1
|
Furni F, Secchi ER, Speller C, DenDanto D, Ramp C, Larsen F, Mizroch S, Robbins J, Sears R, Urbán R J, Bérubé M, Palsbøll PJ. Phylogenomics and Pervasive Genome-Wide Phylogenetic Discordance Among Fin Whales (Balaenoptera physalus). Syst Biol 2024; 73:873-885. [PMID: 39158356 PMCID: PMC11637684 DOI: 10.1093/sysbio/syae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
Phylogenomics has the power to uncover complex phylogenetic scenarios across the genome. In most cases, no single topology is reflected across the entire genome as the phylogenetic signal differs among genomic regions due to processes, such as introgression and incomplete lineage sorting. Baleen whales are among the largest vertebrates on Earth with a high dispersal potential in a relatively unrestricted habitat, the oceans. The fin whale (Balaenoptera physalus) is one of the most enigmatic baleen whale species, currently divided into four subspecies. It has been a matter of debate whether phylogeographic patterns explain taxonomic variation in fin whales. Here we present a chromosome-level whole genome analysis of the phylogenetic relationships among fin whales from multiple ocean basins. First, we estimated concatenated and consensus phylogenies for both the mitochondrial and nuclear genomes. The consensus phylogenies based upon the autosomal genome uncovered monophyletic clades associated with each ocean basin, aligning with the current understanding of subspecies division. Nevertheless, discordances were detected in the phylogenies based on the Y chromosome, mitochondrial genome, autosomal genome and X chromosome. Furthermore, we detected signs of introgression and pervasive phylogenetic discordance across the autosomal genome. This complex phylogenetic scenario could be explained by a puzzle of introgressive events, not yet documented in fin whales. Similarly, incomplete lineage sorting and low phylogenetic signal could lead to such phylogenetic discordances. Our study reinforces the pitfalls of relying on concatenated or single locus phylogenies to determine taxonomic relationships below the species level by illustrating the underlying nuances that some phylogenetic approaches may fail to capture. We emphasize the significance of accurate taxonomic delineation in fin whales by exploring crucial information revealed through genome-wide assessments.
Collapse
Affiliation(s)
- Fabricio Furni
- Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, Brasil
| | - Camilla Speller
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | | | - Christian Ramp
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
- Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Finn Larsen
- National Institute of Aquatic Resources, Kongens Lyngby, Denmark
| | - Sally Mizroch
- National Marine Mammal Laboratory, US National Marine Fisheries Service, Seattle, WA, USA
| | | | - Richard Sears
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
| | - Jorge Urbán R
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México
| | - Martine Bérubé
- Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Center for Coastal Studies, Provincetown, MAUSA
| | - Per J Palsbøll
- Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Center for Coastal Studies, Provincetown, MAUSA
| |
Collapse
|
2
|
Crossman CA, Fontaine MC, Frasier TR. A comparison of genomic diversity and demographic history of the North Atlantic and Southwest Atlantic southern right whales. Mol Ecol 2024; 33:e17099. [PMID: 37577945 DOI: 10.1111/mec.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Right whales (genus Eubalaena) were among the first, and most extensively pursued, targets of commercial whaling. However, understanding the impacts of this persecution requires knowledge of the demographic histories of these species prior to exploitation. We used deep whole genome sequencing (~40×) of 12 North Atlantic (E. glacialis) and 10 Southwest Atlantic southern (E. australis) right whales to quantify contemporary levels of genetic diversity and infer their demographic histories over time. Using coalescent- and identity-by-descent-based modelling to estimate ancestral effective population sizes from genomic data, we demonstrate that North Atlantic right whales have lived with smaller effective population sizes (Ne) than southern right whales in the Southwest Atlantic since their divergence and describe the decline in both populations around the time of whaling. North Atlantic right whales exhibit reduced genetic diversity and longer runs of homozygosity leading to higher inbreeding coefficients compared to the sampled population of southern right whales. This study represents the first comprehensive assessment of genome-wide diversity of right whales in the western Atlantic and underscores the benefits of high coverage, genome-wide datasets to help resolve long-standing questions about how historical changes in effective population size over different time scales shape contemporary diversity estimates. This knowledge is crucial to improve our understanding of the right whales' history and inform our approaches to address contemporary conservation issues. Understanding and quantifying the cumulative impact of long-term small Ne, low levels of diversity and recent inbreeding on North Atlantic right whale recovery will be important next steps.
Collapse
Affiliation(s)
- Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier, CNRS 5290, IRD 224), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Timothy R Frasier
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Buss DL, Atmore LM, Zicos MH, Goodall-Copestake WP, Brace S, Archer FI, Baker CS, Barnes I, Carroll EL, Hart T, Kitchener AC, Sabin R, Sremba AL, Weir CR, Jackson JA. Historical Mitogenomic Diversity and Population Structuring of Southern Hemisphere Fin Whales. Genes (Basel) 2023; 14:1038. [PMID: 37239398 PMCID: PMC10218396 DOI: 10.3390/genes14051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Fin whales Balaenoptera physalus were hunted unsustainably across the globe in the 19th and 20th centuries, leading to vast reductions in population size. Whaling catch records indicate the importance of the Southern Ocean for this species; approximately 730,000 fin whales were harvested during the 20th century in the Southern Hemisphere (SH) alone, 94% of which were at high latitudes. Genetic samples from contemporary whales can provide a window to past population size changes, but the challenges of sampling in remote Antarctic waters limit the availability of data. Here, we take advantage of historical samples in the form of bones and baleen available from ex-whaling stations and museums to assess the pre-whaling diversity of this once abundant species. We sequenced 27 historical mitogenomes and 50 historical mitochondrial control region sequences of fin whales to gain insight into the population structure and genetic diversity of Southern Hemisphere fin whales (SHFWs) before and after the whaling. Our data, both independently and when combined with mitogenomes from the literature, suggest SHFWs are highly diverse and may represent a single panmictic population that is genetically differentiated from Northern Hemisphere populations. These are the first historic mitogenomes available for SHFWs, providing a unique time series of genetic data for this species.
Collapse
Affiliation(s)
- Danielle L. Buss
- British Antarctic Survey, National Environment Research Council, Cambridge CB3 0ET, UK
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK
| | - Lane M. Atmore
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Maria H. Zicos
- The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - William P. Goodall-Copestake
- British Antarctic Survey, National Environment Research Council, Cambridge CB3 0ET, UK
- Scottish Association for Marine Science, Oban PA37 1QA, UK
| | - Selina Brace
- The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Frederick I. Archer
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - C. Scott Baker
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA
| | - Ian Barnes
- The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Emma L. Carroll
- Te Kura Mātauranga Koiora—School of Biological Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand
| | - Tom Hart
- Department of Zoology, University of Oxford, Mansfield Road, Oxford OX1 3SZ, UK
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Richard Sabin
- The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Angela L. Sremba
- Marine Mammal Institute and Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA
| | - Caroline R. Weir
- Falklands Conservation, Ross Road, Stanley F1QQ 1ZZ, Falkland Islands
| | - Jennifer A. Jackson
- British Antarctic Survey, National Environment Research Council, Cambridge CB3 0ET, UK
| |
Collapse
|
4
|
Derville S, Torres LG, Newsome SD, Somes CJ, Valenzuela LO, Vander Zanden HB, Baker CS, Bérubé M, Busquets-Vass G, Carlyon K, Childerhouse SJ, Constantine R, Dunshea G, Flores PAC, Goldsworthy SD, Graham B, Groch K, Gröcke DR, Harcourt R, Hindell MA, Hulva P, Jackson JA, Kennedy AS, Lundquist D, Mackay AI, Neveceralova P, Oliveira L, Ott PH, Palsbøll PJ, Patenaude NJ, Rowntree V, Sironi M, Vermeuelen E, Watson M, Zerbini AN, Carroll EL. Long-term stability in the circumpolar foraging range of a Southern Ocean predator between the eras of whaling and rapid climate change. Proc Natl Acad Sci U S A 2023; 120:e2214035120. [PMID: 36848574 PMCID: PMC10013836 DOI: 10.1073/pnas.2214035120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023] Open
Abstract
Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.
Collapse
Affiliation(s)
- Solène Derville
- Marine Mammal Institute, Oregon State University, Newport, OR97365
- Unité Mixte de Recherche (UMR) Entropie, French Institute of Research for Sustainable Development, Nouméa98848, New Caledonia
| | - Leigh G. Torres
- Marine Mammal Institute, Oregon State University, Newport, OR97365
| | - Seth D. Newsome
- Biology Department, University of New Mexico, Albuquerque, NM87131-0001
| | | | - Luciano O. Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Ecología Evolutiva Humana, Facultad de Ciencias Sociales de la Universidad Nacional del Centro de la Provincia de Buenos Aires (FACSO-UNCPBA), 7631Buenos Aires, Argentina
- Instituto de Conservación de Ballenas, Ing. Maschwitz, 1623 Buenos Aires, Argentina
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112-0840
| | | | - C. Scott Baker
- Marine Mammal Institute, Oregon State University, Newport, OR97365
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR97365
| | - Martine Bérubé
- Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9747 AGGroningen, The Netherlands
- Centre for Coastal Studies, Provincetown, MA02657
| | - Geraldine Busquets-Vass
- Biology Department, University of New Mexico, Albuquerque, NM87131-0001
- Laboratorio de Macroecología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Unidad La Paz, 23050La Paz, BCS, México
| | - Kris Carlyon
- Department of Natural Resources and Environment Tasmania, Hobart7001, Australia
| | | | - Rochelle Constantine
- School of Biological Sciences, University of Auckland Waipapa Taumata Rau, Auckland1010, AotearoaNew Zealand
| | - Glenn Dunshea
- Ecological Marine Services Pty. Ltd., Bundaberg4670, QLD, Australia
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491Trondheim, Norway
| | - Paulo A. C. Flores
- Núcleo de Gestão Integrada ICMBio Florianópolis, Instituto Chico Mendes de Conservação da Biodiversidade, Ministério do Meio Ambiente, Florianópolis88053-700, Brazil
| | - Simon D. Goldsworthy
- South Australian Research and Development Institute, Primary Industries and Regions South Australia, Adelaide, SA5064, Australia
- School of Earth and Environmental Sciences University of Adelaide, Adelaide, SA5064, Australia
| | - Brittany Graham
- Environmental Law Initiative, Wellington6011, AotearoaNew Zealand
| | - Karina Groch
- Instituto Australis, Imbituba, SC88780-000, Brazil
| | - Darren R. Gröcke
- Stable Isotope Biogeochemistry Laboratory, Department of Earth Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Robert Harcourt
- School of Natural Sciences, Macquarie University, Sydney, NSW2000, Australia
| | - Mark A. Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
| | - Pavel Hulva
- Department of Zoology, Faculty of Science, Charles University, Prague116 36, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava701 03, Czech Republic
| | | | - Amy S. Kennedy
- Cooperative Institute for Climate, Ecosystem and Ocean Studies, University of Washington & Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), Seattle, WA98112
| | - David Lundquist
- New Zealand Department of Conservation - Te Papa Atawhai, Wellington6011, AotearoaNew Zealand
| | - Alice I. Mackay
- South Australian Research and Development Institute, Primary Industries and Regions South Australia, Adelaide, SA5064, Australia
| | - Petra Neveceralova
- Department of Zoology, Faculty of Science, Charles University, Prague116 36, Czech Republic
- Ivanhoe Sea Safaris, Gansbaai7220, South Africa
- Dyer Island Conservation Trust, Great White House, Kleinbaai, Van Dyks Bay7220, South Africa
| | - Larissa Oliveira
- Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul, Torres, RS95560-000, Brazil
- Laboratório de Ecologia de Mamίferos, Universidade do Vale do Rio dos Sinos, Sao Leopoldo, RS93022-750, Brazil
| | - Paulo H. Ott
- Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul, Torres, RS95560-000, Brazil
- Universidade Estadual do Rio Grande do Sul, Osório, RS95520-000, Brazil
| | - Per J. Palsbøll
- Marine Evolution and Conservation Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, 9747 AGGroningen, The Netherlands
- Centre for Coastal Studies, Provincetown, MA02657
| | | | - Victoria Rowntree
- Instituto de Conservación de Ballenas, Ing. Maschwitz, 1623 Buenos Aires, Argentina
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112-0840
- Ocean Alliance, Gloucester, MA01930
| | - Mariano Sironi
- Instituto de Conservación de Ballenas, Ing. Maschwitz, 1623 Buenos Aires, Argentina
- Diversidad Biológica IV, Universidad Nacional de Córdoba, CórdobaX5000HUA, Argentina
| | - Els Vermeuelen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria0002, South Africa
| | - Mandy Watson
- Department of Environment, Land, Water and Planning, Warrnambool, VIC3280, Australia
| | - Alexandre N. Zerbini
- Cooperative Institute for Climate, Ecosystem and Ocean Studies, University of Washington & Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), Seattle, WA98112
- Marine Ecology and Telemetry Research & Cascadia Research Collective, Seabeck, WA98380
| | - Emma L. Carroll
- School of Biological Sciences, University of Auckland Waipapa Taumata Rau, Auckland1010, AotearoaNew Zealand
| |
Collapse
|
5
|
Carroll EL, Riekkola L, Andrews-Goff V, Baker CS, Constantine R, Cole R, Goetz K, Harcourt R, Lundquist D, Meyer C, Ogle M, O’Rorke R, Patenaude N, Russ R, Stuck E, van der Reis AL, Zerbini AN, Childerhouse S. New Zealand southern right whale (Eubalaena australis; Tohorā nō Aotearoa) behavioural phenology, demographic composition, and habitat use in Port Ross, Auckland Islands over three decades: 1998–2021. Polar Biol 2022. [DOI: 10.1007/s00300-022-03076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractChanges in habitat availability and prey abundance are predicted to adversely influence survival and reproduction of wildlife in the Southern Ocean. Some populations of southern right whale (SRW; Eubalaena australis) are showing dramatic changes in habitat use. Surveys were undertaken in the austral winters of 2020 and 2021 at the key nursery and socialising ground for New Zealand SRWs: Port Ross, Auckland Islands, with 548 encounters and 599 skin biopsy samples collected. Data from these two surveys spanned peak periods of use and were used to test the hypothesis there have been shifts in the phenology, demographic composition and behaviour of SRWs using the Auckland Islands over the past three decades. The behavioural phenology and demographic composition of SRW resembles that observed in the 1990s. In contrast, the proportion of groups containing cow-calf pairs increased from 20% in the 1998 survey to 50% in 2020/21. These changes are consistent with a growing population undergoing strong recruitment, not limited by food resources. Continued use of Port Ross by all SRW demographic classes confirms this as key habitat for SRW in New Zealand waters, and we support increased enforcement of existing management measures to reduce whale-vessel interactions in this remote subantarctic archipelago.
Collapse
|
6
|
Hunt DAGA, DiBattista JD, Hendry AP. Effects of insularity on genetic diversity within and among natural populations. Ecol Evol 2022; 12:e8887. [PMID: 35571757 PMCID: PMC9077629 DOI: 10.1002/ece3.8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
We conducted a quantitative literature review of genetic diversity (GD) within and among populations in relation to categorical population size and isolation (together referred to as "insularity"). Using populations from within the same studies, we were able to control for between-study variation in methodology, as well as demographic and life histories of focal species. Contrary to typical expectations, insularity had relatively minor effects on GD within and among populations, which points to the more important role of other factors in shaping evolutionary processes. Such effects of insularity were sometimes seen-particularly in study systems where GD was already high overall. That is, insularity influenced GD in a study system when GD was high even in non-insular populations of the same study system-suggesting an important role for the "scope" of influences on GD. These conclusions were more robust for within population GD versus among population GD, although several biases might underlie this difference. Overall, our findings indicate that population-level genetic assumptions need to be tested rather than assumed in nature, particularly for topics underlying current conservation management practices.
Collapse
Affiliation(s)
- David A. G. A. Hunt
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Joseph D. DiBattista
- Australian Museum Research InstituteAustralian MuseumSydneyNew South WalesAustralia
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
7
|
Neveceralova P, Carroll EL, Steel D, Vermeulen E, Elwen S, Zidek J, Stafford JK, Chivell W, Hulva P. Population Changes in a Whale Breeding Ground Revealed by Citizen Science Noninvasive Genetics. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Kemper CM, Steele-Collins E, Al-Humaidhi A, Segawa Fellowes T, Marsh O, Charlton C. Encounter Bay, South Australia, an important aggregation and nursery area for the southern right whale, Eubalaena australis (Balaenidae: Cetacea). T ROY SOC SOUTH AUST 2022. [DOI: 10.1080/03721426.2021.2018759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- C. M. Kemper
- South Australian Museum, North Terrace, Adelaide, Australia
| | | | - A. Al-Humaidhi
- Centre for Marine Science and Technology, Curtin University Western Australia, Bentley, Australia
| | | | | | - C. Charlton
- School of Biological Sciences, Flinders University, Bedford Park, Australia
| |
Collapse
|
9
|
Brüniche-Olsen A, Bickham JW, Godard-Codding CA, Brykov VA, Kellner KF, Urban J, DeWoody JA. Influence of Holocene habitat availability on Pacific gray whale ( Eschrichtius robustus) population dynamics as inferred from whole mitochondrial genome sequences and environmental niche modeling. J Mammal 2021. [DOI: 10.1093/jmammal/gyab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Environmental changes since the Pleistocene and commercial whaling in the last few centuries have drastically reduced many whale populations, including gray whales in the North Pacific. Herein we use complete mitogenome sequences from 74 individuals to evaluate gray whale phylogeography and historical demography, then use environmental niche modeling to assess how habitat availability has changed through time for Pacific gray whales. We identify a large degree of haplotype sharing between gray whales sampled in Russian and Mexican waters, coupled with very limited matrilineal population structure. Confirming previous studies, our environmental niche models showed a decrease in available habitat during the Last Glacial Maximum, but we find no genetic signals of recent population declines in mitochondrial genomes despite both sustained habitat loss and a commercial whaling bottleneck. Our results illustrate the complex dynamics of baleen whale biogeography since the Holocene as well as the difficulty in detecting recent demographic bottlenecks from mitochondrial DNA sequences.
Collapse
Affiliation(s)
- Anna Brüniche-Olsen
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - John W Bickham
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Celine A Godard-Codding
- Institute of Environmental and Human Health, Texas Tech University (TTU) and TTU Health Sciences Center, Lubbock, TX, USA
| | - Vladimir A Brykov
- National Scientific Center for Marine Biology, Russian Academy of Sciences, Far Eastern Branch, Vladivostok, Russia
| | - Kenneth F Kellner
- Global Wildlife Conservation Center, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Jorge Urban
- Departamento Academico de Ciencias Marinas y Costeras, Universidad Autonoma de Baja California Sur, Km 5.5 Carretera al Sur, Mezquitito, La Paz, BCS, Mexico
| | - J Andrew DeWoody
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
New genetic evidences for distinct populations of the common minke whale (Balaenoptera acutorostrata) in the Southern Hemisphere. Polar Biol 2021. [DOI: 10.1007/s00300-021-02897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Carroll EL, Ott PH, McMillan LF, Galletti Vernazzani B, Neveceralova P, Vermeulen E, Gaggiotti OE, Andriolo A, Baker CS, Bamford C, Best P, Cabrera E, Calderan S, Chirife A, Fewster RM, Flores PAC, Frasier T, Freitas TRO, Groch K, Hulva P, Kennedy A, Leaper R, Leslie MS, Moore M, Oliveira L, Seger J, Stepien EN, Valenzuela LO, Zerbini A, Jackson JA. Genetic Diversity and Connectivity of Southern Right Whales (Eubalaena australis) Found in the Brazil and Chile-Peru Wintering Grounds and the South Georgia (Islas Georgias del Sur) Feeding Ground. J Hered 2021; 111:263-276. [PMID: 32347944 PMCID: PMC7238439 DOI: 10.1093/jhered/esaa010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/21/2020] [Indexed: 01/05/2023] Open
Abstract
As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite = 208/46), Brazil (nnew mtDNA/microsatellite = 50/50), South Africa (nnew mtDNA/microsatellite = 66/77, npub mtDNA/microsatellite = 350/47), Chile-Peru (nnew mtDNA/microsatellite = 1/1), the Indo-Pacific (npub mtDNA/microsatellite = 769/126), and SG (npub mtDNA/microsatellite = 8/0, nnew mtDNA/microsatellite = 3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG, and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of 1 genetically identified individual between the South American grounds. The single sample from Chile-Peru had an mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru.
Collapse
Affiliation(s)
- Emma L Carroll
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Biology, University of St Andrews, St Andrews, UK
| | - Paulo H Ott
- Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul, Torres, RS, Brazil.,Universidade Estadual do Rio Grande do Sul, Osório, RS, Brazil
| | - Louise F McMillan
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
| | | | - Petra Neveceralova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Ivanhoe Sea Safaris, Gansbaai, South Africa.,Dyer Island Conservation Trust, Great White House, Kleinbaai, Gansbaai, South Africa
| | - Els Vermeulen
- Mammal Research Institute Whale Unit, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | | | - Artur Andriolo
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, MG, Brazil.,Instituto Aqualie, Juiz de Fora, MG, Brazil
| | - C Scott Baker
- Marine Mammal Institute and Department of Fisheries and Wildlife, Oregon State University, Newport, OR
| | - Connor Bamford
- British Antarctic Survey, Cambridge, UK.,University of Southampton, Southampton, UK
| | | | - Elsa Cabrera
- Centro de Conservación Cetacea-Casilla 19178 Correo 19, Santiago, Chile
| | | | - Andrea Chirife
- Instituto de Ciencias Biomédicas (ICB), Universidad Andrés Bello, Chile
| | - Rachel M Fewster
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Paulo A C Flores
- Área de Proteção Ambiental (Environmental Protection Area) Anhatomirim, ICMBio, MMA, Florianópolis, SC, Brazil
| | - Timothy Frasier
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Thales R O Freitas
- Programa de Pós-Graduação em Genética e Biologia Molecular- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Karina Groch
- Instituto Australis, Imbituba, Santa Catarina, Brazil
| | - Pavel Hulva
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Amy Kennedy
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA
| | | | | | - Michael Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA
| | - Larissa Oliveira
- Universidade Estadual do Rio Grande do Sul, Osório, RS, Brazil.,Laboratório de Ecologia de Mamíferos, Universidade do Vale do Rio dos Sinos, Centro de Ciências da Saúde, Sao Leopoldo, RS, Brazil
| | - Jon Seger
- School of Biological Sciences, University of Utah, Salt Lake City, UT
| | - Emilie N Stepien
- Section of Marine Mammal Research, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Luciano O Valenzuela
- School of Biological Sciences, University of Utah, Salt Lake City, UT.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Evolutiva Humana, UNCPBA, Quequén, Buenos Aires Province, Argentina.,Instituto de Conservación de Ballenas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alexandre Zerbini
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA.,Marine Ecology and Telemetry Research, Seabeck, WA.,Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA
| | | |
Collapse
|
12
|
Feyrer LJ, Bentzen P, Whitehead H, Paterson IG, Einfeldt A. Evolutionary impacts differ between two exploited populations of northern bottlenose whale ( Hyperoodon ampullatus). Ecol Evol 2019; 9:13567-13584. [PMID: 31871667 PMCID: PMC6912904 DOI: 10.1002/ece3.5813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023] Open
Abstract
Interpretation of conservation status should be informed by an appreciation of genetic diversity, past demography, and overall trends in population size, which contribute to a species' evolutionary potential and resilience to genetic risks. Low genetic diversity can be symptomatic of rapid demographic declines and impose genetic risks to populations, but can also be maintained by natural processes. The northern bottlenose whale Hyperoodon ampullatus has the lowest known mitochondrial diversity of any cetacean and was intensely whaled in the Northwest Atlantic over the last century, but whether exploitation imposed genetic risks that could limit recovery is unknown. We sequenced full mitogenomes and genotyped 37 novel microsatellites for 128 individuals from known areas of abundance in the Scotian Shelf, Northern and Southern Labrador, Davis Strait, and Iceland, and a newly discovered group off Newfoundland. Despite low diversity and shared haplotypes across all regions, both markers supported the Endangered Scotian Shelf population as distinct from the combined northern regions. The genetic affinity of Newfoundland was uncertain, suggesting an area of mixing with no clear population distinction for the region. Demographic reconstruction using mitogenomes suggests that the northern region underwent population expansion following the last glacial maximum, but for the peripheral Scotian Shelf population, a stable demographic trend was followed by a drastic decline over a temporal scale consistent with increasing human activity in the Northwest Atlantic. Low connectivity between the Scotian Shelf and the rest of the Atlantic likely compounded the impact of intensive whaling for this species, potentially imposing genetic risks affecting recovery of this population. We highlight how the combination of historical environmental conditions and modern exploitation of this species has had very different evolutionary impacts on structured populations of northern bottlenose whales across the western North Atlantic.
Collapse
Affiliation(s)
| | - Paul Bentzen
- Biology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Hal Whitehead
- Biology DepartmentDalhousie UniversityHalifaxNSCanada
| | | | | |
Collapse
|
13
|
Rivera-León VE, Urbán J, Mizroch S, Brownell RL, Oosting T, Hao W, Palsbøll PJ, Bérubé M. Long-term isolation at a low effective population size greatly reduced genetic diversity in Gulf of California fin whales. Sci Rep 2019; 9:12391. [PMID: 31455830 PMCID: PMC6712047 DOI: 10.1038/s41598-019-48700-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
The Gulf of California, Mexico is home to many cetacean species, including a presumed resident population of fin whales, Balaenoptera physalus. Past studies reported very low levels of genetic diversity among Gulf of California fin whales and a significant level of genetic differentiation from con-specifics in the eastern North Pacific. The aim of the present study was to assess the degree and timing of the isolation of Gulf of California fin whales in a population genetic analysis of 18 nuclear microsatellite genotypes from 402 samples and 565 mitochondrial control region DNA sequences (including mitochondrial sequences retrieved from NCBI). The analyses revealed that the Gulf of California fin whale population was founded ~2.3 thousand years ago and has since remained at a low effective population size (~360) and isolated from the eastern North Pacific (Nem between 0.89-1.4). The low effective population size and high degree of isolation implied that Gulf of California fin whales are vulnerable to the negative effects of genetic drift, human-caused mortality and habitat change.
Collapse
Affiliation(s)
- Vania E Rivera-León
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Jorge Urbán
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Km 5.5 Carretera al Sur, 23081, La Paz, Baja California Sur, Mexico
| | - Sally Mizroch
- Blue Sea Research PO Box 15805, Seattle, WA, 98115, United States of America
| | - Robert L Brownell
- Southwest Fisheries Science Center, NOAA Fisheries, 34500 Highway 1, Monterey, CA, 93940, United States of America
| | - Tom Oosting
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Wensi Hao
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Per J Palsbøll
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Centre for Coastal Studies, 5 Holway Avenue, Provincetown, Massachusetts, 02657, United States of America.
| | - Martine Bérubé
- Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Centre for Coastal Studies, 5 Holway Avenue, Provincetown, Massachusetts, 02657, United States of America.
| |
Collapse
|