1
|
Abolarin PO, Amin A, Nafiu AB, Ogundele OM, Owoyele BV. Optimization of Parkinson's disease therapy with plant extracts and nutrition's evolving roles. IBRO Neurosci Rep 2024; 17:1-12. [PMID: 38872839 PMCID: PMC11167367 DOI: 10.1016/j.ibneur.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Death of dopaminergic cells in the SNpc leads to manifestations of motor dysfunction and non-motor symptoms of PD. The progression of PD symptoms severely affects the quality of life of patients and poses socio-economic problems to families and society at large. The clinical and neuropathological characteristics of PD are triggered by multiple factors such as oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein aggregation. Notwithstanding the advancements in pharmacological therapy in PD management, there is burgeoning interest in alternative and complementary approaches, essentially nutrition and plant extracts strategies. This review gives widespread analysis of the role of nutrition and plant extracts in the management of PD. Studies that investigated the effects of various dietary compounds and plant extract on PD symptoms and progression were reviewed from existing literatures. Nutraceuticals, including vitamins and phytochemicals such as Mucuna pruriens have shown potential neuroprotective functions in preclinical and clinical studies. Indeed, these strategies ameliorate mitochondrial dysfunction, oxidative stress, and neuroinflammation, all which are implicated in the pathogenesis of PD. The neuroprotective mechanisms of nutrition and plant extracts in PD, with emphasis on their capacity to target multiple pathways implicated in PD are discussed. Additionally, challenges and limitations related with translating preclinical findings into clinical practice including standardization of dosing regimens, bioavailability, and inter-individual variability are discussed. Largely, this review elucidates on the role of nutrition and plant extracts as adjunctive therapy in PD management.
Collapse
Affiliation(s)
- Patrick Oluwole Abolarin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | | | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Bamidele Victor Owoyele
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
2
|
Xu X, Huang Y, Zhu Y, Jin Q. Association between dietary patterns and the prognosis of amyotrophic lateral sclerosis in China: a cross-sectional study. Front Nutr 2024; 11:1437521. [PMID: 39545045 PMCID: PMC11560464 DOI: 10.3389/fnut.2024.1437521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Background Recently, a growing number of studies have specifically examined the impact of dietary variables on the development and progression of amyotrophic lateral sclerosis (ALS). The purpose of this study was to investigate the correlation between different dietary patterns and Chinese ALS patients' prognosis. Methods A retrospective study was conducted by recruiting 590 patients with ALS who attended and were regularly followed at hospitals in Nanjing from 2016 to 2023. Nutrient intake was calculated using dietary information collected through the food frequency questionnaire (FFQ), and patients were divided into a control group and special diet groups, including a high-calorie group (HC), a high-protein group (HP), and a ketogenic diet group (KD), based on their specific intake. And used the Kaplan-Meier product limiting distribution to compare the time required to transition between phases of different dietary patterns and to estimate cumulative survival probabilities. Results Patients in the HP had a better nutritional status. And the disease progression rate (ΔFS) was significantly associated with dietary patterns, with the KD group having the lowest ΔFS. Meanwhile, special diets extended the survival time of stage 4 patients but had no effect on the overall survival of the disease. Conclusion A special diet can be one of effective options for patients with advanced ALS. Patients with poor nutritional status may choose the HP diet, whereas those with underlying conditions should consider the ketogenic diet with caution.
Collapse
Affiliation(s)
| | | | | | - Qingwen Jin
- Department of Neurology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Gao T, Dang W, Jiang Z, Jiang Y. Exploring the Missing link between vitamin D and autism spectrum disorder: Scientific evidence and new perspectives. Heliyon 2024; 10:e36572. [PMID: 39281535 PMCID: PMC11401093 DOI: 10.1016/j.heliyon.2024.e36572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Aim This study aims to address the key question of the causal relationship between serum levels of 25-hydroxyvitamin D (vitamin D) and autism spectrum disorders (ASD). Methods Publicly available Genome-Wide Association Study (GWAS) datasets were used to conduct the bidirectional Two-sample MR analyses using methods including inverse-variance weighted (IVW), weighted median, MR-Egger regression, simple mode, MR-PRESSO test, Steiger filtering, and weighted mode, followed by BWMR for validation. Results The MR analysis indicated that there was no causal relationship between Vitamin D as the exposure and ASD as the outcome in the positive direction of the MR analysis (IVW: OR = 0.984, 95 % CI: 0.821-1.18, P = 0.866). The subsequent BWMR validation stage yielded consistent results (OR = 0.984, 95 % CI 0.829-1.20, P = 0.994). Notably, in the reverse MR analysis with ASD as the exposure and Vitamin D as the outcome, the results suggested that the occurrence of ASD could lead to decreased Vitamin D levels (IVW: OR = 0.976, 95 % CI: 0.961-0.990, P = 0.000855), with BWMR findings in the validation stage confirming the discovery phase (OR = 0.975, 95 % CI: 0.958-0.991, P = 0.00297). For the positive MR analysis, no pleiotropy was detected in the instrumental variables. Similarly, no pleiotropy or heterogeneity was detected in the instrumental variables for the reverse MR analysis. Sensitivity analysis using the leave-one-out approach for both positive and reverse instrumental variables suggested that the MR analysis results were robust. Conclusion Through the discovery and validation analysis process, we can confidently assert that there is no causative link between Vitamin D and ASD, and that supplementing Vitamin D is not expected to provide effective improvement for patients with ASD. Our study significantly advances a new perspective in ASD research and has a positive impact on medication guidance for patients with ASD.
Collapse
Affiliation(s)
- Tianci Gao
- College of Clinical Medicine, Jiamusi University, Hei longJiang Province, China
| | - Wenjun Dang
- Jiamusi College, HeiLongJiang University of Chinese Medicine, Hei longJiang Province, China
| | - Zhimei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Hei longJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang province, China
| | - Yuwei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Hei longJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang province, China
| |
Collapse
|
4
|
Sailike B, Onzhanova Z, Akbay B, Tokay T, Molnár F. Vitamin D in Central Nervous System: Implications for Neurological Disorders. Int J Mol Sci 2024; 25:7809. [PMID: 39063051 PMCID: PMC11277055 DOI: 10.3390/ijms25147809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, obtained from diet or synthesized internally as cholecalciferol and ergocalciferol, influences bodily functions through its most active metabolite and the vitamin D receptor. Recent research has uncovered multiple roles for vitamin D in the central nervous system, impacting neural development and maturation, regulating the dopaminergic system, and controlling the synthesis of neural growth factors. This review thoroughly examines these connections and investigates the consequences of vitamin D deficiency in neurological disorders, particularly neurodegenerative diseases. The potential benefits of vitamin D supplementation in alleviating symptoms of these diseases are evaluated alongside a discussion of the controversial findings from previous intervention studies. The importance of interpreting these results cautiously is emphasised. Furthermore, the article proposes that additional randomised and well-designed trials are essential for gaining a deeper understanding of the potential therapeutic advantages of vitamin D supplementation for neurological disorders. Ultimately, this review highlights the critical role of vitamin D in neurological well-being and highlights the need for further research to enhance our understanding of its function in the brain.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinand Molnár
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan; (B.S.); (Z.O.); (B.A.); (T.T.)
| |
Collapse
|
5
|
Lahoda Brodska H, Klempir J, Zavora J, Kohout P. The Role of Micronutrients in Neurological Disorders. Nutrients 2023; 15:4129. [PMID: 37836413 PMCID: PMC10574090 DOI: 10.3390/nu15194129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Trace elements and vitamins, collectively known as micronutrients, are essential for basic metabolic reactions in the human body. Their deficiency or, on the contrary, an increased amount can lead to serious disorders. Research in recent years has shown that long-term abnormal levels of micronutrients may be involved in the etiopathogenesis of some neurological diseases. Acute and chronic alterations in micronutrient levels may cause other serious complications in neurological diseases. Our aim was to summarize the knowledge about micronutrients in relation to selected neurological diseases and comment on their importance and the possibilities of therapeutic intervention in clinical practice.
Collapse
Affiliation(s)
- Helena Lahoda Brodska
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic; (H.L.B.); (J.Z.)
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 30, 120 00 Prague, Czech Republic
| | - Jan Zavora
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic; (H.L.B.); (J.Z.)
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Pavel Kohout
- Clinic of Internal Medicine, 3rd Faculty Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| |
Collapse
|
6
|
Barros ANDAB, Felipe MLDN, Barbosa IR, Leite-Lais L, Pedrosa LFC. Dietary Intake of Micronutrients and Disease Severity in Patients with Amyotrophic Lateral Sclerosis. Metabolites 2023; 13:696. [PMID: 37367854 DOI: 10.3390/metabo13060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Vitamins and essential metals have been studied as potential risk and prognostic factors in amyotrophic lateral sclerosis (ALS). This study aimed to evaluate the prevalence of inadequate micronutrient intake in ALS patients, comparing subgroups according to the disease severity. Data were obtained from the medical records of 69 individuals. Assessment of disease severity was determined by the revised ALS Functional Scale (ALSFRS-R), using the median as the cutoff. The prevalence of inadequate micronutrient intake was estimated using the Estimated Average Requirements (EAR) cut-point method. The prevalence of inadequate vitamin D, E, riboflavin, pyridoxine, folate, cobalamin, calcium, zinc, and magnesium intake was considered severe. Patients with lower ALSFRS-R scores had lower intakes of vitamin E (p < 0.001), niacin (p = 0.033), pantothenic acid (p = 0.037), pyridoxin (p = 0.008), folate (p = 0.009) and selenium (p = 0.001). Therefore, ALS patients should be monitored regarding dietary intake of micronutrients essential in neurological processes.
Collapse
Affiliation(s)
- Acsa Nara de Araújo Brito Barros
- Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Maria Luisa do Nascimento Felipe
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Isabelle Ribeiro Barbosa
- Faculty of Health Sciences of Trairi (FACISA), Federal University of Rio Grande do Norte, Santa Cruz 59200-000, RN, Brazil
| | - Lucia Leite-Lais
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Lucia Fátima Campos Pedrosa
- Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Faculty of Health Sciences of Trairi (FACISA), Federal University of Rio Grande do Norte, Santa Cruz 59200-000, RN, Brazil
| |
Collapse
|
7
|
Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N. Vitamin D in Neurological Diseases. Int J Mol Sci 2022; 24:87. [PMID: 36613531 PMCID: PMC9820561 DOI: 10.3390/ijms24010087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.
Collapse
Affiliation(s)
- Domenico Plantone
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carlo Manco
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Sara Locci
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
8
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
9
|
Mantle D, Hargreaves IP. Mitochondrial Dysfunction and Neurodegenerative Disorders: Role of Nutritional Supplementation. Int J Mol Sci 2022; 23:12603. [PMID: 36293457 PMCID: PMC9604531 DOI: 10.3390/ijms232012603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, multisystem atrophy, and progressive supranuclear palsy. This article is concerned specifically with mitochondrial dysfunction as defined by reduced capacity for ATP production, the role of depleted levels of key nutritionally related metabolites, and the potential benefit of supplementation with specific nutrients of relevance to normal mitochondrial function in the above neurodegenerative disorders. The article provides a rationale for a combination of CoQ10, B-vitamins/NADH, L-carnitine, vitamin D, and alpha-lipoic acid for the treatment of the above neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
10
|
Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV. Role of Neural Stem Cells and Vitamin D Receptor (VDR)-Mediated Cellular Signaling in the Mitigation of Neurological Diseases. Mol Neurobiol 2022; 59:4065-4105. [PMID: 35476289 DOI: 10.1007/s12035-022-02837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022]
Abstract
Specific stem cell-based therapies for treating Alzheimer's disease, Parkinson's disease, and schizophrenia are gaining importance in recent years. Accumulating data is providing further support by demonstrating the efficacy of neural stem cells in enhancing the neurogenesis in the aging brain. In addition to stem cells, recent studies have shown the efficacy of supplementing vitamin D in promoting neurogenesis and neuronal survival. Studies have also demonstrated the presence of mutational variants and single-nucleotide polymorphisms of the vitamin D receptor (VDR) in neurological disorders; however, implications of these mutations in the pathophysiology and response to drug treatment are yet to be explored. Hence, in this article, we have reviewed recent reports pertaining to the role of neural stem cells and VDR-mediated cellular signaling cascades that are involved in enhancing the neurogenesis through Wnt/β-catenin and Sonic Hedgehog pathways. This review benefits neurobiologists and pharmaceutical industry experts to develop stem cell-based and vitamin D-based therapies to better treat the patients suffering from neurological diseases.
Collapse
Affiliation(s)
- Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - R Rajalakshmi
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - C M Ramya
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
11
|
Use of Off-Label Drugs and Nutrition Supplements among Patients with Amyotrophic Lateral Sclerosis in Norway. Neurol Res Int 2022; 2022:1789946. [PMID: 35464630 PMCID: PMC9019451 DOI: 10.1155/2022/1789946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Materials and Methods A cross-sectional questionnaire study was performed, where 41 ALS patients reported their use of off-label treatments, as well as self-perceived HRQOL using the RAND-12 questionnaire. Results A majority of respondents used riluzole. Of the 41 respondents, 18 (43.9%) reported use of off-label medications and 18 (43.9%) used nutritional supplements. Low-dose naltrexone was the most commonly used off-label medication, whereas vitamins accounted for most of the nutritional supplements. The respondents' RAND-12 component scores were significantly lower than those of the general population. Low-dose naltrexone and vitamin B were associated with a better physical component score. Conclusions Most of the respondents in our study adhere to the recommended treatment protocols, as less than half of them reported using off-label medications or nutritional supplements against ALS. Positive correlations between physical HRQOL and use of low-dose naltrexone or vitamin B were demonstrated. These results warrant further investigations.
Collapse
|
12
|
Pampalakis G, Angelis G, Zingkou E, Vekrellis K, Sotiropoulou G. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis. Clin Transl Med 2022; 12:e657. [PMID: 35064780 PMCID: PMC8783349 DOI: 10.1002/ctm2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
ALS is a fatal untreatable disease involving degeneration of motor neurons. Μultiple causative genes encoding proteins with versatile functions have been identified indicating that diverse biological pathways lead to ALS. Chemical entities still represent a promising choice to delay ALS progression, attenuate symptoms and/or increase life expectancy, but also gene-based and stem cell-based therapies are in the process of development, and some are tested in clinical trials. Various compounds proved effective in transgenic models overexpressing distinct ALS causative genes unfortunately though, they showed no efficacy in clinical trials. Notably, while animal models provide a uniform genetic background for preclinical testing, ALS patients are not stratified, and the distinct genetic forms of ALS are treated as one group, which could explain the observed discrepancies between treating genetically homogeneous mice and quite heterogeneous patient cohorts. We suggest that chemical entity-genotype correlation should be exploited to guide patient stratification for pharmacotherapy, that is administered drugs should be selected based on the ALS genetic background.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Angelis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Kostas Vekrellis
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
13
|
Rahman MH, Rana HK, Peng S, Kibria MG, Islam MZ, Mahmud SMH, Moni MA. Bioinformatics and system biology approaches to identify pathophysiological impact of COVID-19 to the progression and severity of neurological diseases. Comput Biol Med 2021; 138:104859. [PMID: 34601390 PMCID: PMC8483812 DOI: 10.1016/j.compbiomed.2021.104859] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) still tends to propagate and increase the occurrence of COVID-19 across the globe. The clinical and epidemiological analyses indicate the link between COVID-19 and Neurological Diseases (NDs) that drive the progression and severity of NDs. Elucidating why some patients with COVID-19 influence the progression of NDs and patients with NDs who are diagnosed with COVID-19 are becoming increasingly sick, although others are not is unclear. In this research, we investigated how COVID-19 and ND interact and the impact of COVID-19 on the severity of NDs by performing transcriptomic analyses of COVID-19 and NDs samples by developing the pipeline of bioinformatics and network-based approaches. The transcriptomic study identified the contributing genes which are then filtered with cell signaling pathway, gene ontology, protein-protein interactions, transcription factor, and microRNA analysis. Identifying hub-proteins using protein-protein interactions leads to the identification of a therapeutic strategy. Additionally, the incorporation of comorbidity interactions score enhances the identification beyond simply detecting novel biological mechanisms involved in the pathophysiology of COVID-19 and its NDs comorbidities. By computing the semantic similarity between COVID-19 and each of the ND, we have found gene-based maximum semantic score between COVID-19 and Parkinson's disease, the minimum semantic score between COVID-19 and Multiple sclerosis. Similarly, we have found gene ontology-based maximum semantic score between COVID-19 and Huntington disease, minimum semantic score between COVID-19 and Epilepsy disease. Finally, we validated our findings using gold-standard databases and literature searches to determine which genes and pathways had previously been associated with COVID-19 and NDs.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Dept. of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Humayan Kabir Rana
- Dept. of Computer Science and Engineering, Green University of Bangladesh, Dhaka, Bangladesh
| | - Silong Peng
- Institute of Automation, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Md Golam Kibria
- Dept. of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Canada
| | - Md Zahidul Islam
- Department of Electronics, Graduate School of Engineering, Nagoya University, Japan
| | - S M Hasan Mahmud
- Dept. of Computer Science, American International University Bangladesh, Dhaka, Bangladesh
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
14
|
Mahoney CJ, Ahmed RM, Huynh W, Tu S, Rohrer JD, Bedlack RS, Hardiman O, Kiernan MC. Pathophysiology and Treatment of Non-motor Dysfunction in Amyotrophic Lateral Sclerosis. CNS Drugs 2021; 35:483-505. [PMID: 33993457 DOI: 10.1007/s40263-021-00820-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis is a progressive and fatal neurodegenerative disease typically presenting with bulbar or limb weakness. There is increasing evidence that amyotrophic lateral sclerosis is a multisystem disease with early and frequent impacts on cognition, behaviour, sleep, pain and fatigue. Dysfunction of normal physiological and metabolic processes also appears common. Evidence from pre-symptomatic studies and large epidemiological cohorts examining risk factors for the future development of amyotrophic lateral sclerosis have reported a high prevalence of changes in behaviour and mental health before the emergence of motor weakness. This suggests that changes beyond the motor system are underway at an early stage with dysfunction across brain networks regulating a variety of cognitive, behavioural and other homeostatic processes. The full impact of non-motor dysfunction continues to be established but there is now sufficient evidence that the presence of non-motor symptoms impacts overall survival in amyotrophic lateral sclerosis, and with up to 80% reporting non-motor symptoms, there is an urgent need to develop more robust therapeutic approaches. This review provides a contemporary overview of the pathobiology of non-motor dysfunction, offering readers a practical approach with regard to assessment and management. We review the current evidence for pharmacological and non-pharmacological treatment of non-motor dysfunction in amyotrophic lateral sclerosis and highlight the need to further integrate non-motor dysfunction as an important outcome measure for future clinical trial design.
Collapse
Affiliation(s)
- Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Richard S Bedlack
- Department of Neurology, Duke University Hospital, Durham, North Carolina, USA
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
15
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
16
|
Lanznaster D, Bejan-Angoulvant T, Gandía J, Blasco H, Corcia P. Is There a Role for Vitamin D in Amyotrophic Lateral Sclerosis? A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:697. [PMID: 32849187 PMCID: PMC7411408 DOI: 10.3389/fneur.2020.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition characterized by the progressive loss of motor neurons. Patients usually die 3–5 years after diagnosis from respiratory failure. Several studies investigated the role of vitamin D as a biomarker or a therapeutic option for ALS patients. To clarify the scientific evidence, we performed a systematic review and different meta-analyses regarding the potential role of vitamin D in ALS. Methods: We performed a systematic review of clinical trials, cohorts, and case–control studies retrieved from PubMed, EMBASE, and Cochrane databases reporting vitamin D levels as a putative biomarker for ALS diagnosis or prognosis or the effect of vitamin D supplementation in ALS patients. Whenever possible, data were pooled using a random-effects model, with an assessment of heterogeneity. Results: Out of 2,996 articles retrieved, we finally included 13 research articles, 12 observational studies (50% prospective), and 1 clinical trial. We found that ALS patients had slightly lower levels of vitamin D than controls (mean difference −6 ng/ml, 95% CI [−10.8; −1.3]), but important confounding factors were not considered in the studies analyzed. We found no relationship between vitamin D levels and ALS functional rate score—revised (ALSFRS-R), with highly heterogeneous results. Discordant results were reported in three studies regarding survival. Finally, five studies reported the effects of vitamin D supplementation with discordant results. Two of them showed a small improvement, whereas two others showed a deleterious effect on ALSFRS-R. One very small clinical trial with important methodological limitations showed some improvement in ALSFRS-R with high doses of vitamin D compared with normal doses. Conclusions: Our review did not find evidence to support the role of vitamin D on ALS diagnosis, prognosis, or treatment. Most studies had important limitations, mostly regarding the risk of bias for not considering confounding factors. Vitamin D supplementation should be offered to ALS patients to avoid other health issues related to vitamin D deficiency, but there is not enough evidence to support the use of vitamin D as a therapy for ALS.
Collapse
Affiliation(s)
| | | | - Jorge Gandía
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Helene Blasco
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| |
Collapse
|
17
|
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:428. [PMID: 32528241 PMCID: PMC7264408 DOI: 10.3389/fnins.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
Collapse
Affiliation(s)
- B Kuraszkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - H Goszczyńska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - T Podsiadły-Marczykowska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - M Piotrkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - P Andersen
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - M Gromicho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Grosskreutz
- Department of Neurology, University Hospital Jena, Jena, Germany.,Jena Centre for Healthy Aging, University Hospital Jena, Jena, Germany
| | | | - S Petri
- Clinic for Neurology, Hannover Medical School, Hanover, Germany
| | - B Stubbendorf
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - K Szacka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - H Uysal
- Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - M de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|