1
|
Yeo NKW, Lim CK, Yaung KN, Khoo NKH, Arkachaisri T, Albani S, Yeo JG. Genetic interrogation for sequence and copy number variants in systemic lupus erythematosus. Front Genet 2024; 15:1341272. [PMID: 38501057 PMCID: PMC10944961 DOI: 10.3389/fgene.2024.1341272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Early-onset systemic lupus erythematosus presents with a more severe disease and is associated with a greater genetic burden, especially in patients from Black, Asian or Hispanic ancestries. Next-generation sequencing techniques, notably whole exome sequencing, have been extensively used in genomic interrogation studies to identify causal disease variants that are increasingly implicated in the development of autoimmunity. This Review discusses the known casual variants of polygenic and monogenic systemic lupus erythematosus and its implications under certain genetic disparities while suggesting an age-based sequencing strategy to aid in clinical diagnostics and patient management for improved patient care.
Collapse
Affiliation(s)
- Nicholas Kim-Wah Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Che Kang Lim
- Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Translation Research, Singapore General Hospital, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Kim Huat Khoo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
4
|
Harley ITW, Sawalha AH. Systemic lupus erythematosus as a genetic disease. Clin Immunol 2022; 236:108953. [PMID: 35149194 PMCID: PMC9167620 DOI: 10.1016/j.clim.2022.108953] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus is the prototypical systemic autoimmune disease, as it is characterized both by protean multi-organ system manifestations and by the uniform presence of pathogenic autoantibodies directed against components of the nucleus. Prior to the modern genetic era, the diverse clinical manifestations of SLE suggested to many that SLE patients were unlikely to share a common genetic risk basis. However, modern genetic studies have revealed that SLE usually arises when an environmental exposure occurs in an individual with a collection of genetic risk variants passing a liability threshold. Here, we summarize the current state of the field aimed at: (1) understanding the genetic architecture of this complex disease, (2) synthesizing how this genetic risk architecture impacts cellular and molecular disease pathophysiology, (3) providing illustrative examples that highlight the rich complexity of the pathobiology of this prototypical autoimmune disease and (4) communicating this complex etiopathogenesis to patients.
Collapse
Affiliation(s)
- Isaac T W Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Human Immunology and Immunotherapy Initiative (HI(3)), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Regional Veteran's Administration Medical Center (VAMC), Medicine Service, Rheumatology Section, Aurora, CO, USA.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Zhang C, Han X, Sun L, Yang S, Peng J, Chen Y, Jin Y, Xu F, Liu Z, Zhou Q. OUP accepted manuscript. Clin Kidney J 2022; 15:2027-2038. [PMID: 36325013 PMCID: PMC9613433 DOI: 10.1093/ckj/sfac130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Heterozygous loss-of-function mutations in the tumour necrosis factor alpha induced protein 3 (TNFAIP3) gene cause an early-onset auto-inflammatory disease named haploinsufficiency of A20 (HA20). Here we describe three unrelated patients with autoimmune lupus nephritis (LN) phenotypes carrying three novel mutations in the TNFAIP3 gene. Methods Whole-exome sequencing (WES) was used to identify the causative mutations in three biopsy-proven LN patients. Sanger sequencing and quantitative polymerase chain reaction (qPCR) were used to validate the mutations identified by WES. RNA sequencing, qPCR and cytometric bead array was used to detect inflammatory signatures in the patients. Results The patients predominantly presented with an autoimmune phenotype, including autoimmune haemolytic anaemia, multipositive autoantibodies and LN. Additionally, novel phenotypes of allergy and pericardial effusion were first reported. WES identified three novel heterozygous mutations in the TNFAIP3 gene, including a novel splicing mutation located in the canonical splicing site (c.634+2T>C) resulting in an intron 4 insertion containing a premature stop codon, a de novo novel copy number variation (exon 7–8 deletion) and a novel nonsense mutation c.1300_1301delinsTA causing a premature stop codon. We further identified hyperactivation signatures of nuclear factor- kappa B and type I IFN signalling and overproduction of pro-inflammatory cytokines in the blood. This report expanded the phenotype to a later age, as two girls were diagnosed at age 3 years and one man at age 29 years. Conclusions Kidney involvement may be the main feature of the clinical spectrum of HA20, even in adults. Genetic screening should be considered for early-onset LN patients.
Collapse
Affiliation(s)
| | | | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, First Hospital, Jilin University, Changchun, China
| | - Jiahui Peng
- Kidney Diseases Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | | | - Qing Zhou
- Correspondence to: Qing Zhou; E-mail:
| |
Collapse
|
6
|
Sandling JK, Pucholt P, Hultin Rosenberg L, Farias FHG, Kozyrev SV, Eloranta ML, Alexsson A, Bianchi M, Padyukov L, Bengtsson C, Jonsson R, Omdal R, Lie BA, Massarenti L, Steffensen R, Jakobsen MA, Lillevang ST, Lerang K, Molberg Ø, Voss A, Troldborg A, Jacobsen S, Syvänen AC, Jönsen A, Gunnarsson I, Svenungsson E, Rantapää-Dahlqvist S, Bengtsson AA, Sjöwall C, Leonard D, Lindblad-Toh K, Rönnblom L. Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing. Ann Rheum Dis 2020; 80:109-117. [PMID: 33037003 PMCID: PMC7788061 DOI: 10.1136/annrheumdis-2020-218636] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/02/2023]
Abstract
Objectives Systemic lupus erythematosus (SLE) is an autoimmune disease with extensive heterogeneity in disease presentation between patients, which is likely due to an underlying molecular diversity. Here, we aimed at elucidating the genetic aetiology of SLE from the immunity pathway level to the single variant level, and stratify patients with SLE into distinguishable molecular subgroups, which could inform treatment choices in SLE. Methods We undertook a pathway-centred approach, using sequencing of immunological pathway genes. Altogether 1832 candidate genes were analysed in 958 Swedish patients with SLE and 1026 healthy individuals. Aggregate and single variant association testing was performed, and we generated pathway polygenic risk scores (PRS). Results We identified two main independent pathways involved in SLE susceptibility: T lymphocyte differentiation and innate immunity, characterised by HLA and interferon, respectively. Pathway PRS defined pathways in individual patients, who on average were positive for seven pathways. We found that SLE organ damage was more pronounced in patients positive for the T or B cell receptor signalling pathways. Further, pathway PRS-based clustering allowed stratification of patients into four groups with different risk score profiles. Studying sets of genes with priors for involvement in SLE, we observed an aggregate common variant contribution to SLE at genes previously reported for monogenic SLE as well as at interferonopathy genes. Conclusions Our results show that pathway risk scores have the potential to stratify patients with SLE beyond clinical manifestations into molecular subsets, which may have implications for clinical follow-up and therapy selection.
Collapse
Affiliation(s)
- Johanna K Sandling
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Lina Hultin Rosenberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fabiana H G Farias
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Christine Bengtsson
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roald Omdal
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Clinical Immunology unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Benedicte A Lie
- Department of Medical Genetics, University of Oslo, Oslo, Norway
| | - Laura Massarenti
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University, Aalborg, Denmark
| | - Marianne A Jakobsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Søren T Lillevang
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | | | - Karoline Lerang
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Øyvind Molberg
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Voss
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Anne Troldborg
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Jacobsen
- Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skane University Hospital, Lund, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skane University Hospital, Lund, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| |
Collapse
|