at 200 μg mL-1 , and was better than the control agent Xinjunan. Preliminary mechanistic studies showed that compound A26 reduced the bacterial pathogenicity by targeting cell membranes and inhibiting the secretion of extracellular polysaccharides. Meanwhile, the toxicity of compound A26 to Human Embryonic Kidney 293 cells and Human Liver-7702 was similar to that of Xinjunan, and it had moderate toxicity according to the World Health Organization classification standard of oral exogenous toxicity, with an LD50 of 245.47 mg kg-1 . CONCLUSION Secondary amines have efficient and broad-spectrum antibacterial activity against plant pathogenic bacteria and are expected to be a new class of candidate compounds for antibacterial drugs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Deng Peng
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Alotaibi HF, Alotaibi H, Darwish KM, Khafagy ES, Abu Lila AS, Ali MAM, Hegazy WAH, Alshawwa SZ. The Anti-Virulence Activities of the Antihypertensive Drug Propranolol in Light of Its Anti-Quorum Sensing Effects against Pseudomonas aeruginosa and Serratia marcescens. Biomedicines 2023; 11:3161. [PMID: 38137382 PMCID: PMC10741015 DOI: 10.3390/biomedicines11123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of bacterial resistance is an increasing global concern that requires discovering new antibacterial agents and strategies. Bacterial quorum sensing (QS) systems play important roles in controlling bacterial virulence, and their targeting could lead to diminishing bacterial pathogenesis. In this context, targeting QS systems without significant influence on bacterial growth is assumed as a promising strategy to overcome resistance development. This study aimed at evaluating the anti-QS and anti-virulence activities of the β-adrenoreceptor antagonist propranolol at sub-minimal inhibitory concentrations (sub-MIC) against two Gram-negative bacterial models Pseudomonas aeruginosa and Serratia marcescens. The effect of propranolol on the expression of QS-encoding genes was evaluated. Additionally, the affinity of propranolol to QS receptors was virtually attested. The influence of propranolol at sub-MIC on biofilm formation, motility, and production of virulent factors was conducted. The outcomes of the propranolol combination with different antibiotics were assessed. Finally, the in vivo protection assay in mice was performed to assess propranolol's effect on lessening the bacterial pathogenesis. The current findings emphasized the significant ability of propranolol at sub-MIC to reduce the formation of biofilms, motility, and production of virulence factors. In addition, propranolol at sub-MIC decreased the capacity of tested bacteria to induce pathogenesis in mice. Furthermore, propranolol significantly downregulated the QS-encoding genes and showed significant affinity to QS receptors. Finally, propranolol at sub-MIC synergistically decreased the MICs of different antibiotics against tested bacteria. In conclusion, propranolol might serve as a plausible adjuvant therapy with antibiotics for the treatment of serious bacterial infections after further pharmacological and pharmaceutical studies.
Collapse
Affiliation(s)
- Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa Alotaibi
- Department of Family Medicine, Prince Sultan Military Medical City, Riyadh 12624, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
6
|
Ma Y, He YH, Deng P, Zhang SY, Ding YY, Zhang ZJ, Zhang BQ, An JX, Wang YR, Liu YQ. Repurposing Salicylamides to Combat Phytopathogenic Bacteria and Induce Plant Defense Responses. Chem Biodivers 2023; 20:e202300998. [PMID: 37755070 DOI: 10.1002/cbdv.202300998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Based on the research strategy of "drug repurposing", a series of derivatives and marketed drugs that containing salicylic acid skeleton were tested for their antibacterial activities against phytopathogens. Salicylic acid can not only regulate some important growth metabolism of plants, but also induce plant disease resistance. The bioassay results showed that the salicylamides exhibited excellent antibacterial activity. Especially, oxyclozanide showed the best antibacterial effect against Xanthomonas oryzae, Xanthomonas axonopodis pv. citri and Pectobacterium atroseptica with MICs of 0.78, 3.12 and 12.5 μg.mL-1, respectively. In vivo experiments with rice bacterial leaf blight had further demonstrated that oxyclozanide exhibited stronger antibacterial activity than the commercial bactericide, thiodiazole copper. Oxyclozanide could induce plant defense responses through the determination of salicylic acid content and the activities of defense-related enzymes including CAT, POD, and SOD in rice. The preliminarily antibacterial mechanism study indicated that oxyclozanide exhibited the antibacterial activity by disrupting cell integrity and reducing bacterial pathogenicity. Additionally, oxyclozanide could induce plant defense responses through the determination of salicylic acid content.
Collapse
Affiliation(s)
- Yue Ma
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Khayat MT, Abbas HA, Ibrahim TS, Elbaramawi SS, Khayyat AN, Alharbi M, Hegazy WAH, Yehia FAZA. Synergistic Benefits: Exploring the Anti-Virulence Effects of Metformin/Vildagliptin Antidiabetic Combination against Pseudomonas aeruginosa via Controlling Quorum Sensing Systems. Biomedicines 2023; 11:biomedicines11051442. [PMID: 37239113 DOI: 10.3390/biomedicines11051442] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Breijyeh Z, Karaman R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023; 12:628. [PMID: 36978495 PMCID: PMC10045396 DOI: 10.3390/antibiotics12030628] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases has increased as multidrug-resistant bacteria has spread. Due to antibiotics' availability over the counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs. The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this paper reviews possible new ways for the development of novel classes of antibiotics for which there is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such as nanotechnology and computational methods (such as in silico and Fragment-based drug design (FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites. Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol, sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently shown to be an excellent platform to design a new generation of antimicrobial agents with better efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hospitals and the agricultural sector should be combined with research and technological advancements.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|