1
|
Jaing TH, Wang YL, Chiu CC. Antiviral Agents for Preventing Cytomegalovirus Disease in Recipients of Hematopoietic Cell Transplantation. Viruses 2024; 16:1268. [PMID: 39205242 PMCID: PMC11359103 DOI: 10.3390/v16081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review discusses the use of prophylaxis to prevent cytomegalovirus (CMV) infection in recipients who have undergone hematopoietic cell transplantation. It highlights the need for new approaches to control and prevent CMV infection. The approval of the anti-CMV drug letermovir has made antiviral prophylaxis more popular. CMV-specific T cell-mediated immunity tests are effective in identifying patients who have undergone immune reconstitution and predicting disease progression. Maribavir (MBV) has been approved for the treatment of post-transplant CMV infection/disease in adolescents. Adoptive T-cell therapy and the PepVax CMV vaccine show promise in tackling refractory and resistant CMV. However, the effectiveness of PepVax in reducing CMV viremia/disease was not demonstrated in a phase II trial. Cell-mediated immunity assays are valuable for personalized management plans, but more interventional studies are needed. MBV and adoptive T-cell therapy are promising treatments, and trials for CMV vaccines are ongoing.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| |
Collapse
|
2
|
Richards KA, Changrob S, Thomas PG, Wilson PC, Sant AJ. Lack of memory recall in human CD4 T cells elicited by the first encounter with SARS-CoV-2. iScience 2024; 27:109992. [PMID: 38868209 PMCID: PMC11166706 DOI: 10.1016/j.isci.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
The studies reported here focus on the impact of pre-existing CD4 T cell immunity on the first encounter with SARS-CoV-2. They leverage PBMC samples from plasma donors collected after a first SARS-CoV-2 infection, prior to vaccine availability and compared to samples collected prior to the emergence of SARS-CoV-2. Analysis of CD4 T cell specificity across the entire SARS-CoV-2 proteome revealed that the recognition of SARS-CoV-2-derived epitopes by CD4 memory cells prior to the pandemic are enriched for reactivity toward non-structural proteins conserved across endemic CoV strains. However, CD4 T cells after primary infection with SARS-CoV-2 focus on epitopes from structural proteins. We observed little evidence for preferential recall to epitopes conserved between SARS-CoV-2 and seasonal CoV, a finding confirmed through use of selectively curated conserved and SARS-unique peptides. Our data suggest that SARS-CoV-2 CD4 T cells elicited by the first infection are primarily established from the naive CD4 T cell pool.
Collapse
Affiliation(s)
- Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Siriruk Changrob
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Patrick C. Wilson
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
3
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2024:10.1007/s12033-024-01144-3. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Gupta Y, Baranwal M, Chudasama B. Zika virus precursor membrane peptides induce immune response in peripheral blood mononuclear cells. Hum Immunol 2024; 85:110761. [PMID: 38272735 DOI: 10.1016/j.humimm.2024.110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Zika virus is a re-merging flavivirus allied to serious mental health conditions in the fetuses. There is currently no preventives or treatment available for Zika infection. In this work, we have extended the in silico analysis by performing the molecular docking of previous reported three conserved Zika virus precursor membrane (prM) peptides (MP1, MP2 and MP3) with HLA complex (pHLA) and T cell receptors (TCR) and also evaluated the peptide specific immune response in human peripheral blood mononuclear cells (PBMC). Most of the CD8+ and CD4+ T cell peptides-HLA complexes demonstrated good binding energies (ΔG) and HADDOCK scores in molecular docking analysis. Immunogenic response of peptides is measured as human peripheral blood mononuclear cell (PBMC) proliferation and interferon-gamma (IFN-γ) production using a 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and a sandwich enzyme-linked immunosorbent assay (ELISA) respectively on ten different healthy blood samples. Peptide MP3 exhibited significant results in eight (cell proliferation) and seven (IFN-γ secretion) healthy volunteers' blood samples out of ten. Additionally, peptides MP1 and MP2 presented significant cell proliferation and IFN-γ release in six healthy blood samples. Thus, the outcomes from in silico and in vitro studies showed the immunogenic potential of peptides which need to validated in different experimental system before considering as candidate vaccine against Zika virus infection.
Collapse
Affiliation(s)
- Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Bhupendra Chudasama
- School of Physics & Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
5
|
Dapporto F, De Tommaso D, Marrocco C, Piu P, Semplici C, Fantoni G, Ferrigno I, Piccini G, Monti M, Vanni F, Razzano I, Manini I, Montomoli E, Manenti A. Validation of a double-color ELISpot assay of IFN-γ and IL-4 production in human peripheral blood mononuclear cells. J Immunol Methods 2024; 524:113588. [PMID: 38040193 DOI: 10.1016/j.jim.2023.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
The Enzyme-Linked ImmunoSpot (ELISpot) assay detects cytokines secreted during T cell-specific immune responses against pathogens. As this assay has acquired importance in the clinical setting, standard bioanalytical evaluation of this method is required. Here, we describe a formal bioanalytical validation of a double-color ELISpot assay for the evaluation of IFN-γ and IL-4 released by T helper 1 and T helper 2 cells, respectively. As recommended by international guidelines, the parameters assessed were: range and detection limits (limit of detection, LOD; upper and lower limit of quantification, ULOQ and LLOQ), Linearity, Relative Accuracy, Repeatability, Intermediate Precision, Specificity and Robustness. The results obtained in this validation study demonstrate that this assay meets the established acceptability criteria. ELISpot is therefore a reliable technique for measuring T cell-specific immune responses against various antigens of interest.
Collapse
Affiliation(s)
| | | | - Camilla Marrocco
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy
| | - Pietro Piu
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy
| | - Claudia Semplici
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy
| | - Giulia Fantoni
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy
| | - Ilaria Ferrigno
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy
| | - Giulia Piccini
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy
| | - Martina Monti
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy
| | - Francesca Vanni
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy.
| | - Ilaria Razzano
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy
| | - Emanuele Montomoli
- VisMederi S.r.l., Via Franco Ferrini, 53, 53035 Monteriggioni, Italy; Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy
| | | |
Collapse
|
6
|
Kamperschroer C, Frank B, Genell C, Lebrec H, Mitchell-Ryan S, Molinier B, Newsome C, Piche MS, Weinstock D, Collinge M, Freebern W, Rubio D. Current approaches to evaluate the function of cytotoxic T-cells in non-human primates. J Immunotoxicol 2023; 20:2176952. [PMID: 36788724 DOI: 10.1080/1547691x.2023.2176952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Cytotoxic T-lymphocytes (CTL) are a subset of T-cells that play a critical role in protecting against intracellular infections and cancer, and have the ability to identify and kill infected or transformed cells expressing non-self peptides associated with major histocompatibility (MHC) Class I molecules. Conversely, aberrant CTL activity can contribute to immune-related pathology under conditions of overwhelming infection or autoimmunity. Disease-modifying therapeutics can have unintended effects on CTL, and a growing number of therapeutics are intended to either suppress or enhance CTL or their functions. The susceptibility of CTL to unintended effects from common therapeutic modalities underscores the need for a better understanding of the impact that such therapies have on CTL function and the associated safety implications. While there are reliable ways of quantifying CTL, notably via flow cytometric analysis of specific CTL markers, it has been a greater challenge to implement fit-for-purpose methods measuring CTL function in the context of safety studies of therapeutics. This review focuses on methods for measuring CTL responses in the context of drug safety and pharmacology testing, with the goals of informing the reader about current approaches, evaluating their pros and cons, and providing perspectives on the utility of these approaches for safety evaluation.
Collapse
Affiliation(s)
| | | | | | - Hervé Lebrec
- Sonoma Biotherapeutics, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bakhshi P, Nourizadeh M, Sharifi L, Farajollahi MM, Mohsenzadegan M. Development of dendritic cell loaded MAGE-A2 long peptide; a potential target for tumor-specific T cell-mediated prostate cancer immunotherapy. Cancer Cell Int 2023; 23:270. [PMID: 37951911 PMCID: PMC10638778 DOI: 10.1186/s12935-023-03108-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men worldwide. Immunotherapy is an emerging treatment modality for cancers that harnesses the immune system's ability to eliminate tumor cells. In particular, dendritic cell (DC) vaccines, have demonstrated promise in eliciting a tumor-specific immune response. In this study, we investigated the potential of using DCs loaded with the MAGE-A2 long peptide to activate T cell cytotoxicity toward PCa cell lines. METHODS Here, we generated DCs from monocytes and thoroughly characterized their phenotypic and functional properties. Then, DCs were pulsed with MAGE-A2 long peptide (LP) as an antigen source, and monitored for their transition from immature to mature DCs by assessing the expression levels of several costimulatory and maturation molecules like CD14, HLA-DR, CD40, CD11c, CD80, CD83, CD86, and CCR7. Furthermore, the ability of MAGE-A2 -LP pulsed DCs to stimulate T cell proliferation in a mixed lymphocyte reaction (MLR) setting and induction of cytotoxic T cells (CTLs) in coculture with autologous T cells were examined. Finally, CTLs were evaluated for their capacity to produce interferon-gamma (IFN-γ) and kill PCa cell lines (PC3 and LNCaP). RESULTS The results demonstrated that the antigen-pulsed DCs exhibited a strong ability to stimulate the expansion of T cells. Moreover, the induced CTLs displayed substantial cytotoxicity against the target cells and exhibited increased IFN-γ production during activation compared to the controls. CONCLUSIONS Overall, this innovative approach proved efficacious in targeting PCa cell lines, showcasing its potential as a foundation for the development and improved PCa cancer immunotherapy.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran
| | - Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran.
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran.
| |
Collapse
|
8
|
Chandra S, Long BR, Fonck C, Melton AC, Arens J, Woloszynek J, O'Neill CA. Safety Findings of Dosing Gene Therapy Vectors in NHP With Pre-existing or Treatment-Emergent Anti-capsid Antibodies. Toxicol Pathol 2023; 51:246-256. [PMID: 37921115 DOI: 10.1177/01926233231202995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Replication-incompetent adeno-associated virus (AAV)-based vectors are nonpathogenic viral particles used to deliver therapeutic genes to treat multiple monogenic disorders. AAVs can elicit immune responses; thus, one challenge in AAV-based gene therapy is the presence of neutralizing antibodies against vector capsids that may prevent transduction of target cells or elicit adverse findings. We present safety findings from two 12-week studies in nonhuman primates (NHPs) with pre-existing or treatment-emergent antibodies. In the first study, NHPs with varying levels of naturally acquired anti-AAV5 antibodies were dosed with an AAV5-based vector encoding human factor VIII (hFVIII). In the second study, NHPs with no pre-existing anti-AAV antibodies were dosed with an AAV5-based vector carrying the beta subunit of choriogonadotropic hormone (bCG); this led to the induction of high-titer antibodies against the AAV5 capsid. Four weeks later, the same NHPs received an equivalent dose of an AAV5-based vector carrying human factor IX (hFIX). In both of these studies, the administration of vectors carrying hFVIII, bCG, and hFIX was well-tolerated in NHPs with no adverse clinical pathology or microscopic findings. These two studies demonstrate the safety of AAV-based vector administration in NHPs with either low-titer pre-existing anti-AAV5 antibodies or re-administration, even in the presence of high-titer antibodies.
Collapse
Affiliation(s)
- Sundeep Chandra
- BioMarin Pharmaceutical Inc., Novato, California, USA
- Sana Biotechnology, Seattle, Washington, USA
| | - Brian R Long
- BioMarin Pharmaceutical Inc., Novato, California, USA
| | - Carlos Fonck
- BioMarin Pharmaceutical Inc., Novato, California, USA
- Astellas Gene Therapies, San Francisco, California, USA
| | | | - Jeremy Arens
- BioMarin Pharmaceutical Inc., Novato, California, USA
| | - Jill Woloszynek
- BioMarin Pharmaceutical Inc., Novato, California, USA
- Astellas Gene Therapies, San Francisco, California, USA
| | | |
Collapse
|
9
|
Yi PC, Zhuo L, Lin J, Chang C, Goddard A, Yoon OK. Impact of delayed PBMC processing on functional and genomic assays. J Immunol Methods 2023:113514. [PMID: 37353001 DOI: 10.1016/j.jim.2023.113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are commonly isolated from whole blood samples in clinical trials. Isolated PBMCs can be cryopreserved for use in downstream assays such as flow cytometry, single-cell RNA sequencing (scRNA-seq) and enzyme-linked immunosorbent spot (ELISpot) assays to aid understanding of disease biology and treatment effects, and biomarker identification. However, due to logistical practicalities, delays from blood collection to PBMC processing may exceed 24 h, which can potentially affect PBMC function and, ultimately, downstream assay results. Whole blood samples from 20 healthy adults were collected and incubated at 20-25 °C for 2-48 h before PBMC processing. PBMC viability was measured, and flow cytometry immunophenotyping, scRNA-seq and ELISpot were performed following increasing PBMC processing delays. The RosetteSep™ granulocyte depletion kit was used to evaluate the impact of granulocyte contamination following processing delay. Processed scRNA-seq reads were used to identify cell clusters based on marker genes. scRNA-seq data was further used to determine gene expression correlation and pathway activity score in major PBMC cell types (T cells, B cells, natural killer cells, monocytes and dendritic cells) between PBMC preparations subjected to shorter (2-4 h) and longer (8-48 h) processing delays. ELISpot assays evaluated the impact of processing delays on the number of interferon-γ (IFN-γ) secreting cells from ex vivo stimulated PBMCs. PBMC viability was reduced after a 48-h processing delay. Flow cytometry showed that granulocyte contamination of PBMCs increased after 24 h. Cluster analysis of scRNA-seq data identified 23 immune cell type gene expression clusters that were not significantly changed upon granulocyte depletion. Gene expression correlations across the major PBMC cell types were < 0.8 after 24 h of delay compared with 2 or 4 h of delay. Inflammatory, proliferation and signaling pathway activities increased, whereas IFN-γ and metabolic pathway activities decreased with increasing PBMC processing delays. The number of IFN-γ secreting cells trended towards a reduction as PBMC processing delays increased. PBMC processing delays should be minimised when designing clinical trials to reduce outcome variability in downstream assays. Ideally clinical trial sites should have on-site PBMC processing capabilities or be located close to such facilities.
Collapse
Affiliation(s)
- Ping-Cheng Yi
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Luting Zhuo
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc., Foster City, CA, USA
| | - Julie Lin
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Calvin Chang
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Audrey Goddard
- Biomarker Sciences, Gilead Sciences Inc., Foster City, CA, USA
| | - Oh Kyu Yoon
- Clinical Bioinformatics & Exploratory Analytics, Gilead Sciences Inc., Foster City, CA, USA.
| |
Collapse
|
10
|
Anthony K, Ala P, Catapano F, Meng J, Domingos J, Perry M, Ricotti V, Maresh K, Phillips LC, Servais L, Seferian AM, De Lucia S, de Groot I, Krom YD, Verschuuren JGM, Niks EH, Straub V, Guglieri M, Voit T, Morgan J, Muntoni F. T Cell Responses to Dystrophin in a Natural History Study of Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:439-448. [PMID: 36453228 DOI: 10.1089/hum.2022.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, but many patients have rare revertant fibers that express dystrophin. The skeletal muscle pathology of DMD patients includes immune cell infiltration and inflammatory cascades. There are several strategies to restore dystrophin in skeletal muscles of patients, including exon skipping and gene therapy. There is some evidence that dystrophin restoration leads to a reduction in immune cells, but dystrophin epitopes expressed in revertant fibers or following genome editing, cell therapy, or microdystrophin delivery after adeno-associated viral gene therapy may elicit T cell production in patients. This may affect the efficacy of the therapeutic intervention, and potentially lead to serious adverse events. To confirm and extend previous studies, we performed annual enzyme- linked immunospot interferon-gamma assays on peripheral blood mononuclear cells from 77 pediatric boys with DMD recruited into a natural history study, 69 of whom (89.6%) were treated with corticosteroids. T cell responses to dystrophin were quantified using a total of 368 peptides spanning the entire dystrophin protein, organized into nine peptide pools. Peptide mapping pools were used to further localize the immune response in one positive patient. Six (7.8%) patients had a T cell-mediated immune response to dystrophin at at least one time point. All patients who had a positive result had been treated with corticosteroids, either prednisolone or prednisone. Our results show that ∼8% of DMD individuals in our cohort have a pre-existing T cell-mediated immune response to dystrophin, despite steroid treatment. Although these responses are relatively low level, this information should be considered a useful immunological baseline before undertaking clinical trials and future DMD studies. We further highlight the importance for a robust, reproducible standard operating procedure for collecting, storing, and shipping samples from multiple centers to minimize the number of inconclusive data.
Collapse
Affiliation(s)
- Karen Anthony
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Catapano
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Joana Domingos
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Mark Perry
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Valeria Ricotti
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Kate Maresh
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Lauren C Phillips
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Laurent Servais
- Institut de Myologie, Groupe hospitalier La Pitié Salpétrière, Paris, France
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, United Kingdom
- Division of Paediatrics, Neuromuscular Center, University Hospital and University of Liège, Liège, Belgium
| | | | | | | | - Yvonne D Krom
- Leiden University Medical Centre, Leiden, Netherlands
| | | | - Erik H Niks
- Leiden University Medical Centre, Leiden, Netherlands
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Thomas Voit
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
11
|
Gorovits B, Azadeh M, Buchlis G, Fiscella M, Harrison T, Havert M, Janetzki S, Jawa V, Long B, Mahnke YD, McDermott A, Milton M, Nelson R, Vettermann C, Wu B. Evaluation of Cellular Immune Response to Adeno-Associated Virus-Based Gene Therapy. AAPS J 2023; 25:47. [PMID: 37101079 PMCID: PMC10132926 DOI: 10.1208/s12248-023-00814-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
The number of approved or investigational late phase viral vector gene therapies (GTx) has been rapidly growing. The adeno-associated virus vector (AAV) technology continues to be the most used GTx platform of choice. The presence of pre-existing anti-AAV immunity has been firmly established and is broadly viewed as a potential deterrent for successful AAV transduction with a possibility of negative impact on clinical efficacy and a connection to adverse events. Recommendations for the evaluation of humoral, including neutralizing and total antibody based, anti-AAV immune response have been presented elsewhere. This manuscript aims to cover considerations related to the assessment of anti-AAV cellular immune response, including review of correlations between humoral and cellular responses, potential value of cellular immunogenicity assessment, and commonly used analytical methodologies and parameters critical for monitoring assay performance. This manuscript was authored by a group of scientists involved in GTx development who represent several pharma and contract research organizations. It is our intent to provide recommendations and guidance to the industry sponsors, academic laboratories, and regulatory agencies working on AAV-based GTx viral vector modalities with the goal of achieving a more consistent approach to anti-AAV cellular immune response assessment.
Collapse
Affiliation(s)
| | - Mitra Azadeh
- Ultragenyx Pharmaceutical Inc, Novato, California, USA
| | - George Buchlis
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Mike Havert
- Gene Therapy Partners, San Diego, California, USA
| | | | - Vibha Jawa
- Bristol Myers Squibb Pharmaceutical, Princeton, New Jersey, USA
| | - Brian Long
- BioMarin Pharmaceutical Inc, Novato, California, USA
| | | | - Andrew McDermott
- Labcorp Early Development Laboratories Inc, Indianapolis, Indiana, USA
| | - Mark Milton
- Lake Boon Pharmaceutical Consulting LLC, Hudson, New York, USA
| | | | | | - Bonnie Wu
- Janssen Pharmaceuticals, Raritan, New Jersey, USA
| |
Collapse
|
12
|
Waerlop G, Leroux-Roels G, Lambe T, Bellamy D, Medaglini D, Pettini E, Cox RJ, Trieu MC, Davies R, Bredholt G, Montomoli E, Gianchecchi E, Clement F. Harmonization and qualification of an IFN-γ Enzyme-Linked ImmunoSpot assay (ELISPOT) to measure influenza-specific cell-mediated immunity within the FLUCOP consortium. Front Immunol 2022; 13:984642. [PMID: 36159843 PMCID: PMC9493492 DOI: 10.3389/fimmu.2022.984642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza continues to be the most important cause of viral respiratory disease, despite the availability of vaccines. Today’s evaluation of influenza vaccines mainly focuses on the quantitative and functional analyses of antibodies to the surface proteins haemagglutinin (HA) and neuraminidase (NA). However, there is an increasing interest in measuring cellular immune responses targeting not only mutation-prone surface HA and NA but also conserved internal proteins as these are less explored yet potential correlates of protection. To date, laboratories that monitor cellular immune responses use a variety of in-house procedures. This generates diverging results, complicates interlaboratory comparisons, and hampers influenza vaccine evaluation. The European FLUCOP project aims to develop and standardize assays for the assessment of influenza vaccine correlates of protection. This report describes the harmonization and qualification of the influenza-specific interferon-gamma (IFN-γ) Enzyme-Linked ImmunoSpot (ELISpot) assay. Initially, two pilot studies were conducted to identify sources of variability during sample analysis and spot enumeration in order to develop a harmonized Standard Operating Procedure (SOP). Subsequently, an assay qualification study was performed to investigate the linearity, intermediate precision (reproducibility), repeatability, specificity, Lower and Upper Limits of Quantification (LLOQ-ULOQ), Limit of Detection (LOD) and the stability of signal over time. We were able to demonstrate that the FLUCOP harmonized IFN-γ ELISpot assay procedure can accurately enumerate IFN-γ secreting cells in the analytical range of 34.4 Spot Forming Units (SFU) per million cells up to the technical limit of the used reader and in the linear range from 120 000 to 360 000 cells per well, in plates stored up to 6 weeks after development. This IFN-γ ELISpot procedure will hopefully become a useful and reliable tool to investigate influenza-specific cellular immune responses induced by natural infection or vaccination and can be an additional instrument in the search for novel correlates of protection.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
- *Correspondence: Gwenn Waerlop,
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Duncan Bellamy
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Pettini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Mai-Chi Trieu
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Davies
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| | | | - Frédéric Clement
- Center for Vaccinology (CEVAC), University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, Tarcsa E, Fang X, Hofer L, Kavita U, Upreti VV, Gupta S, Loo L, Johnson AJ, Chandode RK, Stubenrauch KG, Vinzing M, Xia CQ, Jawa V. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev 2022; 26:471-494. [PMID: 36092368 PMCID: PMC9418752 DOI: 10.1016/j.omtm.2022.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects. Different clinical mitigation strategies have been employed to alleviate treatment-induced or -boosted immunogenicity in order to achieve desired efficacy, reduce toxicity, or treat more patients who are seropositive to AAV vectors. In this review, the immunogenicity risk assessment, manifestation of immunogenicity and its impact in nonclinical and clinical studies, and various clinical mitigation strategies are summarized. Last, we present bioanalytical strategies, methodologies, and assay validation applied to appropriately monitor immunogenicity in AAV gene therapy-treated subjects.
Collapse
|
14
|
Glycine Nano-Selenium Enhances Immunoglobulin and Cytokine Production in Mice Immunized with H9N2 Avian Influenza Virus Vaccine. Int J Mol Sci 2022; 23:ijms23147914. [PMID: 35887267 PMCID: PMC9317336 DOI: 10.3390/ijms23147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
This study was performed to investigate the immune enhancement effect of glycine nano-selenium, a microelement on H9N2 avian influenza virus vaccine (H9N2 AIV vaccine) in mice. Fifty (50) Specific Pathogen Free Kunming mice aged 4−6 weeks (18−20 g Body weight) were randomly divided into five groups: control normal group, which received no immunization + 0.5 mL 0.9% normal saline, positive control group, which received H9N2 AIV vaccine + 0.5 mL 0.9% normal saline, 0.25 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 0.25 mg/kg selenium solution, 0.5 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 0.5 mg/kg selenium solution, and 1 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 1 mg/kg selenium solution. Hematoxylin and eosin staining, enzyme linked immunosorbent assay (ELISA), and quantitative real time polymerase chain reaction (qRT-PCR) methods were used to investigate the pathological changes, immunoglobulin levels, and cytokine gene expressions in this study. The results showed that all tested doses (0.25 mg/kg, 0.5 mg/kg and 1.00 mg/kg) of glycine nano-selenium did not lead to poisoning in mice. In addition, when compared to the positive control group, glycine nano-selenium increased the immunoglobin indexes (IgA, IgG, IgM and AIV-H9 IgG in serum) as well as the mRNA levels of IL-1β, IL-6 and INF-γ in the liver, lungs, and spleen (p < 0.05). In summary, glycine nano-selenium could enhance the efficacy of avian influenza vaccine.
Collapse
|
15
|
Wang C, Wang C, Wu Y, Gao J, Han Y, Chu Y, Qiang L, Qiu J, Gao Y, Wang Y, Song F, Wang Y, Shao X, Zhang Y, Han L. High-Throughput, Living Single-Cell, Multiple Secreted Biomarker Profiling Using Microfluidic Chip and Machine Learning for Tumor Cell Classification. Adv Healthc Mater 2022; 11:e2102800. [PMID: 35368151 DOI: 10.1002/adhm.202102800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Secreted proteins provide abundant functional information on living cells and can be used as important tumor diagnostic markers, of which profiling at the single-cell level is helpful for accurate tumor cell classification. Currently, achieving living single-cell multi-index, high-sensitivity, and quantitative secretion biomarker profiling remains a great challenge. Here, a high-throughput living single-cell multi-index secreted biomarker profiling platform is proposed, combined with machine learning, to achieve accurate tumor cell classification. A single-cell culture microfluidic chip with self-assembled graphene oxide quantum dots (GOQDs) enables high-activity single-cell culture, ensuring normal secretion of biomarkers and high-throughput single-cell separation, providing sufficient statistical data for machine learning. At the same time, the antibody barcode chip with self-assembled GOQDs performs multi-index, highly sensitive, and quantitative detection of secreted biomarkers, in which each cell culture chamber covers a whole barcode array. Importantly, by combining the K-means strategy with machine learning, thousands of single tumor cell secretion data are analyzed, enabling tumor cell classification with a recognition accuracy of 95.0%. In addition, further profiling of the grouping results reveals the unique secretion characteristics of subgroups. This work provides an intelligent platform for high-throughput living single-cell multiple secretion biomarker profiling, which has broad implications for cancer investigation and biomedical research.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Chunhua Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Wu
- Obstetrics and Gynecology Department Peking University Third Hospital Beijing 100191 China
| | - Jianwei Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yingkuan Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yujin Chu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Le Qiang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yakun Gao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yanhao Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Fangteng Song
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yihe Wang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Xiaowei Shao
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Yu Zhang
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| | - Lin Han
- Institute of Marine Science and Technology Shandong University Tsingdao 266237 China
| |
Collapse
|
16
|
Differential T cell immune responses to deamidated adeno-associated virus vector. Mol Ther Methods Clin Dev 2022; 24:255-267. [PMID: 35211638 PMCID: PMC8829777 DOI: 10.1016/j.omtm.2022.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/16/2022] [Indexed: 01/09/2023]
Abstract
Despite the high safety profile demonstrated in clinical trials, the immunogenicity of adeno-associated virus (AAV)-mediated gene therapy remains a major hurdle. Specifically, T-cell-mediated immune responses to AAV vectors are related to loss of efficacy and potential liver toxicities. As post-translational modifications in T cell epitopes have the potential to affect immune reactions, the cellular immune responses to peptides derived from spontaneously deamidated AAV were investigated. Here, we report that highly deamidated sites in AAV9 contain CD4 T cell epitopes with a Th1 cytokine pattern in multiple human donors with diverse human leukocyte antigen (HLA) backgrounds. Furthermore, some peripheral blood mononuclear cell (PBMC) samples demonstrated differential T cell activation to deamidated or non-deamidated epitopes. Also, in vitro and in silico HLA binding assays showed differential binding to the deamidated or non-deamidated peptides in some HLA alleles. This study provides critical attributes to vector-immune-mediated responses, as AAV deamidation can impact the immunogenicity, safety, and efficacy of AAV-mediated gene therapy in some patients.
Collapse
|
17
|
Mazurek R, Ishikawa K. ELISpot Assay for Gene Therapy in Large Animal Studies. Methods Mol Biol 2022; 2573:323-332. [PMID: 36040606 DOI: 10.1007/978-1-0716-2707-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Formation of neutralizing antibodies and cellular immune response with repeat adeno-associated virus (AAV) gene therapy dosing are critical concerns in translational, large animal studies. The enzyme-linked immunospot/immunosorbent spot (ELISpot) assay introduced a way to track B- and/or T-cell response to therapy over time at a protein level. We describe the protocol for this assay looking at relative interferon (IFN)-γ secretion in pre- and post-AAV injections in a pig model.
Collapse
Affiliation(s)
- Renata Mazurek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|