1
|
Li H, Zhang Y, Zhu Y, Zhao Q, Xu J, Li X, Zhao L, Li H, Liu M, Qian Y, Zhang X, Chen K. Functional insights into immunoglobulin superfamily proteins in invertebrate neurobiology and immunity. Front Immunol 2025; 16:1552151. [PMID: 40242768 PMCID: PMC11999971 DOI: 10.3389/fimmu.2025.1552151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The Immunoglobulin Superfamily (IgSF) represents a vital protein family widely distributed in animal genomes, encompassing multifunctional proteins with immunoglobulin-like domains, including immunoglobulins. These proteins play pivotal roles in various biological processes, such as development, differentiation, adhesion, activation, regulation, and signal transduction. While the functions of IgSF in vertebrates are relatively well understood, their roles in invertebrates remain underexplored. This review aims to comprehensively summarize the functions and mechanisms of IgSF in invertebrates, focusing on arthropods, mollusks, and other primitive phyla. In arthropods, research on IgSF has primarily emphasized its roles in the nervous system, especially in axonal and synaptic regulation, and its critical functions in the immune system. Studies in mollusks have predominantly highlighted the immunological functions of IgSF in pathogen recognition, clearance responses, and signal transduction. In contrast, research on protozoa and platyhelminths has mainly focused on identifying IgSF molecules, with relatively limited insights into their functional roles. In sponges, IgSF is primarily associated with cell adhesion and intercellular recognition. By exploring the genetic and protein structural diversity of IgSF in invertebrates, this review reveals their multifunctionality and complexity in biological systems. It not only enhances our understanding of the roles of IgSF in invertebrates but also lays the groundwork for future studies on their potential applications in evolutionary biology and disease models.
Collapse
Affiliation(s)
- Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Ocean College, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Yijie Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qingzhi Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jialu Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xianwei Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Ling Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hairun Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Mingcheng Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuncheng Qian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xiaofen Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Jana U, Rodriguez OL, Lees W, Engelbrecht E, Vanwinkle Z, Peres A, Gibson WS, Shields K, Schultze S, Dorgham A, Emery M, Deikus G, Sebra R, Eichler EE, Yaari G, Smith ML, Watson CT. The human immunoglobulin heavy chain constant gene locus is enriched for large complex structural variants and coding polymorphisms that vary in frequency among human populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.634878. [PMID: 39990387 PMCID: PMC11844466 DOI: 10.1101/2025.02.12.634878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The immunoglobulin heavy chain constant (IGHC) domain of antibodies (Ab) is responsible for effector functions critical to Ab mediated immunity. In humans, this domain is encoded by genes within the IGHC locus, where descriptions of genomic diversity remain incomplete. To address this, we utilized long-read genomic datasets to build a high-quality IGHC haplotype/variant catalog from 105 individuals of diverse ancestry, and developed a high-throughput approach for targeted long-read IGHC locus sequencing and assembly. From locally phased assemblies, we discovered previously uncharacterized single nucleotide variants (SNV) and complex structural variants (SVs, n=7), as well as novel genes and alleles. Of the 262 identified IGHC coding alleles, 235 (89.6%) were undocumented. SNV, SV, and gene allele/genotype frequencies revealed significant population differentiation, including; (i) hundreds of SNVs in African and East Asian populations exceeding fixation index (FST) of 0.3, (ii) and an IGHG4 haplotype carrying specific coding variants uniquely enriched in East and South Asian populations. Our results illuminate missing signatures of haplotype diversity in the IGHC locus, including evidence of natural selection, and establish a new foundation for investigating IGHC germline variation and its role in Ab function and disease.
Collapse
Affiliation(s)
- Uddalok Jana
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - William Lees
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eric Engelbrecht
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zach Vanwinkle
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ayelet Peres
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - William S. Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Abdullah Dorgham
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew Emery
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
3
|
Castillo-Lopez E, Biber P, Sener-Aydemir A, Hummel K, Razzazi-Fazeli E, Reisinger N, Zebeli Q, Kreuzer-Redmer S, Hartinger T. Characterization of the colostrum proteome of primiparous Holstein cows and its association with colostrum immunoglobulin G concentrations. J Anim Sci Biotechnol 2025; 16:10. [PMID: 39833978 PMCID: PMC11748342 DOI: 10.1186/s40104-024-01144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The objective was to characterize the colostrum proteome of primiparous Holstein cows in association with immunoglobulin G (IgG) content. Immediately after calving, colostrum samples were collected from 18 cows to measure IgG concentration. Based on colostrum IgG content, samples were classified through cluster analysis and were identified as poor, average, and excellent quality. The proteome was assessed with quantitative shotgun proteomics; abundance data were compared among the colostrum types; enrichment analysis of metabolic processes and proteins classes was performed as well. We also tested correlations between this proteome and blood globulin level of cows and passive immunity level of calves. RESULTS On average, 428 proteins were identified per sample, which belonged mainly to cellular process, biological regulation, response to stimulus, metabolic process, and immune system process. Most abundant proteins were complement C3 (Q2UVX4), alpha-S1-casein (P02662), Ig-like domain-containing protein (A0A3Q1M032), albumin (A0A140T897), polymeric immunoglobulin receptor (P81265), lactotransferrrin (P24627), and IGHG1*01 (X16701_4). Colostrum of excellent quality had greater (P < 0.05) abundance of serpin A3-7 (A2I7N3), complement factor I (A0A3Q1MIF4), lipocalin/cytosolic fatty-acid binding domain-containing protein (A0A3Q1MRQ2), complement C3 (E1B805), complement component 4 binding protein alpha (A0AAF6ZHP5), and complement component C6 (F1MM86). However, colostrum of excellent quality had lower (P < 0.05) abundance of HGF activator (E1BCW0), alpha-S1-casein (P02662), and xanthine dehydrogenase/oxidase (P80457). This resulted in enrichment of the biological processes predominantly for complement activation alternative pathway, complement activation, complement activation classical pathway, humoral immune response, leukocyte mediated immunity, and negative regulation of endopeptidase activity in excellent-quality colostrum. Additionally, some colostrum proteins were found to be correlated with the blood globulin level of cows and with the passive immunity level of calves (P < 0.05; r ≥ 0.57). CONCLUSIONS This study provides new insights into the bovine colostrum proteome, demonstrating associations between IgG levels and the abundance of other proteins, as well as the enrichment of metabolic processes related to innate immune response. Thus, results suggest that the colostrum proteomic profile is associated with the content of IgG. Future research should deeply explore the association of these findings with pre-calving nutrition status and blood composition of the cow, and with passive immunity transfer to the calf.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria.
| | - Patrick Biber
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Karin Hummel
- University of Veterinary Medicine Vienna, VetCore Facility (Mass Spectrometry), Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- University of Veterinary Medicine Vienna, VetCore Facility (Mass Spectrometry), Vienna, Austria
| | - Nicole Reisinger
- Dsm-Firmenich, Animal Nutrition & Health R&D Center, Tulln, Austria
| | - Qendrim Zebeli
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Thomas Hartinger
- Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| |
Collapse
|
4
|
Selber-Hnatiw S, Zhou S. The good, the bad, and Neanderthalic immunity. Trends Genet 2025; 41:6-8. [PMID: 39547873 DOI: 10.1016/j.tig.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Introgression with archaic hominins and subsequent natural selection has shaped the immune system of modern humans. Recently, Sun et al. investigated the immunity advantages of a Neanderthalic variant in the membrane-bound immunoglobulin G1 (IGHG1) gene, activating pathogen-specific antibody production toward modern threats yet conversely increasing the risk of autoimmune diseases.
Collapse
Affiliation(s)
- Susannah Selber-Hnatiw
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Canada
| | - Sirui Zhou
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Movérare R, Lind P, Marknell DeWitt Å. The mouse monoclonal antibody 4E3 is specific for the G1m17 allotype of human IgG1. J Immunol Methods 2024; 534:113766. [PMID: 39424054 DOI: 10.1016/j.jim.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Allotype is an amino acid variation within the immunoglobulin isotypes. Four allotypes have been described for human IgG1 and two of them (G1m3 and G1m17) are located at position 214 in the CH1 region of the gamma chain. Various diseases have been associated with allotype expression, making the allotype research an interesting field in immunology. However, allotype-specific reagents are rare. In the present study the specificity of a widely used and commercially available IgG1-specific monoclonal antibody named 4E3, described as binding to the hinge region of IgG1, was evaluated. Using the ImmunoCAP™ assay technology, surprisingly no IgG1 was measured in 13 of 23 human serum and plasma samples when 4E3 was used in an antibody-enzyme conjugate as detection reagent. Further evaluation of 4E3 using eight IgG1 myeloma paraproteins revealed that 4E3 did not bind to three of them. No association was seen between the binding pattern and myeloma light chain glycosylation or the kappa or light chain use. By comparing the myeloma paraprotein binding patterns of 4E3 and TM14 (a monoclonal antibody with known G1m3 specificity), it was indicated that 4E3 only bound to myeloma paraproteins expressing the G1m17 allotype. This was confirmed using recombinant human antibodies expressing either the G1m3 or G1m17 allotype. The G1m17 bias of 4E3 seen using ImmunoCAP was also observed in microtiter plate-based enzyme-linked immunosorbent assays. The antibody 4E3 has a G1m17 bias limiting its use in assays to measure IgG1 antibodies. However, it may be a valuable allotype-specific reagent.
Collapse
Affiliation(s)
- Robert Movérare
- Thermo Fisher Scientific, Uppsala, Sweden; Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden.
| | - Peter Lind
- Thermo Fisher Scientific, Uppsala, Sweden
| | | |
Collapse
|
6
|
Wessel RE, Dolatshahi S. Regulators of placental antibody transfer through a modeling lens. Nat Immunol 2024; 25:2024-2036. [PMID: 39379658 DOI: 10.1038/s41590-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Rella SA, Kulikova YA, Minnegalieva AR, Kondrashov FA. Complex vaccination strategies prevent the emergence of vaccine resistance. Evolution 2024; 78:1722-1738. [PMID: 38990788 DOI: 10.1093/evolut/qpae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Vaccination is the most effective tool to control infectious diseases. However, the evolution of vaccine resistance, exemplified by vaccine resistance in SARS-CoV-2, remains a concern. Here, we model complex vaccination strategies against a pathogen with multiple epitopes-molecules targeted by the vaccine. We found that a vaccine targeting one epitope was ineffective in preventing vaccine escape. Vaccine resistance in highly infectious pathogens was prevented by the full-epitope vaccine, that is, one targeting all available epitopes, but only when the rate of pathogen evolution was low. Strikingly, a bet-hedging strategy of random administration of vaccines targeting different epitopes was the most effective in preventing vaccine resistance in pathogens with the low rate of infection and high rate of evolution. Thus, complex vaccination strategies, when biologically feasible, may be preferable to the currently used single-vaccine approaches for long-term control of disease outbreaks, especially when applied to livestock with near 100% vaccination rates.
Collapse
Affiliation(s)
- Simon A Rella
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Yuliya A Kulikova
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | | | | |
Collapse
|
8
|
Li Z, Mahmood I. Immunoglobulin therapies for primary immunodeficiency diseases (part 2): considerations for dosing strategies. Immunotherapy 2024; 16:895-905. [PMID: 39323406 PMCID: PMC11457668 DOI: 10.1080/1750743x.2024.2382074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/16/2024] [Indexed: 09/27/2024] Open
Abstract
Immunoglobulin G (IgG) dosing in treating primary immunodeficiency diseases (PIDs) is individualized, which often involves regular monitoring of IgG levels, and considers patient experiences with immunoglobulin therapies, their clinical status and physician judgment. The frequency and dose(s) of intravenously (IVIG) and subcutaneously (SCIG) administered IgGs (including hyaluronidase-facilitated SCIG) require rigorous evaluation to maximize therapeutic benefits. Monitoring serum IgG levels represents an integral part of diagnosing primary immunodeficiency diseases and determining or adjusting IgG dosing strategies to meet individual patient needs, but cannot be conducted in isolation. This review discusses the current state and future perspectives on dosing strategies for different types of IgG therapies, as well as dosing considerations for specific patient populations, immunoglobulin-naive patients and patients switching between IVIG and SCIG.
Collapse
Affiliation(s)
- Zhaoyang Li
- Clinical Pharmacology & Early Clinical Development, Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
| | - Iftekhar Mahmood
- Clinical Pharmacology & Early Clinical Development, Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Jordan SC, Kumar S. Felzartamab in Antibody-Mediated Rejection. N Engl J Med 2024; 391:1162. [PMID: 39321370 DOI: 10.1056/nejmc2409970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
|
10
|
Olafsdottir TA, Thorleifsson G, Lopez de Lapuente Portilla A, Jonsson S, Stefansdottir L, Niroula A, Jonasdottir A, Eggertsson HP, Halldorsson GH, Thorlacius GE, Arnthorsson AO, Bjornsdottir US, Asselbergs FW, Bentlage AEH, Eyjolfsson GI, Gudmundsdottir S, Gunnarsdottir K, Halldorsson BV, Holm H, Ludviksson BR, Melsted P, Norddahl GL, Olafsson I, Saevarsdottir S, Sigurdardottir O, Sigurdsson A, Temming R, Önundarson PT, Thorsteinsdottir U, Vidarsson G, Sulem P, Gudbjartsson DF, Jonsdottir I, Nilsson B, Stefansson K. Sequence variants influencing the regulation of serum IgG subclass levels. Nat Commun 2024; 15:8054. [PMID: 39277589 PMCID: PMC11401918 DOI: 10.1038/s41467-024-52470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Immunoglobulin G (IgG) is the main isotype of antibody in human blood. IgG consists of four subclasses (IgG1 to IgG4), encoded by separate constant region genes within the Ig heavy chain locus (IGH). Here, we report a genome-wide association study on blood IgG subclass levels. Across 4334 adults and 4571 individuals under 18 years, we discover ten new and identify four known variants at five loci influencing IgG subclass levels. These variants also affect the risk of asthma, autoimmune diseases, and blood traits. Seven variants map to the IGH locus, three to the Fcγ receptor (FCGR) locus, and two to the human leukocyte antigen (HLA) region, affecting the levels of all IgG subclasses. The most significant associations are observed between the G1m (f), G2m(n) and G3m(b*) allotypes, and IgG1, IgG2 and IgG3, respectively. Additionally, we describe selective associations with IgG4 at 16p11.2 (ITGAX) and 17q21.1 (IKZF3, ZPBP2, GSDMB, ORMDL3). Interestingly, the latter coincides with a highly pleiotropic signal where the allele associated with lower IgG4 levels protects against childhood asthma but predisposes to inflammatory bowel disease. Our results provide insight into the regulation of antibody-mediated immunity that can potentially be useful in the development of antibody based therapeutics.
Collapse
Affiliation(s)
- Thorunn A Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | | | - Aitzkoa Lopez de Lapuente Portilla
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stefan Jonsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Alvotech, Sæmundargötu 15-19, Reykjavík, Iceland
| | | | - Abhishek Niroula
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Broad Institute, Cambridge, MA, USA
| | | | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Unnur S Bjornsdottir
- Department of Respiratory Medicine and Sleep, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Folkert W Asselbergs
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur E H Bentlage
- Immunoglobulin Research laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landsspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landsspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Olof Sigurdardottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland
| | | | - Robin Temming
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- The Laboratory in Mjodd, Reykjavik, Iceland
| | - Pall T Önundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gestur Vidarsson
- Immunoglobulin Research laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Lund University, Lund, Sweden.
- Broad Institute, Cambridge, MA, USA.
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
11
|
Direder M, Laggner M, Copic D, Klas K, Bormann D, Schweiger T, Hoetzenecker K, Aigner C, Ankersmit HJ, Mildner M. Transcriptional profiling sheds light on the fibrotic aspects of idiopathic subglottic tracheal stenosis. Front Cell Dev Biol 2024; 12:1380902. [PMID: 39071799 PMCID: PMC11272577 DOI: 10.3389/fcell.2024.1380902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Idiopathic subglottic stenosis (ISGS) is a rare fibrotic disease of the upper trachea with an unknown pathomechanism. It typically affects adult Caucasian female patients, leading to severe airway constrictions caused by progressive scar formation and inflammation with clinical symptoms of dyspnoea, stridor and potential changes to the voice. Endoscopic treatment frequently leads to recurrence, whereas surgical resection and reconstruction provides excellent long-term functional outcome. This study aimed to identify so far unrecognized pathologic aspects of ISGS using single cell RNA sequencing. Our scRNAseq analysis uncovered the cellular composition of the subglottic scar tissue, including the presence of a pathologic, profibrotic fibroblast subtype and the presence of Schwann cells in a profibrotic state. In addition, a pathology-associated increase of plasma cells was identified. Using extended bioinformatics analyses, we decoded pathology-associated changes of factors of the extracellular matrix. Our data identified ongoing fibrotic processes in ISGS and provide novel insights on the contribution of fibroblasts, Schwann cells and plasma cells to the pathogenesis of ISGS. This knowledge could impact the development of novel approaches for diagnosis and therapy of ISGS.
Collapse
Affiliation(s)
- Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Daniel Bormann
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Barton JC, Barton JC, Bertoli LF, Acton RT. IgG subclass levels in referred hemochromatosis probands with HFE p.C282Y/p.C282Y. PLoS One 2024; 19:e0302817. [PMID: 38743659 PMCID: PMC11093286 DOI: 10.1371/journal.pone.0302817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND IgG subclass levels in hemochromatosis are incompletely characterized. METHODS We characterized IgG subclass levels of referred hemochromatosis probands with HFE p.C282Y/p.C282Y (rs1800562) and human leukocyte antigen (HLA)-A and -B typing/haplotyping and compared them with IgG subclass levels of eight published cohorts of adults unselected for hemochromatosis. RESULTS There were 157 probands (82 men, 75 women; mean age 49±13 y). Median serum ferritin, mean body mass index (BMI), median IgG4, and median phlebotomy units to achieve iron depletion were significantly higher in men. Diabetes, cirrhosis, and HLA-A*03,-B*44, -A*03,B*07, and -A*01,B*08 prevalences and median absolute lymphocyte counts in men and women did not differ significantly. Mean IgG subclass levels [95% confidence interval] were: IgG1 5.31 g/L [3.04, 9.89]; IgG2 3.56 g/L [1.29, 5.75]; IgG3 0.61 g/L [0.17, 1.40]; and IgG4 0.26 g/L [<0.01, 1.25]. Relative IgG subclasses were 54.5%, 36.6%, 6.3%, and 2.7%, respectively. Median IgG4 was higher in men than women (0.34 g/L [0.01, 1.33] vs. 0.19 g/L [<0.01, 0.75], respectively; p = 0.0006). A correlation matrix with Bonferroni correction revealed the following positive correlations: IgG1 vs. IgG3 (p<0.01); IgG2 vs. IgG3 (p<0.05); and IgG2 vs. IgG4 (p<0.05). There was also a positive correlation of IgG4 vs. male sex (p<0.01). Mean IgG1 was lower and mean IgG2 was higher in probands than seven of eight published adult cohorts unselected for hemochromatosis diagnoses. CONCLUSIONS Mean IgG subclass levels of hemochromatosis probands were 5.31, 3.56, 0.61, and 0.26 g/L, respectively. Median IgG4 was higher in men than women. There were positive associations of IgG subclass levels. Mean IgG1 may be lower and mean IgG2 may be higher in hemochromatosis probands than adults unselected for hemochromatosis.
Collapse
Affiliation(s)
- James C. Barton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Southern Iron Disorders Center, Birmingham, Alabama, United States of America
- Department of Medicine, Brookwood Baptist Medical Center, Birmingham, Alabama, United States of America
| | - J. Clayborn Barton
- Southern Iron Disorders Center, Birmingham, Alabama, United States of America
| | - Luigi F. Bertoli
- Southern Iron Disorders Center, Birmingham, Alabama, United States of America
- Department of Medicine, Brookwood Baptist Medical Center, Birmingham, Alabama, United States of America
| | - Ronald T. Acton
- Southern Iron Disorders Center, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
13
|
Hu Q, Yang Q, Gao H, Tian J, Che G. Immunoglobulin heavy constant gamma 1 silencing decreases tonicity-responsive enhancer-binding protein expression to alleviate diabetic nephropathy. J Diabetes Investig 2024; 15:572-583. [PMID: 38268239 PMCID: PMC11060157 DOI: 10.1111/jdi.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
AIMS/INTRODUCTION The molecular mechanisms of diabetic nephropathy (DN) are poorly identified. However, the advantage of an increasing amount on microarray data of diabetic nephropathy intrigued us to explore the mechanisms based on bioinformatics prediction for diabetic nephropathy. MATERIALS AND METHODS Bioinformatics analysis was conducted to screen the hub genes associated with diabetic nephropathy. The average human renal tubular epithelial cells were exposed to high glucose (HG) to generate an in vitro cell model. In addition, a mouse model of diabetic nephropathy was established using a high-fat diet and streptozotocin injection. Finally, the shRNA targeting immunoglobulin heavy constant gamma 1 (IGHG1) was introduced in vitro and in vivo to illustrate its effect on downstream factors and on the development diabetic nephropathy. RESULTS Bioinformatics analysis revealed that IGHG1, TRIM11 (tripartite motif protein 11), and TonEBP are highly expressed in diabetic nephropathy. In vitro cell experiments demonstrated that IGHG1 positively regulates the expression of TRIM11 and TonEBP (tonicity-responsive enhancer binding protein) in HK2 cells treated with high glucose. Furthermore, TRIM11 upregulates the expression of TonEBP through activation of the MEK/ERK (mitogen-activated protein kinase/extracellular signal-regulated kinase) signaling pathway in HK2 cells treated with high glucose. In vivo, animal experiments further confirmed that silencing IGHG1 could prevent the occurrence and development of diabetic nephropathy. CONCLUSION The silencing of IGHG1 alleviated diabetic nephropathy by inhibiting the TRIM11/MEK/ERK axis and by downregulating TonEBP.
Collapse
Affiliation(s)
- Qibo Hu
- Department of PediatricsThe Second Hospital of JiLin UniversityChangchunChina
| | - Qingxiao Yang
- Department of NeurosurgeryThe Second Hospital of JiLin UniversityChangchunChina
| | - Hang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of MedicineJiLin UniversityChangchunChina
| | - Jing Tian
- Department of PediatricsThe Second Hospital of JiLin UniversityChangchunChina
| | - Guanghua Che
- Department of PediatricsThe Second Hospital of JiLin UniversityChangchunChina
| |
Collapse
|
14
|
Purcell RA, Aurelia LC, Esterbauer R, Allen LF, Bond KA, Williamson DA, Trevillyan JM, Trubiano JA, Juno JJ, Wheatley AK, Davenport MP, Nguyen THO, Kedzierska K, Kent SJ, Selva KJ, Chung AW. Immunoglobulin G genetic variation can confound assessment of antibody levels via altered binding to detection reagents. Clin Transl Immunology 2024; 13:e1494. [PMID: 38433763 PMCID: PMC10902689 DOI: 10.1002/cti2.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Objectives Amino acid variations across more than 30 immunoglobulin (Ig) allotypes may introduce structural changes that influence recognition by anti-Ig detection reagents, consequently confounding interpretation of antibody responses, particularly in genetically diverse cohorts. Here, we assessed a panel of commercial monoclonal anti-IgG1 clones for capacity to universally recognise two dominant IgG1 haplotypes (G1m-1,3 and G1m1,17). Methods Four commercial monoclonal anti-human IgG1 clones were assessed via ELISAs and multiplex bead-based assays for their ability to bind G1m-1,3 and G1m1,17 IgG1 variants. Detection antibodies were validated against monoclonal IgG1 allotype standards and tested for capacity to recognise antigen-specific plasma IgG1 from G1m-1,3 and G1m1,17 homozygous and heterozygous SARS-CoV-2 BNT162b2 vaccinated (n = 28) and COVID-19 convalescent (n = 44) individuals. An Fc-specific pan-IgG detection antibody corroborated differences between hinge- and Fc-specific anti-IgG1 responses. Results Hinge-specific anti-IgG1 clone 4E3 preferentially bound G1m1,17 compared to G1m-1,3 IgG1. Consequently, SARS-CoV-2 Spike-specific IgG1 levels detected in G1m1,17/G1m1,17 BNT162b2 vaccinees appeared 9- to 17-fold higher than in G1m-1,3/G1m-1,3 vaccinees. Fc-specific IgG1 and pan-IgG detection antibodies equivalently bound G1m-1,3 and G1m1,17 IgG1 variants, and detected comparable Spike-specific IgG1 levels between haplotypes. IgG1 responses against other human coronaviruses and influenza were similarly poorly detected by 4E3 anti-IgG1 in G1m-1,3/G1m-1,3 subjects. Conclusion Anti-IgG1 clone 4E3 confounds assessment of antibody responses in clinical cohorts owing to bias towards detection of G1m1,17 IgG1 variants. Validation of anti-Ig clones should include evaluation of binding to relevant antibody variants, particularly as the role of immunogenetics upon humoral immunity is increasingly explored in diverse populations.
Collapse
Affiliation(s)
- Ruth A Purcell
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - L Carissa Aurelia
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Robyn Esterbauer
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Lilith F Allen
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Katherine A Bond
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Victorian Infectious Diseases Reference Laboratory (VIDRL)The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory (VIDRL)The Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Infectious DiseasesThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Janine M Trevillyan
- Department of Infectious DiseasesThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Centre for Antibiotic Allergy and Research, Department of Infectious DiseasesAustin HealthHeidelbergVICAustralia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious DiseasesAustin HealthHeidelbergVICAustralia
- Department of MedicineUniversity of MelbourneParkvilleVICAustralia
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVICAustralia
- National Centre for Infections in CancerPeter MacCallum Cancer CentreMelbourneVICAustralia
| | - Jennifer J Juno
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | | | - Thi HO Nguyen
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Kevin John Selva
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Amy W Chung
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| |
Collapse
|
15
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Aurelia LC, Purcell RA, Chung AW. Identification of IgG1 and IgG3 Allotypes by PCR and Sanger Sequencing. Methods Mol Biol 2024; 2826:201-218. [PMID: 39017895 DOI: 10.1007/978-1-0716-3950-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The immunoglobulin heavy constant gamma (IGHG) gene cluster encoding immunoglobulin G (IgG) subclasses is highly polymorphic, resulting in amino acid variation along the antibody constant heavy chain referred to as allotypes. IGHG1 and IGHG3 are the two most polymorphic IgG subclasses in humans, with 4 classical IgG1 allotypes and 13 allotypes described for IgG3, though recent studies suggest greater allelic diversity, especially in underrepresented ethnic populations. Polymerase chain reaction (PCR) and Sanger sequencing of IGHG amplicons allow for the identification of the single nucleotide polymorphisms (SNPs) responsible for the observed amino acid substitutions. Here, we provide a detailed protocol for the amplification of IGHG1 and IGHG3 segments by PCR, sample preparation for Sanger sequencing, and analysis of sequencing data to identify SNPs associated with different IgG1 and IgG3 allotypes.
Collapse
Affiliation(s)
- L Carissa Aurelia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ruth A Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Damelang T, de Taeye SW, Rentenaar R, Roya-Kouchaki K, de Boer E, Derksen NIL, van Kessel K, Lissenberg-Thunnissen S, Rooijakkers SHM, Jongerius I, Mebius MM, Schuurman J, Labrijn AF, Vidarsson G, Rispens T. The Influence of Human IgG Subclass and Allotype on Complement Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1725-1735. [PMID: 37843500 PMCID: PMC10656437 DOI: 10.4049/jimmunol.2300307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Steven W. de Taeye
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Rosa Rentenaar
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kasra Roya-Kouchaki
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Esther de Boer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ninotska I. L. Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Suzan H. M. Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | | | | | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Luo H, Zhang P, Zhang W, Zheng Y, Hao D, Shi Y, Niu Y, Song T, Li Y, Zhao S, Chen H, Xu T, He S. Recent positive selection signatures reveal phenotypic evolution in the Han Chinese population. Sci Bull (Beijing) 2023; 68:2391-2404. [PMID: 37661541 DOI: 10.1016/j.scib.2023.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Characterizing natural selection signatures and relationships with phenotype spectra is important for understanding human evolution and both biological and pathological mechanisms. Here, we identified 24 genetic loci under recent selection by analyzing rare singletons in 3946 high-depth whole-genome sequencing data of Han Chinese. The loci include immune-related gene regions (MHC cluster, IGH cluster, STING1, and PSG), alcohol metabolism-related gene regions (ADH1B, ALDH2, and ALDH3B2), and the olfactory perception gene OR4C16, in which the MHC cluster, ADH1B, and ALDH2 were also identified by TOPMed and WestLake Biobank. Among the signals, the IGH cluster is particularly interesting, in which the favored allele of variant 14_105737776_C_T (rs117518546, IgG1-G396R) promotes immune response, but also increases the risk of an autoimmune disease systemic lupus erythematosus (SLE). It is also surprising that our newly discovered ALDH3B2 evolved in the opposite direction to ALDH2 for alcohol metabolism. Besides monogenic traits, we found that multiple complex traits experienced polygenic adaptation. Particularly, multi-methods consistently revealed that lower blood pressure was favored in natural selection. Finally, we built a database named RePoS (recent positive selection, http://bigdata.ibp.ac.cn/RePoS/) to integrate and display multi-population selection signals. Our study extended our understanding of natural evolution and phenotype adaptation in Han Chinese as well as other populations.
Collapse
Affiliation(s)
- Huaxia Luo
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Peng Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanyu Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zheng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Hao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yirong Shi
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Niu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingrui Song
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilei Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China
| | - Hua Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China.
| | - Shunmin He
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Garg AD. The dynamic interface of genetics and immunity: toward future horizons in health & disease. Genes Immun 2023; 24:155-158. [PMID: 37464025 DOI: 10.1038/s41435-023-00213-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Abhishek D Garg
- Cell Stress & Immunity (CSI) Lab, Department for Cellular & Molecular Medicine (CMM), KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Ford EE, Tieri D, Rodriguez OL, Francoeur NJ, Soto J, Kos JT, Peres A, Gibson WS, Silver CA, Deikus G, Hudson E, Woolley CR, Beckmann N, Charney A, Mitchell TC, Yaari G, Sebra RP, Watson CT, Smith ML. FLAIRR-Seq: A Method for Single-Molecule Resolution of Near Full-Length Antibody H Chain Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1607-1619. [PMID: 37027017 PMCID: PMC10152037 DOI: 10.4049/jimmunol.2200825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.
Collapse
Affiliation(s)
- Easton E. Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Justin T. Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - William S. Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Catherine A. Silver
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Elizabeth Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Cassandra R. Woolley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Thomas C. Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
22
|
Scheepers C, Richardson SI, Moyo-Gwete T, Moore PL. Antibody class-switching as a strategy to improve HIV-1 neutralization. Trends Mol Med 2022; 28:979-988. [PMID: 36117072 PMCID: PMC9617786 DOI: 10.1016/j.molmed.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
Abstract
Broadly neutralizing antibodies (bNAbs), when administered through passive immunization, are protective against HIV-1 infection. Current HIV-1 vaccine strategies are aimed at guiding the immune system to make bNAbs by mimicking their development during infection. Somatic hypermutation of the variable region is known to be crucial for the development of bNAbs. More recently, however, studies have shown how class-switch recombination (CSR) resulting in the generation of different antibody isotypes may serve as an additional mechanism through which antibodies can gain neutralization breadth and potency. In this review, we discuss the importance of different antibody isotypes for HIV-1 neutralization breadth and potency and how this information can be leveraged to improve passive and active immunization against HIV-1.
Collapse
Affiliation(s)
- Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I Richardson
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, South Africa, Discipline of Virology, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
23
|
IGHG3 hinge length variation was associated with the risk of critical disease and death in a Spanish COVID-19 cohort. Genes Immun 2022; 23:205-208. [PMID: 36088493 PMCID: PMC9463670 DOI: 10.1038/s41435-022-00179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
IgG3 would play an important role in the immune adaptive response against SARS-CoV-2, and low plasma levels might increase the risk of COVID-19 severity and mortality. The IgG3 hinge sequence has a variable repeat of a 15 amino acid exon with common 4-repeats (M) and 3-repeats (S). This length IGHG3 polymorphism might affect the IgG3 effector functions. The short hinge length would reduce the IgG3 flexibility and impairs the neutralization and phagocytosis compared to larger length-isoforms. We genotyped the IGHG3 length polymorphism in patients with critical COVID-19 (N = 516; 107 death) and 152 moderate-severe but no-critical cases. Carriers of the S allele had an increased risk of critical ICU and mortality (p < 0.001, OR = 2.79, 95% CI = 1.66–4.65). This adverse effect might be explained by a less flexibility and reduced ability to induce phagocytosis or viral neutralization for the short length allele. We concluded that the IgG3 hinge length polymorphism could be a predictor of critical COVID-19 and the risk of death. This study was based on a limited number of patients from a single population, and requires validation in larger cohorts.
Collapse
|