1
|
Gibson RA, Jeck WR, Koch RL, Mehta A, Choi SJ, Sriraman Y, Bali D, Young S, Asokan A, Lim JA, Kishnani PS. Progressive liver disease and dysregulated glycogen metabolism in murine GSD IX γ2 models human disease. Mol Genet Metab 2024; 143:108597. [PMID: 39488079 DOI: 10.1016/j.ymgme.2024.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Hepatic glycogen storage disease type IX γ2 (GSD IX γ2) is a severe, liver-specific subtype of GSD IX. While all patients with hepatic GSD IX present with similar symptoms, over 95 % of patients with GSD IX γ2 progress to liver fibrosis and cirrhosis. Despite disease severity, the long-term natural history of GSD IX γ2 liver disease progression is not known. Our lab previously characterized the Phkg2-/- mouse model at 3 months of age, demonstrating that the mouse recapitulates the early liver disease phenotype of GSD IX γ2. To understand how liver disease progresses in GSD IX γ2, we characterized the mouse model through 24 months of age. Our study showed for the first time that GSD IX γ2 mice develop liver fibrosis that progresses to cirrhosis. Importantly, we observed that the progression of liver fibrosis is associated with an initial elevation and subsequent decrease of key GSD biomarkers - the latter being a finding that is often considered to be an improvement of disease in patients. In recognition of the unique liver fibrosis pattern and to support future therapeutic investigations using this model, we developed a novel scoring system for GSD IX γ2 mouse liver pathology. Lastly, this work introduces evidence of a dysregulated glycogen metabolism pathway which can serve as an endpoint for future therapeutic evaluation. As we await longitudinal clinical natural history data, these findings greatly expand our understanding of liver disease manifestations in GSD IX γ2 and have notable clinical applications.
Collapse
Affiliation(s)
- Rebecca A Gibson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - William R Jeck
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aarav Mehta
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Yajur Sriraman
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Yan T, Yan N, Xia Y, Sawaswong V, Zhu X, Dias HB, Aibara D, Takahashi S, Hamada K, Saito Y, Li G, Liu H, Yan H, Velenosi TJ, Krausz KW, Huang J, Kimura S, Rotman Y, Qu A, Hao H, Gonzalez FJ. Hepatocyte-specific CCAAT/enhancer binding protein α restricts liver fibrosis progression. J Clin Invest 2024; 134:e166731. [PMID: 38557493 PMCID: PMC10977981 DOI: 10.1172/jci166731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Tingting Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Nana Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Yangliu Xia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vorthon Sawaswong
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, and Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Henrique Bregolin Dias
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daisuke Aibara
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shogo Takahashi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keisuke Hamada
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshifumi Saito
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Hui Liu
- Department of Pathology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute and
| | - Thomas J. Velenosi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristopher W. Krausz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute and
| | - Shioko Kimura
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, and Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Frank J. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Gardin A, Rouillon J, Montalvo-Romeral V, Rossiaud L, Vidal P, Launay R, Vie M, Krimi Benchekroun Y, Cosette J, Bertin B, La Bella T, Dubreuil G, Nozi J, Jauze L, Fragnoud R, Daniele N, Van Wittenberghe L, Esque J, André I, Nissan X, Hoch L, Ronzitti G. A functional mini-GDE transgene corrects impairment in models of glycogen storage disease type III. J Clin Invest 2024; 134:e172018. [PMID: 38015640 PMCID: PMC10786702 DOI: 10.1172/jci172018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.
Collapse
Affiliation(s)
- Antoine Gardin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Jérémy Rouillon
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Valle Montalvo-Romeral
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Lucille Rossiaud
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Romain Launay
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Mallaury Vie
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Youssef Krimi Benchekroun
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | - Bérangère Bertin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Tiziana La Bella
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | - Justine Nozi
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Louisa Jauze
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | | | | | - Jérémy Esque
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| |
Collapse
|
4
|
Koeberl DD, Koch RL, Lim JA, Brooks ED, Arnson BD, Sun B, Kishnani PS. Gene therapy for glycogen storage diseases. J Inherit Metab Dis 2024; 47:93-118. [PMID: 37421310 PMCID: PMC10874648 DOI: 10.1002/jimd.12654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.
Collapse
Affiliation(s)
- Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - Elizabeth D Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - Benjamin D Arnson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Hannah WB, Derks TGJ, Drumm ML, Grünert SC, Kishnani PS, Vissing J. Glycogen storage diseases. Nat Rev Dis Primers 2023; 9:46. [PMID: 37679331 DOI: 10.1038/s41572-023-00456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.
Collapse
Affiliation(s)
- William B Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Paediatrics, Duke University Medical Center, Durham, NC, USA
| | - John Vissing
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Gümüş E, Özen H. Glycogen storage diseases: An update. World J Gastroenterol 2023; 29:3932-3963. [PMID: 37476587 PMCID: PMC10354582 DOI: 10.3748/wjg.v29.i25.3932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 04/30/2023] [Indexed: 06/28/2023] Open
Abstract
Glycogen storage diseases (GSDs), also referred to as glycogenoses, are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of glycogen leading to aberrant storage and/or utilization. The overall estimated GSD incidence is 1 case per 20000-43000 live births. There are over 20 types of GSD including the subtypes. This heterogeneous group of rare diseases represents inborn errors of carbohydrate metabolism and are classified based on the deficient enzyme and affected tissues. GSDs primarily affect liver or muscle or both as glycogen is particularly abundant in these tissues. However, besides liver and skeletal muscle, depending on the affected enzyme and its expression in various tissues, multiorgan involvement including heart, kidney and/or brain may be seen. Although GSDs share similar clinical features to some extent, there is a wide spectrum of clinical phenotypes. Currently, the goal of treatment is to maintain glucose homeostasis by dietary management and the use of uncooked cornstarch. In addition to nutritional interventions, pharmacological treatment, physical and supportive therapies, enzyme replacement therapy (ERT) and organ transplantation are other treatment approaches for both disease manifestations and long-term complications. The lack of a specific therapy for GSDs has prompted efforts to develop new treatment strategies like gene therapy. Since early diagnosis and aggressive treatment are related to better prognosis, physicians should be aware of these conditions and include GSDs in the differential diagnosis of patients with relevant manifestations including fasting hypoglycemia, hepatomegaly, hypertransaminasemia, hyperlipidemia, exercise intolerance, muscle cramps/pain, rhabdomyolysis, and muscle weakness. Here, we aim to provide a comprehensive review of GSDs. This review provides general characteristics of all types of GSDs with a focus on those with liver involvement.
Collapse
Affiliation(s)
- Ersin Gümüş
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| | - Hasan Özen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| |
Collapse
|
7
|
Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, Kang PB, Landstrom AP, Akman HO, Burrow TA, Orthmann-Murphy JL, Goldman DS, Pendyal S, El-Gharbawy AH, Austin SL, Case LE, Schiffmann R, Hirano M, Kishnani PS. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab 2023; 138:107525. [PMID: 36796138 DOI: 10.1016/j.ymgme.2023.107525] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bridget T Kiely
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Akihiro Asai
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ariana L Smith
- Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Deberah S Goldman
- Adult Polyglucosan Body Disease Research Foundation, Brooklyn, NY, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg H El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Maiorana A, Tagliaferri F, Dionisi-Vici C. Current understanding on pathogenesis and effective treatment of glycogen storage disease type Ib with empagliflozin: new insights coming from diabetes for its potential implications in other metabolic disorders. Front Endocrinol (Lausanne) 2023; 14:1145111. [PMID: 37152929 PMCID: PMC10160627 DOI: 10.3389/fendo.2023.1145111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Glycogen storage type Ib (GSDIb) is a rare inborn error of metabolism caused by glucose-6-phosphate transporter (G6PT, SLC37A4) deficiency. G6PT defect results in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa and into both glycogenolysis and gluconeogenesis impairment. Clinical features include hepatomegaly, hypoglycemia, lactic acidemia, hyperuricemia, hyperlipidemia, and growth retardation. Long-term complications are liver adenoma, hepatocarcinoma, nephropathy and osteoporosis. The hallmark of GSDIb is neutropenia, with impaired neutrophil function, recurrent infections and inflammatory bowel disease. Alongside classical nutritional therapy with carbohydrates supplementation and immunological therapy with granulocyte colony-stimulating factor, the emerging role of 1,5-anhydroglucitol in the pathogenesis of neutrophil dysfunction led to repurpose empagliflozin, an inhibitor of the renal glucose transporter SGLT2: the current literature of its off-label use in GSDIb patients reports beneficial effects on neutrophil dysfunction and its clinical consequences. Surprisingly, this glucose-lowering drug ameliorated the glycemic and metabolic control in GSDIb patients. Furthermore, numerous studies from big cohorts of type 2 diabetes patients showed the efficacy of empagliflozin in reducing the cardiovascular risk, the progression of kidney disease, the NAFLD and the metabolic syndrome. Beneficial effects have also been described on peripheral neuropathy in a prediabetic rat model. Increasing evidences highlight the role of empagliflozin in regulating the cellular energy sensors SIRT1/AMPK and Akt/mTOR, which leads to improvement of mitochondrial structure and function, stimulation of autophagy, decrease of oxidative stress and suppression of inflammation. Modulation of these pathways shift the oxidative metabolism from carbohydrates to lipids oxidation and results crucial in reducing insulin levels, insulin resistance, glucotoxicity and lipotoxicity. For its pleiotropic effects, empagliflozin appears to be a good candidate for drug repurposing also in other metabolic diseases presenting with hypoglycemia, organ damage, mitochondrial dysfunction and defective autophagy.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesco Tagliaferri
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, Novara, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
9
|
Lim JA, Kishnani PS, Sun B. Suppression of pullulanase-induced cytotoxic T cell response with a dual promoter in GSD IIIa mice. JCI Insight 2022; 7:152970. [PMID: 36264632 PMCID: PMC9746900 DOI: 10.1172/jci.insight.152970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Glycogen debranching enzyme deficiency in glycogen storage disease type III (GSD III) results in excessive glycogen accumulation in multiple tissues, primarily the liver, heart, and skeletal muscle. We recently reported that an adeno-associated virus vector expressing a bacterial debranching enzyme (pullulanase) driven by the ubiquitous CMV enhancer/chicken β-actin (CB) promoter cleared glycogen in major affected tissues of infant GSD IIIa mice. In this study, we developed a potentially novel dual promoter consisting of a liver-specific promoter (LSP) and the CB promoter for gene therapy in adult GSD IIIa mice. Ten-week treatment with an adeno-associated virus vector containing the LSP-CB dual promoter in adult GSD IIIa mice significantly increased pullulanase expression and reduced glycogen contents in the liver, heart, and skeletal muscle, accompanied by the reversal of liver fibrosis, improved muscle function, and a significant decrease in plasma biomarkers alanine aminotransferase, aspartate aminotransferase, and creatine kinase. Compared with the CB promoter, the dual promoter effectively decreased pullulanase-induced cytotoxic T lymphocyte responses and enabled persistent therapeutic gene expression in adult GSD IIIa mice. Future studies are needed to determine the long-term durability of dual promoter-mediated expression of pullulanase in adult GSD IIIa mice and in large animal models.
Collapse
|
10
|
El-Gharbawy A, Tolun AA, Halaby CA, Austin SL, Kishnani PS, Bali DS. Beyond predicting diagnosis: Is there a role for measuring biotinidase activity in liver glycogen storage diseases? Mol Genet Metab Rep 2022; 31:100856. [PMID: 35782603 PMCID: PMC9248216 DOI: 10.1016/j.ymgmr.2022.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Biotinidase synthesis is needed to recycle biotin for essential metabolic reactions. Biotinidase activity is lower than normal levels in advanced liver disease but is higher in hepatic glycogen storage disorders (GSDs), however the cause of this association remains unclear. Methods In this study, biotinidase activity was measured in plasma samples from 45 individuals with hepatic GSDs; GSDI (a, b; n = 25) and GSD III (a, b; n = 20), complemented by a chart review to associate biotinidase activity levels with clinical laboratory and imaging findings known to be implicated in these GSDs. Results Our findings showed variation in biotinidase activity levels among subjects with GSD I and III; biotinidase activity correlated positively with hypertriglyceridemia in subjects with GSD I (r = 0.47, P = 0.036) and GSD III (r = 0.58, P = 0.014), and correlated negatively with age (r = −0.50, P = 0.03) in patients with GSD III. Additionally, biotinidase activity was reduced, albeit within the normal range in subjects with evidence of fibrosis/cirrhosis, as compared to subjects with hepatomegaly with or without steatosis (P = 0.002). Discussions These findings suggest that abnormal lipid metabolism in GSD I and III and progressive liver disease in GSD III may influence biotinidase activity levels. We suggest that a prospective, multi-center, longitudinal study designed to assess the significance of monitoring biotinidase activity in a larger cohort with hepatic GSDs is warranted to confirm this observation. Take-home message Altered lipid metabolism and advancing liver fibrosis/cirrhosis may influence biotinidase activity levels in patients with hepatic glycogen storage disease. Thus, longitudinal monitoring of biotinidase activity, when combined with clinical and other biochemical findings may be informative.
Collapse
|
11
|
Wang J, Yu Y, Cai C, Zhi X, Zhang Y, Zhao Y, Shu J. The biallelic novel pathogenic variants in AGL gene in a chinese patient with glycogen storage disease type III. BMC Pediatr 2022; 22:284. [PMID: 35578201 PMCID: PMC9109368 DOI: 10.1186/s12887-022-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycogen storage disease type III (GSD III) is a rare autosomal recessive glycogenolysis disorder due to AGL gene variants, characterized by hepatomegaly, fasting hypoglycemia, hyperlipidemia, elevated hepatic transaminases, growth retardation, progressive myopathy, and cardiomyopathy. However, it is not easy to make a definite diagnosis in early stage of disease only based on the clinical phenotype and imageology due to its clinical heterogeneity. CASE PRESENTATION We report a two-year-old girl with GSD III from a nonconsanguineous Chinese family, who presented with hepatomegaly, fasting hypoglycemia, hyperlipidemia, elevated levels of transaminases. Accordingly, Sanger sequencing, whole‑exome sequencing of family trios, and qRT-PCR was performed, which revealed that the patient carried the compound heterogeneous variants, a novel frameshift mutation c.597delG (p. Q199Hfs*2) and a novel large gene fragment deletion of the entire exon 13 in AGL gene. The deletion of AGL was inherited from the proband's father and the c.597delG variant was from the mother. CONCLUSIONS In this study, we identified two novel variants c.597delG (p. Q199Hfs*2) and deletion of the entire exon 13 in AGL in a Chinese GSD III patient. We extend the mutation spectrum of AGL. We suggest that high-throughput sequencing technology can detect and screen pathogenic variant, which is a scientific basis about genetic counseling and clinical diagnosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, Tianjin Children's Hospital, 300134, Tianjin, China.,Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China
| | - Yuping Yu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Tianjin Pediatric Research Institute, 300134, Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 300134, Tianjin, China
| | - Xiufang Zhi
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Ying Zhang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Yu Zhao
- Department of Gastroenterology, Tianjin Children's Hospital, 300134, Tianjin, China.,Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China. .,Tianjin Pediatric Research Institute, 300134, Tianjin, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 300134, Tianjin, China. .,Tianjin Pediatric Research Institute, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, 300134, Tianjin, China.
| |
Collapse
|
12
|
Hepatic manifestations of systemic disease: an imaging-based review. Pediatr Radiol 2022; 52:852-864. [PMID: 34797394 DOI: 10.1007/s00247-021-05222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/28/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
The liver is responsible for many processes that maintain human metabolic homeostasis and can be affected by several pediatric systemic diseases. In this manuscript, we explore key pathological findings and imaging features across multiple modalities of a spectrum of congenital, metabolic and autoimmune disorders. Strengthening the radiologists' knowledge regarding potential hepatic manifestations of these systemic diseases will ultimately lead to improved care for pediatric patients.
Collapse
|
13
|
Hijazi G, Paschall A, Young SP, Smith B, Case LE, Boggs T, Amarasekara S, Austin SL, Pendyal S, El-Gharbawy A, Deak KL, Muir AJ, Kishnani PS. A retrospective longitudinal study and comprehensive review of adult patients with glycogen storage disease type III. Mol Genet Metab Rep 2021; 29:100821. [PMID: 34820282 PMCID: PMC8600151 DOI: 10.1016/j.ymgmr.2021.100821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION A deficiency of glycogen debrancher enzyme in patients with glycogen storage disease type III (GSD III) manifests with hepatic, cardiac, and muscle involvement in the most common subtype (type a), or with only hepatic involvement in patients with GSD IIIb. OBJECTIVE AND METHODS To describe longitudinal biochemical, radiological, muscle strength and ambulation, liver histopathological findings, and clinical outcomes in adults (≥18 years) with glycogen storage disease type III, by a retrospective review of medical records. RESULTS Twenty-one adults with GSD IIIa (14 F & 7 M) and four with GSD IIIb (1 F & 3 M) were included in this natural history study. At the most recent visit, the median (range) age and follow-up time were 36 (19-68) and 16 years (0-41), respectively. For the entire cohort: 40% had documented hypoglycemic episodes in adulthood; hepatomegaly and cirrhosis were the most common radiological findings; and 28% developed decompensated liver disease and portal hypertension, the latter being more prevalent in older patients. In the GSD IIIa group, muscle weakness was a major feature, noted in 89% of the GSD IIIa cohort, a third of whom depended on a wheelchair or an assistive walking device. Older individuals tended to show more severe muscle weakness and mobility limitations, compared with younger adults. Asymptomatic left ventricular hypertrophy (LVH) was the most common cardiac manifestation, present in 43%. Symptomatic cardiomyopathy and reduced ejection fraction was evident in 10%. Finally, a urinary biomarker of glycogen storage (Glc4) was significantly associated with AST, ALT and CK. CONCLUSION GSD III is a multisystem disorder in which a multidisciplinary approach with regular clinical, biochemical, radiological and functional (physical therapy assessment) follow-up is required. Despite dietary modification, hepatic and myopathic disease progression is evident in adults, with muscle weakness as the major cause of morbidity. Consequently, definitive therapies that address the underlying cause of the disease to correct both liver and muscle are needed.
Collapse
Key Words
- AFP, Alpha-fetoprotein
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BG, Blood glucose
- BMI, Body mass index
- CEA, Carcinoembryonic antigen
- CPK, Creatine phosphokinase
- CT scan, Computerized tomography scan
- Cardiomyopathy
- Cirrhosis
- DM, Diabetes mellitus
- GDE, Glycogen debrancher enzyme
- GGT, Gamma glutamyl transferase
- GSD, Glycogen storage disease
- Glc4, Glucose tetrasaccharide
- Glycogen storage disease type III (GSD III)
- HDL, High density lipoprotein
- Hypoglycemia
- LDL, Low density lipoproteins
- LT, liver transplantation.
- Left ventricular hypertrophy (LVH)
- MRI, Magnetic resonance imaging
- TGs, Triglycerides
- US, Ultrasound
- and myopathy
Collapse
Affiliation(s)
- Ghada Hijazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Anna Paschall
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah P. Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Brian Smith
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E. Case
- Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tracy Boggs
- Duke University Health System, Department of Physical Therapy and Occupational Therapy, USA
| | | | - Stephanie L. Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew J. Muir
- Division of Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Paschall A, Khan AA, Enam SF, Boggs T, Hijazi G, Bowling M, Austin S, Case LE, Kishnani P. Physical therapy assessment and whole-body magnetic resonance imaging findings in children with glycogen storage disease type IIIa: A clinical study and review of the literature. Mol Genet Metab 2021; 134:223-234. [PMID: 34649782 PMCID: PMC8667569 DOI: 10.1016/j.ymgme.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Early recognized manifestations of GSD III include hypoglycemia, hepatomegaly, and elevated liver enzymes. Motor symptoms such as fatigue, muscle weakness, functional impairments, and muscle wasting are typically reported in the 3rd to 4th decade of life. OBJECTIVE In this study, we investigated the early musculoskeletal findings in children with GSD IIIa, compared to a cohort of adults with GSD IIIa. METHODS We utilized a comprehensive number of physical therapy outcome measures to cross-sectionally assess strength and gross motor function including the modified Medical Research Council (mMRC) scale, grip and lateral/key pinch, Gross Motor Function Measure (GMFM), Gait, Stairs, Gowers, Chair (GSGC) test, 6 Minute Walk Test (6MWT), and Bruininks-Oseretsky Test of Motor Proficiency Ed. 2 (BOT-2). We also assessed laboratory biomarkers (AST, ALT, CK and urine Glc4) and conducted whole-body magnetic resonance imaging (WBMRI) to evaluate for proton density fat fraction (PDFF) in children with GSD IIIa. Nerve Conduction Studies and Electromyography results were analyzed where available and a thorough literature review was conducted. RESULTS There were a total of 22 individuals with GSD IIIa evaluated in our study, 17 pediatric patients and 5 adult patients. These pediatric patients demonstrated weakness on manual muscle testing, decreased grip and lateral/key pinch strength, and decreased functional ability compared to non-disease peers on the GMFM, 6MWT, BOT-2, and GSGC. Additionally, all laboratory biomarkers analyzed and PDFF obtained from WBMRI were increased in comparison to non-diseased peers. In comparison to the pediatric cohort, adults demonstrated worse overall performance on functional assessments demonstrating the expected progression of disease phenotype with age. CONCLUSION These results demonstrate the presence of early musculoskeletal involvement in children with GSD IIIa, most evident on physical therapy assessments, in addition to the more commonly reported hepatic symptoms. Muscular weakness in both children and adults was most significant in proximal and trunk musculature, and intrinsic musculature of the hands. These findings indicate the importance of early assessment of patients with GSD IIIa for detection of muscular weakness and development of treatment approaches that target both the liver and muscle.
Collapse
Affiliation(s)
- Anna Paschall
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Aleena A Khan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Syed Faaiz Enam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tracy Boggs
- Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Ghada Hijazi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Michael Bowling
- Multi-Dimensional Image Processing Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Laura E Case
- Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Priya Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
15
|
Gibson RA, Lim JA, Choi SJ, Flores L, Clinton L, Bali D, Young S, Asokan A, Sun B, Kishnani PS. Characterization of liver GSD IX γ2 pathophysiology in a novel Phkg2 -/- mouse model. Mol Genet Metab 2021; 133:269-276. [PMID: 34083142 PMCID: PMC9792075 DOI: 10.1016/j.ymgme.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Liver Glycogen Storage Disease IX is a rare metabolic disorder of glycogen metabolism caused by deficiency of the phosphorylase kinase enzyme (PhK). Variants in the PHKG2 gene, encoding the liver-specific catalytic γ2 subunit of PhK, are associated with a liver GSD IX subtype known as PHKG2 GSD IX or GSD IX γ2. There is emerging evidence that patients with GSD IX γ2 can develop severe and progressive liver disease, yet research regarding the disease has been minimal to date. Here we characterize the first mouse model of liver GSD IX γ2. METHODS A Phkg2-/- mouse model was generated via targeted removal of the Phkg2 gene. Knockout (Phkg2-/-, KO) and wild type (Phkg2+/+, WT) mice up to 3 months of age were compared for morphology, Phkg2 transcription, PhK enzyme activity, glycogen content, histology, serum liver markers, and urinary glucose tetrasaccharide Glcα1-6Glcα1-4Glcα1-4Glc (Glc4). RESULTS When compared to WT controls, KO mice demonstrated significantly decreased liver PhK enzyme activity, increased liver: body weight ratio, and increased glycogen in the liver, with no glycogen accumulation observed in the brain, quadricep, kidney, and heart. KO mice demonstrated elevated liver blood markers as well as elevated urine Glc4, a commonly used biomarker for glycogen storage disease. KO mice demonstrated features of liver structural damage. Hematoxylin & Eosin and Masson's Trichrome stained KO mice liver histology slides revealed characteristic GSD hepatocyte architectural changes and early liver fibrosis, as have been reported in liver GSD patients. DISCUSSION This study provides the first evidence of a mouse model that recapitulates the liver-specific pathology of patients with GSD IX γ2. The model will provide the first platform for further study of disease progression in GSD IX γ2 as well as for the evaluation of novel therapeutics.
Collapse
Affiliation(s)
- Rebecca A Gibson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Leticia Flores
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Lani Clinton
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
16
|
Derks TGJ, Peeks F, de Boer F, Fokkert‐Wilts M, van der Doef HPJ, van den Heuvel MC, Szymańska E, Rokicki D, Ryan PT, Weinstein DA. The potential of dietary treatment in patients with glycogen storage disease type IV. J Inherit Metab Dis 2021; 44:693-704. [PMID: 33332610 PMCID: PMC8246821 DOI: 10.1002/jimd.12339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
There is paucity of literature on dietary treatment in glycogen storage disease (GSD) type IV and formal guidelines are not available. Traditionally, liver transplantation was considered the only treatment option for GSD IV. In light of the success of dietary treatment for the other hepatic forms of GSD, we have initiated this observational study to assess the outcomes of medical diets, which limit the accumulation of glycogen. Clinical, dietary, laboratory, and imaging data for 15 GSD IV patients from three centres are presented. Medical diets may have the potential to delay or prevent liver transplantation, improve growth and normalize serum aminotransferases. Individual care plans aim to avoid both hyperglycaemia, hypoglycaemia and/or hyperketosis, to minimize glycogen accumulation and catabolism, respectively. Multidisciplinary monitoring includes balancing between traditional markers of metabolic control (ie, growth, liver size, serum aminotransferases, glucose homeostasis, lactate, and ketones), liver function (ie, synthesis, bile flow and detoxification of protein), and symptoms and signs of portal hypertension.
Collapse
Affiliation(s)
- Terry G. J. Derks
- Department of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Fabian Peeks
- Department of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Foekje de Boer
- Department of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Marieke Fokkert‐Wilts
- Department of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Hubert P. J. van der Doef
- Department of Pediatric Gastroenterology Hepatology and NutritionBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology & Medical Biology, Pathology Section, University of GroningenUniversity Medical Center GroningenHanzepleinGroningenNetherlands
| | - Edyta Szymańska
- Department of Gastroenterology, Hepatology, Feeding Disorders and PediatricsThe Childrens' Memorial Health InstituteWarsawPoland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic DisordersThe Childrens' Memorial Health InstituteWarsawPoland
| | - Patrick T. Ryan
- Glycogen Storage Disease Program, Connecticut Children's Medical CenterHartfordConnecticutUSA
| | - David A. Weinstein
- Glycogen Storage Disease Program, Connecticut Children's Medical CenterHartfordConnecticutUSA
- Department of PediatricsUniversity of Connecticut Health CenterFarmingtonConnecticutUSA
| |
Collapse
|
17
|
Berling É, Laforêt P, Wahbi K, Labrune P, Petit F, Ronzitti G, O'Brien A. Narrative review of glycogen storage disorder type III with a focus on neuromuscular, cardiac and therapeutic aspects. J Inherit Metab Dis 2021; 44:521-533. [PMID: 33368379 DOI: 10.1002/jimd.12355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Glycogen storage disorder type III (GSDIII) is a rare inborn error of metabolism due to loss of glycogen debranching enzyme activity, causing inability to fully mobilize glycogen stores and its consequent accumulation in various tissues, notably liver, cardiac and skeletal muscle. In the pediatric population, it classically presents as hepatomegaly with or without ketotic hypoglycemia and failure to thrive. In the adult population, it should also be considered in the differential diagnosis of left ventricular hypertrophy or hypertrophic cardiomyopathy, myopathy, exercise intolerance, as well as liver cirrhosis or fibrosis with subsequent liver failure. In this review article, we first present an overview of the biochemical and clinical aspects of GSDIII. We then focus on the recent findings regarding cardiac and neuromuscular impairment associated with the disease. We review new insights into the pathophysiology and clinical picture of this disorder, including symptomatology, imaging and electrophysiology. Finally, we discuss current and upcoming treatment strategies such as gene therapy aimed at the replacement of the malfunctioning enzyme to provide a stable and long-term therapeutic option for this debilitating disease.
Collapse
Affiliation(s)
- Édouard Berling
- Généthon, Evry, France
- Université Paris-Saclay, Univ Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Pascal Laforêt
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Garches, France
- INSERM U 1179, Université Versailles Saint Quentin en Yvelines, Paris-Saclay, France
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- INSERM Unit 970, Paris Cardiovascular Research Centre (PARCC), Paris, France
| | - Philippe Labrune
- APHP, Université Paris-Saclay, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, 92141 Clamart cedex, France
- INSERM U1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - François Petit
- Department of Genetics, APHP, Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Giuseppe Ronzitti
- Généthon, Evry, France
- Université Paris-Saclay, Univ Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Alan O'Brien
- Généthon, Evry, France
- Service de Médecine Génique, Département de Médecine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| |
Collapse
|
18
|
Molares-Vila A, Corbalán-Rivas A, Carnero-Gregorio M, González-Cespón JL, Rodríguez-Cerdeira C. Biomarkers in Glycogen Storage Diseases: An Update. Int J Mol Sci 2021; 22:4381. [PMID: 33922238 PMCID: PMC8122709 DOI: 10.3390/ijms22094381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Glycogen storage diseases (GSDs) are a group of 19 hereditary diseases caused by a lack of one or more enzymes involved in the synthesis or degradation of glycogen and are characterized by deposits or abnormal types of glycogen in tissues. Their frequency is very low and they are considered rare diseases. Except for X-linked type IX, the different types are inherited in an autosomal recessive pattern. In this study we reviewed the literature from 1977 to 2020 concerning GSDs, biomarkers, and metabolic imbalances in the symptoms of some GSDs. Most of the reported studies were performed with very few patients. Classification of emerging biomarkers between different types of diseases (hepatics GSDs, McArdle and PDs and other possible biomarkers) was done for better understanding. Calprotectin for hepatics GSDs and urinary glucose tetrasaccharide for Pompe disease have been approved for clinical use, and most of the markers mentioned in this review only need clinical validation, as a final step for their routine use. Most of the possible biomarkers are implied in hepatocellular adenomas, cardiomyopathies, in malfunction of skeletal muscle, in growth retardation, neutropenia, osteopenia and bowel inflammation. However, a few markers have lost interest due to a great variability of results, which is the case of biotinidase, actin alpha 2, smooth muscle, aorta and fibroblast growth factor receptor 4. This is the first review published on emerging biomarkers with a potential application to GSDs.
Collapse
Affiliation(s)
- Alberto Molares-Vila
- Bioinformatics Platform, Health Research Institute in Santiago de Compostela (IDIS), SERGAS-USC, 15706 Santiago de Compostela, Spain;
| | - Alberte Corbalán-Rivas
- Local Office of Health Inspection, Health Ministry at Galician Autonomous Region, 27880 Burela, Spain;
| | - Miguel Carnero-Gregorio
- Department of Molecular Diagnosis (Arrays Division), Institute of Cellular and Molecular Studies (ICM), 27003 Lugo, Spain;
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - José Luís González-Cespón
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
- Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Meixoeiro Hospital, SERGAS, 36213 Vigo, Spain
| |
Collapse
|
19
|
Young SP, Khan A, Stefanescu E, Seifts AM, Hijazi G, Austin S, Kishnani PS. Diurnal variability of glucose tetrasaccharide (Glc 4) excretion in patients with glycogen storage disease type III. JIMD Rep 2021; 58:37-43. [PMID: 33728245 PMCID: PMC7932871 DOI: 10.1002/jmd2.12181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 11/08/2022] Open
Abstract
AIM The urinary glucose tetrasaccharide, Glcα1-6Glcα1-4Glcα1-4Glc (Glc4), is a glycogen limit dextrin that is elevated in patients with glycogen storage disease (GSD) type III. We evaluated the potential of uncooked cornstarch therapy to interfere with Glc4 monitoring, by measuring the diurnal variability of Glc4 excretion in patients with GSD III. METHODS Voids were collected at home over 24 hours, stored at 4°C and frozen within 48 hours. Glc4 was analyzed using liquid chromatography-tandem mass spectrometry and normalized to creatinine. RESULTS Subjects with GSD III (median age: 13.5 years, range: 3.7-62; n = 18) completed one or more 24-hour urine collection, and 28/36 collections were accepted for analysis. Glc4 was elevated in 16/18 subjects (median: 13 mmol/mol creatinine, range: 2-75, reference range: <3). In collections with elevated Glc4 (23/28), two-thirds (15/23) had low diurnal variability in Glc4 excretion (coefficient of variation [CV%] <25). The diurnal variability was significantly correlated with the Glc4 concentration (Pearson R = .644, P < .05), but not with the dose of uncooked cornstarch. High intraday variability (>25%) was not consistently observed in repeat collections by the same subject. CONCLUSIONS The extent and variability of Glc4 excretion relative to creatinine was not correlated with cornstarch dose. A majority of collections showed low variability over 24 hours. These findings support the use of single time-point collections to evaluate Glc4 in patients with GSD III treated with cornstarch. However, repeat sampling over short time-periods will provide the most accurate assessment of Glc4 excretion, as intraday variability may be increased in patients with high Glc4 excretion.
Collapse
Affiliation(s)
- Sarah P. Young
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
- Duke University Health System Biochemical Genetics LaboratoryDurhamNorth CarolinaUSA
| | - Aleena Khan
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Ela Stefanescu
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Andrea M. Seifts
- Duke University Health System Biochemical Genetics LaboratoryDurhamNorth CarolinaUSA
| | - Ghada Hijazi
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Stephanie Austin
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
20
|
Hoogeveen IJ, de Boer F, Boonstra WF, van der Schaaf CJ, Steuerwald U, Sibeijn‐Kuiper AJ, Vegter RJK, van der Hoeven JH, Heiner‐Fokkema MR, Clarke KC, Cox PJ, Derks TGJ, Jeneson JAL. Effects of acute nutritional ketosis during exercise in adults with glycogen storage disease type IIIa are phenotype-specific: An investigator-initiated, randomized, crossover study. J Inherit Metab Dis 2021; 44:226-239. [PMID: 33448466 PMCID: PMC7891643 DOI: 10.1002/jimd.12302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
Glycogen storage disease type IIIa (GSDIIIa) is an inborn error of carbohydrate metabolism caused by a debranching enzyme deficiency. A subgroup of GSDIIIa patients develops severe myopathy. The purpose of this study was to investigate whether acute nutritional ketosis (ANK) in response to ketone-ester (KE) ingestion is effective to deliver oxidative substrate to exercising muscle in GSDIIIa patients. This was an investigator-initiated, researcher-blinded, randomized, crossover study in six adult GSDIIIa patients. Prior to exercise subjects ingested a carbohydrate drink (~66 g, CHO) or a ketone-ester (395 mg/kg, KE) + carbohydrate drink (30 g, KE + CHO). Subjects performed 15-minute cycling exercise on an upright ergometer followed by 10-minute supine cycling in a magnetic resonance (MR) scanner at two submaximal workloads (30% and 60% of individual maximum, respectively). Blood metabolites, indirect calorimetry data, and in vivo 31 P-MR spectra from quadriceps muscle were collected during exercise. KE + CHO induced ANK in all six subjects with median peak βHB concentration of 2.6 mmol/L (range: 1.6-3.1). Subjects remained normoglycemic in both study arms, but delta glucose concentration was 2-fold lower in the KE + CHO arm. The respiratory exchange ratio did not increase in the KE + CHO arm when workload was doubled in subjects with overt myopathy. In vivo 31 P MR spectra showed a favorable change in quadriceps energetic state during exercise in the KE + CHO arm compared to CHO in subjects with overt myopathy. Effects of ANK during exercise are phenotype-specific in adult GSDIIIa patients. ANK presents a promising therapy in GSDIIIa patients with a severe myopathic phenotype. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT03011203.
Collapse
Affiliation(s)
- Irene J. Hoogeveen
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Foekje de Boer
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Willemijn F. Boonstra
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Caroline J. van der Schaaf
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Ulrike Steuerwald
- National Hospital of the Faroe Islands, Medical CenterTórshavnFaroe Islands
| | - Anita J. Sibeijn‐Kuiper
- Neuroimaging Center, Department of NeuroscienceUniversity Medical Center GroningenGroningenThe Netherlands
| | - Riemer J. K. Vegter
- Center for Human Movement Sciences, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Johannes H. van der Hoeven
- Department of Neurology, University Medical Centre GroningenUniversity of GroningenGroningenThe Netherlands
| | - M. Rebecca Heiner‐Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Kieran C. Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Pete J. Cox
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Terry G. J. Derks
- Section of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center of GroningenGroningenThe Netherlands
| | - Jeroen A. L. Jeneson
- Neuroimaging Center, Department of NeuroscienceUniversity Medical Center GroningenGroningenThe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
21
|
Lu SQ, Feng JY, Liu J, Xie XB, Lu Y, Abuduxikuer K. Glycogen storage disease type VI can progress to cirrhosis: ten Chinese patients with GSD VI and a literature review. J Pediatr Endocrinol Metab 2020; 33:1321-1333. [PMID: 32892177 DOI: 10.1515/jpem-2020-0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
Objectives The aim of our study is to systematically describe the genotypic and phenotypic spectrum of Glycogen storage disease type VI (GSD VI), especially in Chinses population. Methods We retrospectively analyzed ten Chinese children diagnosed as having GSD VI confirmed by next generation sequencing in Children's Hospital of Fudan University and Jinshan Hospital of Fudan University. We described the genotypic and phenotypic spectrum of GSD VI through the clinical and genetic data we collected. Moreover, we conducted a literature review, and we compared the genotypic and phenotypic spectrum of GSD VI between Chinese population and non Chinese population. Results For the first time, we found that four Chinese patients showed cirrhosis in liver biopsy characterized by the formation of regenerative nodules. In addition, c.772+1G>A and c.1900G>C, p.(Asp634His) were recurrent in three Chinese families and four European families respectively indicating that the genotypic spectrum of PYGL gene may vary among the population. Furthermore, we identified seven novel variants in PYGL gene. Conclusions Our study enriched the genotypic and phenotypic spectrum of GSD VI, and provided a new clue for management of GSD VI.
Collapse
Affiliation(s)
- Shi-Qi Lu
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jia-Yan Feng
- The Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Jie Liu
- The Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yi Lu
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | | |
Collapse
|
22
|
Marusic T, Zerjav Tansek M, Sirca Campa A, Mezek A, Berden P, Battelino T, Groselj U. Normalization of obstructive cardiomyopathy and improvement of hepatopathy on ketogenic diet in patient with glycogen storage disease (GSD) type IIIa. Mol Genet Metab Rep 2020; 24:100628. [PMID: 32714838 PMCID: PMC7371897 DOI: 10.1016/j.ymgmr.2020.100628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Now 15-year-old girl with glycogen storage disease (GSD) type IIIa (OMIM 232400) developed severe left ventricular obstructive hypertrophy and hepatomegaly while treated with frequent cornstarch meals. Subsequently, she was introduced the ketogenic diet; continuous ketosis has been maintained for over the last 4 years. After the introduction of ketogenic diet, a normalization of the cardiomyopathy and improvement of hepatopathy was achieved, with enhanced overall quality of life.
Collapse
Affiliation(s)
- Tatiana Marusic
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia
| | - Mojca Zerjav Tansek
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andreja Sirca Campa
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia
| | - Ajda Mezek
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia
| | - Pavel Berden
- Clinical Institute of Radiology, University Medical Center Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Urh Groselj
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Response to Heiner-Fokkema et al. Genet Med 2020; 22:1917-1918. [DOI: 10.1038/s41436-020-0879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 01/27/2023] Open
|
24
|
The multiple faces of urinary glucose tetrasaccharide as biomarker for patients with hepatic glycogen storage diseases. Genet Med 2020; 22:1915-1916. [PMID: 32655139 PMCID: PMC7605430 DOI: 10.1038/s41436-020-0878-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
|
25
|
Rossi A, Hoogeveen IJ, Bastek VB, de Boer F, Montanari C, Meyer U, Maiorana A, Bordugo A, Dianin A, Campana C, Rigoldi M, Kishnani PS, Pendyal S, Strisciuglio P, Gasperini S, Parenti G, Parini R, Paci S, Melis D, Derks TGJ. Dietary lipids in glycogen storage disease type III: A systematic literature study, case studies, and future recommendations. J Inherit Metab Dis 2020; 43:770-777. [PMID: 32064649 PMCID: PMC7383479 DOI: 10.1002/jimd.12224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/28/2022]
Abstract
A potential role of dietary lipids in the management of hepatic glycogen storage diseases (GSDs) has been proposed, but no consensus on management guidelines exists. The aim of this study was to describe current experiences with dietary lipid manipulations in hepatic GSD patients. An international study was set up to identify published and unpublished cases describing hepatic GSD patients with a dietary lipid manipulation. A literature search was performed according to the Cochrane Collaboration methodology through PubMed and EMBASE (up to December 2018). All delegates who attended the dietetics session at the IGSD2017, Groningen were invited to share unpublished cases. Due to multiple biases, only data on GSDIII were presented. A total of 28 cases with GSDIII and a dietary lipid manipulation were identified. Main indications were cardiomyopathy and/or myopathy. A high fat diet was the most common dietary lipid manipulation. A decline in creatine kinase concentrations (n = 19, P < .001) and a decrease in cardiac hypertrophy in paediatric GSDIIIa patients (n = 7, P < .01) were observed after the introduction with a high fat diet. This study presents an international cohort of GSDIII patients with different dietary lipid manipulations. High fat diet may be beneficial in paediatric GSDIIIa patients with cardiac hypertrophy, but careful long-term monitoring for potential complications is warranted, such as growth restriction, liver inflammation, and hepatocellular carcinoma development.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, Section of PediatricsUniversity of Naples “Federico II”NaplesItaly
| | - Irene J. Hoogeveen
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Vanessa B. Bastek
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Foekje de Boer
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Chiara Montanari
- Department of PediatricsSan Paolo Hospital, ASST Santi Paolo e Carlo, University of MilanMilanItaly
| | - Uta Meyer
- Department of PediatricsHannover Medical SchoolHannoverGermany
| | - Arianna Maiorana
- Division of Metabolic Diseases, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Andrea Bordugo
- Inherited Metabolic Diseases Unit, Department of Paediatrics, Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine DiseasesAzienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Alice Dianin
- Inherited Metabolic Diseases Unit, Department of Paediatrics, Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine DiseasesAzienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Carmen Campana
- Division of Metabolic Diseases, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Miriam Rigoldi
- Rare Diseases CenterASST Monza, San Gerardo HospitalMonzaItaly
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of PediatricsDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Pietro Strisciuglio
- Department of Translational Medicine, Section of PediatricsUniversity of Naples “Federico II”NaplesItaly
| | - Serena Gasperini
- Rare Metabolic Diseases Pediatric Center, Pediatric Clinic, Fondazione MBBM, San Gerardo HospitalMonzaItaly
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of PediatricsUniversity of Naples “Federico II”NaplesItaly
| | - Rossella Parini
- Rare Metabolic Diseases Pediatric Center, Pediatric Clinic, Fondazione MBBM, San Gerardo HospitalMonzaItaly
| | - Sabrina Paci
- Department of PediatricsSan Paolo Hospital, ASST Santi Paolo e Carlo, University of MilanMilanItaly
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana"Section of Pediatrics, University of SalernoBaronissi (SA)Italy
| | - Terry G. J. Derks
- Section of Metabolic DiseasesBeatrix Children's Hospital, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
26
|
Lim JA, Choi SJ, Gao F, Kishnani PS, Sun B. A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:240-249. [PMID: 32637453 PMCID: PMC7327847 DOI: 10.1016/j.omtm.2020.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
Glycogen storage disease type III (GSD III) is an inherited disorder caused by a deficiency of glycogen debranching enzyme (GDE), which results in the accumulation of abnormal glycogen (limit dextrin) in the cytoplasm of liver, heart, and skeletal muscle cells. Currently, there is no curative treatment for this disease. Gene therapy with adeno-associated virus (AAV) provides an optimal treatment approach for monogenic diseases like GSD III. However, the 4.6 kb human GDE cDNA is too large to be packaged into a single AAV vector due to its small carrying capacity. To overcome this limitation, we tested a new gene therapy approach in GSD IIIa mice using an AAV vector ubiquitously expressing a smaller bacterial GDE, Pullulanase, whose cDNA is 2.2 kb. Intravenous injection of the AAV vector (AAV9-CB-Pull) into 2-week-old GSD IIIa mice blocked glycogen accumulation in both cardiac and skeletal muscles, but not in the liver, accompanied by the improvement of muscle functions. Subsequent treatment with a liver-restricted AAV vector (AAV8-LSP-Pull) reduced liver glycogen content by 75% and reversed hepatic fibrosis while maintaining the effect of AAV9-CB-Pull treatment on heart and skeletal muscle. Our results suggest that AAV-mediated gene therapy with Pullulanase is a possible treatment for GSD III.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
27
|
Urine glucose tetrasaccharide: A good biomarker for glycogenoses type II and III? A study of the French cohort. Mol Genet Metab Rep 2020; 23:100583. [PMID: 32382504 PMCID: PMC7200937 DOI: 10.1016/j.ymgmr.2020.100583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/25/2022] Open
Key Words
- ACN, Acetonitrile
- BAB, Butyl-4-aminobenzoate
- CRIM, Cross Immune Reactive Material
- ERT, Enzyme Replacement Therapy
- GSD, Glycogen Storage Disease
- GVUS, Genetic Variant of Unknown Significance
- Glc4, Glcα1-6Glcα1-4Glcα1-4Glc, tetraglucose,
- IOPD, Infantile-Onset Pompe disease
- IS, Internal Standard
- LOD, Limit of Detection
- LOPD, Late-Onset Pompe disease
- LOQ, Limit of Quantification
- NaBH3CN, Sodium Cyanoborohydride
- PD, Pompe Disease
- QC, Quality Control
- SPE, Solid Phase Extraction
- del ex 18, c.2481+102_2646+31 del
Collapse
|
28
|
Burrage LC, Madan S, Li X, Ali S, Mohammad M, Stroup BM, Jiang MM, Cela R, Bertin T, Jin Z, Dai J, Guffey D, Finegold M, Nagamani S, Minard CG, Marini J, Masand P, Schady D, Shneider BL, Leung DH, Bali D, Lee B. Chronic liver disease and impaired hepatic glycogen metabolism in argininosuccinate lyase deficiency. JCI Insight 2020; 5:132342. [PMID: 31990680 PMCID: PMC7101134 DOI: 10.1172/jci.insight.132342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDLiver disease in urea cycle disorders (UCDs) ranges from hepatomegaly and chronic hepatocellular injury to cirrhosis and end-stage liver disease. However, the prevalence and underlying mechanisms are unclear.METHODSWe estimated the prevalence of chronic hepatocellular injury in UCDs using data from a multicenter, longitudinal, natural history study. We also used ultrasound with shear wave elastography and FibroTest to evaluate liver stiffness and markers of fibrosis in individuals with argininosuccinate lyase deficiency (ASLD), a disorder with high prevalence of elevated serum alanine aminotransferase (ALT). To understand the human observations, we evaluated the hepatic phenotype of the AslNeo/Neo mouse model of ASLD.RESULTSWe demonstrate a high prevalence of elevated ALT in ASLD (37%). Hyperammonemia and use of nitrogen-scavenging agents, 2 markers of disease severity, were significantly (P < 0.001 and P = 0.001, respectively) associated with elevated ALT in ASLD. In addition, ultrasound with shear wave elastography and FibroTest revealed increased echogenicity and liver stiffness, even in individuals with ASLD and normal aminotransferases. The AslNeo/Neo mice mimic the human disorder with hepatomegaly, elevated aminotransferases, and excessive hepatic glycogen noted before death (3-5 weeks of age). This excessive hepatic glycogen is associated with impaired hepatic glycogenolysis and decreased glycogen phosphorylase and is rescued with helper-dependent adenovirus expressing Asl using a liver-specific (ApoE) promoter.CONCLUSIONOur results link urea cycle dysfunction and impaired hepatic glucose metabolism and identify a mouse model of liver disease in the setting of urea cycle dysfunction.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov (NCT03721367, NCT00237315).FUNDINGFunding was provided by NIH, Burroughs Wellcome Fund, NUCDF, Genzyme/ACMG Foundation, and CPRIT.
Collapse
Affiliation(s)
- Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Simran Madan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine and
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Saima Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahmoud Mohammad
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Food Science and Nutrition, National Research Centre, Dokki, Giza, Egypt
| | - Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Racel Cela
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Terry Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Dai
- Department of Pediatrics, Duke Health, Durham, North Carolina, USA
| | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research and
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Sandesh Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | | | - Juan Marini
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Prakash Masand
- Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Deborah Schady
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin L. Shneider
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel H. Leung
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas, USA
| | - Deeksha Bali
- Department of Pediatrics, Duke Health, Durham, North Carolina, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|