1
|
Feugang JM, Gad A, Menjivar NG, Ishak GM, Gebremedhn S, Gastal MO, Dlamini NH, Prochazka R, Gastal EL, Tesfaye D. Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid. J Anim Sci Biotechnol 2024; 15:137. [PMID: 39380110 PMCID: PMC11462823 DOI: 10.1186/s40104-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Ovarian follicular fluid (FF) is a dynamic environment that changes with the seasons, affecting follicle development, ovulation, and oocyte quality. Cells in the follicles release tiny particles called extracellular vesicles (EVs) containing vital regulatory molecules, such as microRNAs (miRNAs). These miRNAs are pivotal in facilitating communication within the follicles through diverse signaling and information transfer forms. EV-coupled miRNA signaling is implicated to be associated with ovarian function, follicle and oocyte growth and response to various environmental insults. Herein, we investigated how seasonal variations directly influence the ovulatory and anovulatory states of ovarian follicles and how are they associated with follicular fluid EV-coupled miRNA dynamics in horses. RESULTS Ultrasonographic monitoring and follicular fluid aspiration of preovulatory follicles in horses during the anovulatory (spring: non-breeding) and ovulatory (spring, summer, and fall: breeding) seasons and subsequent EV isolation and miRNA profiling identified significant variation in EV-miRNA cargo content. We identified 97 miRNAs with differential expression among the groups and specific clusters of miRNAs involved in the spring transition (miR-149, -200b, -206, -221, -328, and -615) and peak breeding period (including miR-143, -192, -451, -302b, -100, and let-7c). Bioinformatic analyses showed enrichments in various biological functions, e.g., transcription factor activity, transcription and transcription regulation, nucleic acid binding, sequence-specific DNA binding, p53 signaling, and post-translational modifications. Cluster analyses revealed distinct sets of significantly up- and down-regulated miRNAs associated with spring anovulatory (Cluster 1) and summer ovulation-the peak breeding season (Clusters 4 and 6). CONCLUSIONS The findings from the current study shed light on the dynamics of FF-EV-coupled miRNAs in relation to equine ovulatory and anovulatory seasons, and their roles in understanding the mechanisms involved in seasonal shifts and ovulation during the breeding season warrant further investigation.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ghassan M Ishak
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, 10011, Iraq
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | | | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Notsile H Dlamini
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, 27721, Czech Republic
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Yang J, Wang DF, Huang JH, Zhu QH, Luo LY, Lu R, Xie XL, Salehian-Dehkordi H, Esmailizadeh A, Liu GE, Li MH. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biol 2024; 25:148. [PMID: 38845023 PMCID: PMC11155191 DOI: 10.1186/s13059-024-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.
Collapse
Affiliation(s)
- Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiang-Hui Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ling-Yun Luo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ran Lu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Zhang S, Wei Y, Gao X, Song Y, Huang Y, Jiang Q. Unveiling the Ovarian Cell Characteristics and Molecular Mechanism of Prolificacy in Goats via Single-Nucleus Transcriptomics Data Analysis. Curr Issues Mol Biol 2024; 46:2301-2319. [PMID: 38534763 DOI: 10.3390/cimb46030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Increases in litter size, which are influenced by ovulation, are responsible for between 74% and 96% of the economic value of genetic progress, which influences selection. For the selection and breeding of highly prolific goats, genetic mechanisms underlying variations in litter size should be elucidated. Here, we used single-nucleus RNA sequencing to analyze 44,605 single nuclei from the ovaries of polytocous and monotocous goats during the follicular phase. Utilizing known reference marker genes, we identified 10 ovarian cell types characterized by distinct gene expression profiles, transcription factor networks, and reciprocal interaction signatures. An in-depth analysis of the granulosa cells revealed three subtypes exhibiting distinct gene expression patterns and dynamic regulatory mechanisms. Further investigation of cell-type-specific prolificacy-associated transcriptional changes elucidated that "downregulation of apoptosis", "increased anabolism", and "upstream responsiveness to hormonal stimulation" are associated with prolificacy. This study provides a comprehensive understanding of the cell-type-specific mechanisms and regulatory networks in the goat ovary, providing insights into the molecular mechanisms underlying goat prolificacy. These findings establish a vital foundation for furthering understanding of the molecular mechanisms governing folliculogenesis and for improving the litter size in goats via molecular design breeding.
Collapse
Affiliation(s)
- Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, China
| | - Yirong Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, China
| | - Xiaotong Gao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, China
| | - Ying Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, China
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Han B, Tian D, Li X, Liu S, Tian F, Liu D, Wang S, Zhao K. Multiomics Analyses Provide New Insight into Genetic Variation of Reproductive Adaptability in Tibetan Sheep. Mol Biol Evol 2024; 41:msae058. [PMID: 38552245 PMCID: PMC10980521 DOI: 10.1093/molbev/msae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.
Collapse
Affiliation(s)
- Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
5
|
Wang X, Guo X, He X, Di R, Zhang X, Zhang J, Chu M. Proteomic Analysis Identifies Distinct Protein Patterns for High Ovulation in FecB Mutant Small Tail Han Sheep Granulosa Cells. Animals (Basel) 2023; 14:11. [PMID: 38200742 PMCID: PMC10778137 DOI: 10.3390/ani14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The Booroola fecundity (FecB) mutation in the bone morphogenetic protein receptor type 1B (BMPR1B) gene increases ovulation in sheep. However, its effect on follicular maturation is not fully understood. Therefore, we collected granulosa cells (GCs) at a critical stage of follicle maturation from nine wild-type (WW), nine heterozygous FecB mutant (WB), and nine homozygous FecB mutant (BB) Small Tail Han sheep. The GCs of three ewes were selected at random from each genotype and consolidated into a single group, yielding a total of nine groups (three groups per genotype) for proteomic analysis. The tandem mass tag technique was utilized to ascertain the specific proteins linked to multiple ovulation in the various FecB genotypes. Using a general linear model, we identified 199 proteins significantly affected by the FecB mutation with the LIMMA package (p < 0.05). The differential abundance of proteins was enriched in pathways related to cholesterol metabolism, carbohydrate metabolism, amino acid biosynthesis, and glutathione metabolism. These pathways are involved in important processes for GC-regulated 'conservation' of oocyte maturation. Further, the sparse partial least-squares discriminant analysis and the Fuzzy-C-mean clustering method were combined to estimate weights and cluster differential abundance proteins according to ovulation to screen important ovulation-related proteins. Among them, ZP2 and ZP3 were found to be enriched in the cellular component catalog term "egg coat", as well as some apolipoproteins, such as APOA1, APOA2, and APOA4, enriched in several Gene Ontology terms related to cholesterol metabolism and lipoprotein transport. A higher abundance of these essential proteins for oocyte maturation was observed in BB and WB genotypes compared with WW ewes. These proteins had a high weight in the model for discriminating sheep with different FecB genotypes. These findings provide new insight that the FecB mutant in GCs improves nutrient metabolism, leading to better oocyte maturation by altering the abundance of important proteins (ZP2, ZP3, and APOA1) in favor of increased ovulation or better oocyte quality.
Collapse
Affiliation(s)
- Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (X.H.); (R.D.)
| | - Xiaofei Guo
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (X.G.); (X.Z.); (J.Z.)
- Jilin Provincial Key Laboratory of Grassland Farming, Jilin Province Feed Processing and Ruminant Precision Breeding Cross Regional Cooperation Technology Innovation Center, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (X.H.); (R.D.)
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (X.H.); (R.D.)
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (X.G.); (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (X.G.); (X.Z.); (J.Z.)
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (X.H.); (R.D.)
| |
Collapse
|
6
|
Ghafouri F, Sadeghi M, Bahrami A, Naserkheil M, Dehghanian Reyhan V, Javanmard A, Miraei-Ashtiani SR, Ghahremani S, Barkema HW, Abdollahi-Arpanahi R, Kastelic JP. Construction of a circRNA- lincRNA-lncRNA-miRNA-mRNA ceRNA regulatory network identifies genes and pathways linked to goat fertility. Front Genet 2023; 14:1195480. [PMID: 37547465 PMCID: PMC10400778 DOI: 10.3389/fgene.2023.1195480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Background: There is growing interest in the genetic improvement of fertility traits in female goats. With high-throughput genotyping, single-cell RNA sequencing (scRNA-seq) is a powerful tool for measuring gene expression profiles. The primary objective was to investigate comparative transcriptome profiling of granulosa cells (GCs) of high- and low-fertility goats, using scRNA-seq. Methods: Thirty samples from Ji'ning Gray goats (n = 15 for high fertility and n = 15 for low fertility) were retrieved from publicly available scRNA-seq data. Functional enrichment analysis and a literature mining approach were applied to explore modules and hub genes related to fertility. Then, interactions between types of RNAs identified were predicted, and the ceRNA regulatory network was constructed by integrating these interactions with other gene regulatory networks (GRNs). Results and discussion: Comparative transcriptomics-related analyses identified 150 differentially expressed genes (DEGs) between high- and low-fertility groups, based on the fold change (≥5 and ≤-5) and false discovery rate (FDR <0.05). Among these genes, 80 were upregulated and 70 were downregulated. In addition, 81 mRNAs, 58 circRNAs, 8 lincRNAs, 19 lncRNAs, and 55 miRNAs were identified by literature mining. Furthermore, we identified 18 hub genes (SMAD1, SMAD2, SMAD3, SMAD4, TIMP1, ERBB2, BMP15, TGFB1, MAPK3, CTNNB1, BMPR2, AMHR2, TGFBR2, BMP4, ESR1, BMPR1B, AR, and TGFB2) involved in goat fertility. Identified biological networks and modules were mainly associated with ovary signature pathways. In addition, KEGG enrichment analysis identified regulating pluripotency of stem cells, cytokine-cytokine receptor interactions, ovarian steroidogenesis, oocyte meiosis, progesterone-mediated oocyte maturation, parathyroid and growth hormone synthesis, cortisol synthesis and secretion, and signaling pathways for prolactin, TGF-beta, Hippo, MAPK, PI3K-Akt, and FoxO. Functional annotation of identified DEGs implicated important biological pathways. These findings provided insights into the genetic basis of fertility in female goats and are an impetus to elucidate molecular ceRNA regulatory networks and functions of DEGs underlying ovarian follicular development.
Collapse
Affiliation(s)
- Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Masoumeh Naserkheil
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan-si, Republic of Korea
| | - Vahid Dehghanian Reyhan
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Arash Javanmard
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Soheila Ghahremani
- Department of Animal Science, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rostam Abdollahi-Arpanahi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
The sheep miRNAome: Characterization and distribution of miRNAs in 21 tissues. Gene X 2023; 851:146998. [DOI: 10.1016/j.gene.2022.146998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
|
8
|
Kanakachari M, Ashwini R, Chatterjee RN, Bhattacharya TK. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Front Genet 2022; 13:990849. [PMID: 36313432 PMCID: PMC9616467 DOI: 10.3389/fgene.2022.990849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Muscle development, egg production, and plumage colors are different between native and broiler chickens. The study was designed to investigate why improved Aseel (PD4) is colorful, stronger, and grew slowly compared with the control broiler (CB). Methods: A microarray was conducted using the 7th-day embryo (7EB) and 18th-day thigh muscle (18TM) of improved Aseel and broiler, respectively. Also, we have selected 24 Gallus gallus candidate reference genes from NCBI, and total RNA was isolated from the broiler, improved Aseel embryo tissues, and their expression profiles were studied by real-time quantitative PCR (qPCR). Furthermore, microarray data were validated with qPCR using improved Aseel and broiler embryo tissues. Results: In the differential transcripts screening, all the transcripts obtained by microarray of slow and fast growth groups were screened by fold change ≥ 1 and false discovery rate (FDR) ≤ 0.05. In total, 8,069 transcripts were differentially expressed between the 7EB and 18TM of PD4 compared to the CB. A further analysis showed that a high number of transcripts are differentially regulated in the 7EB of PD4 (6,896) and fewer transcripts are differentially regulated (1,173) in the 18TM of PD4 compared to the CB. On the 7th- and 18th-day PD4 embryos, 3,890, 3,006, 745, and 428 transcripts were up- and downregulated, respectively. The commonly up- and downregulated transcripts are 91 and 44 between the 7th- and 18th-day of embryos. In addition, the best housekeeping gene was identified. Furthermore, we validated the differentially expressed genes (DEGs) related to muscle growth, myostatin signaling and development, and fatty acid metabolism genes in PD4 and CB embryo tissues by qPCR, and the results correlated with microarray expression data. Conclusion: Our study identified DEGs that regulate the myostatin signaling and differentiation pathway; glycolysis and gluconeogenesis; fatty acid metabolism; Jak-STAT, mTOR, and TGF-β signaling pathways; tryptophan metabolism; and PI3K-Akt signaling pathways in PD4. The results revealed that the gene expression architecture is present in the improved Aseel exhibiting embryo growth that will help improve muscle development, differentiation, egg production, protein synthesis, and plumage formation in PD4 native chickens. Our findings may be used as a model for improving the growth in Aseel as well as optimizing the growth in the broiler.
Collapse
Affiliation(s)
- M. Kanakachari
- ICAR-Directorate of Poultry Research, Hyderabad, India
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - R. Ashwini
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | | | - T. K. Bhattacharya
- ICAR-Directorate of Poultry Research, Hyderabad, India
- *Correspondence: T. K. Bhattacharya,
| |
Collapse
|
9
|
Capra E, Kosior MA, Cocchia N, Lazzari B, Del Prete C, Longobardi V, Pizzi F, Stella A, Frigerio R, Cretich M, Consiglio AL, Gasparrini B. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci Rep 2022; 12:14886. [PMID: 36050481 PMCID: PMC9437019 DOI: 10.1038/s41598-022-18438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
In buffalo (Bubalus bubalis) reproductive seasonality, causing cycles of milk production, is one of the major factors affecting farming profitability. Follicular fluid (FF) contains extracellular vesicles (EVs) playing an important role in modulating oocyte developmental competence and carrying microRNAs (miRNAs) essential for in vitro fertilization outcomes. The aim of this work was to characterize the FF-EVs-miRNA cargo of antral (An) and preovulatory (pO) follicles collected in the breeding (BS) and non-breeding (NBS) seasons, to unravel the molecular causes of the reduced oocyte competence recorded in buffalo during the NBS. In total, 1335 miRNAs (538 known Bos taurus miRNAs, 324 homologous to known miRNAs from other species and 473 new candidate miRNAs) were found. We identified 413 differentially expressed miRNAs (DE-miRNAs) (FDR < 0.05) between An and pO groups. A subset of the most significant DE-miRNAs between An and pO groups targets genes which function is related to the lipid and steroid metabolism, response to glucocorticoid and oestradiol stimulus. Comparison between BS and NBS showed 14 and 12 DE-miRNAs in An-FF-EVs and pO-FF-EVs, which regulate IL6 release and cellular adhesion, respectively. In conclusion, these results demonstrated that the miRNA cargo of buffalo FF-EVs varies in relation to both follicular development and season.
Collapse
Affiliation(s)
- Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Michal Andrzej Kosior
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Natascia Cocchia
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Chiara Del Prete
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Valentina Longobardi
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Flavia Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Anna Lange Consiglio
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, 20133, Lodi, Milano, Italy.
| | - Bianca Gasparrini
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| |
Collapse
|
10
|
Dehghanian Reyhan V, Sadeghi M, Miraei-Ashtiani SR, Ghafouri F, Kastelic JP, Barkema HW. Integrated transcriptome and regulatory network analyses identify candidate genes and pathways modulating ewe fertility. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Sadeghi M, Bahrami A, Hasankhani A, Kioumarsi H, Nouralizadeh R, Abdulkareem SA, Ghafouri F, Barkema HW. lncRNA-miRNA-mRNA ceRNA Network Involved in Sheep Prolificacy: An Integrated Approach. Genes (Basel) 2022; 13:genes13081295. [PMID: 35893032 PMCID: PMC9332185 DOI: 10.3390/genes13081295] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular pattern of fertility is considered as an important step in breeding of different species, and despite the high importance of the fertility, little success has been achieved in dissecting the interactome basis of sheep fertility. However, the complex mechanisms associated with prolificacy in sheep have not been fully understood. Therefore, this study aimed to use competitive endogenous RNA (ceRNA) networks to evaluate this trait to better understand the molecular mechanisms responsible for fertility. A competitive endogenous RNA (ceRNA) network of the corpus luteum was constructed between Romanov and Baluchi sheep breeds with either good or poor genetic merit for prolificacy using whole-transcriptome analysis. First, the main list of lncRNAs, miRNAs, and mRNA related to the corpus luteum that alter with the breed were extracted, then miRNA−mRNA and lncRNA−mRNA interactions were predicted, and the ceRNA network was constructed by integrating these interactions with the other gene regulatory networks and the protein−protein interaction (PPI). A total of 264 mRNAs, 14 lncRNAs, and 34 miRNAs were identified by combining the GO and KEGG enrichment analyses. In total, 44, 7, 7, and 6 mRNAs, lncRNAs, miRNAs, and crucial modules, respectively, were disclosed through clustering for the corpus luteum ceRNA network. All these RNAs involved in biological processes, namely proteolysis, actin cytoskeleton organization, immune system process, cell adhesion, cell differentiation, and lipid metabolic process, have an overexpression pattern (Padj < 0.01). This study increases our understanding of the contribution of different breed transcriptomes to phenotypic fertility differences and constructed a ceRNA network in sheep (Ovis aries) to provide insights into further research on the molecular mechanism and identify new biomarkers for genetic improvement.
Collapse
Affiliation(s)
- Masoumeh Sadeghi
- Environmental Health, Zahedan University of Medical Sciences, Zahedan 98, Iran;
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, 80333 Munich, Germany
- Correspondence: (A.B.); (R.N.); Tel.: +98-9199300065 (A.B.)
| | - Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
| | - Hamed Kioumarsi
- Department of Animal Science Research, Gilan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht 43, Iran;
| | - Reza Nouralizadeh
- Department of Food and Drug Control, Faculty of Pharmacy, Jundishapour University of Medical Sciences, Ahvaz 63, Iran
- Correspondence: (A.B.); (R.N.); Tel.: +98-9199300065 (A.B.)
| | - Sarah Ali Abdulkareem
- Department of Computer Science, Al-Turath University College, Al Mansour, Baghdad 10011, Iraq;
| | - Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4Z6, Canada;
| |
Collapse
|
12
|
Kose M, Hitit M, Kaya MS, Kırbas M, Dursun S, Alak I, Atli MO. Expression pattern of microRNAs in ovine endometrium during the peri-implantation. Theriogenology 2022; 191:35-46. [DOI: 10.1016/j.theriogenology.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
|
13
|
Wang C, Zhao Y, Yuan Z, Wu Y, Zhao Z, Wu C, Hou J, Zhang M. Genome-Wide Identification of mRNAs, lncRNAs, and Proteins, and Their Relationship With Sheep Fecundity. Front Genet 2022; 12:750947. [PMID: 35211149 PMCID: PMC8861438 DOI: 10.3389/fgene.2021.750947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
The exploration of multiple birth-related genes has always been a significant focus in sheep breeding. This study aimed to find more genes and proteins related to the litter size in sheep. Ovarian specimens of Small Tail Han sheep (multiple births) and Xinji Fine Wool sheep (singleton) were collected during the natural estrus cycle. Transcriptome and proteome of ovarian specimens were analyzed. The transcriptome results showed that "steroid hormone biosynthesis" and "ovarian steroidogenesis" were significantly enriched, in which HSD17B1 played an important role. The proteome data also confirmed that the differentially expressed proteins (DEPs) were enriched in the ovarian steroidogenesis pathway, and the CYP17A1 was the candidate DEP. Furthermore, lncRNA MSTRG.28645 was highly expressed in Small Tailed Han sheep but lowly expressed in Xinji fine wool sheep. In addition, MSTRG.28645, a hub gene in the co-expression network between mRNAs and lncRNAs, was selected as one of the candidate genes for subsequent verification. Expectedly, the overexpression and interference of HSD17B1 and MSTRG.28645 showed a significant effect on hormone secretion in granulosa cells. Therefore, this study confirmed that HSD17B1 and MSTRG.28645 might be potential genes related to the fecundity of sheep. It was concluded that both HSD17B1 and MSTRG.28645 were critical regulators in the secretion of hormones that affect the fecundity of the sheep.
Collapse
Affiliation(s)
- Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yunhui Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - ZhiYu Yuan
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yujin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Cuiling Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mingxin Zhang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
14
|
Sun T, Xiao C, Deng J, Yang Z, Zou L, Du W, Li S, Huo X, Zeng L, Yang X. Transcriptome analysis reveals key genes and pathways associated with egg production in Nandan-Yao domestic chicken. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100889. [PMID: 34509172 DOI: 10.1016/j.cbd.2021.100889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Egg production is a very important economic trait in chicken breeding, but its molecular mechanism is unclear until now. Nandan-Yao chicken (Gallus gallus domesticus) is a native breed in Guangxi province, China, which is famous for good meet quality, but with low egg production. METHODS To explore the molecular regulation related to egg production, high egg production (HEP) and low egg production (LEP) were divided according to the total egg number at 55 weeks, and the concentration of serum sex hormones was tested to evaluate the physiological function of ovary and uterus. RNA sequencing (RNA-Seq) was used to explore the transcriptome from the ovary and uterus of Nandan-Yao chicken. RESULTS The levels of serum sex hormone showed that concentrations of estradiol (E2), follicle-stimulating hormone (FSH), and luteotropic hormone (LH) were significantly higher in HEP than those in LEP (P < 0.01), while the concentration of testosterone (T) was significantly lower in HEP (P < 0.01). RNA-Seq analysis identified 901 and 2763 differentially expressed genes (DEGs) in ovary and uterus, respectively. Enrichment analysis showed that DEGs were significantly involved in the regulation of tight junction in the ovary (P < 0.05), while in uterus, DEGs were mainly enriched in the phagosome, ECM-receptor interaction, cell adhesion molecules (CAMs), focal adhesion, cardiac muscle contraction, cytokine-cytokine receptor interaction, and the regulation of MAPK signaling pathway (P < 0.05). Protein network interaction and function analyses revealed that FN1, FGF7, SOX2 identified from the ovary, and UQCRH, COX5A, FN1 from the uterus might be key candidate genes for egg production in Nandan-Yao chicken. CONCLUSIONS Our study provided key candidate genes and pathways involved in the egg-laying process of Nandan-Yao chicken and could help to further understand the molecular mechanisms of chicken reproduction.
Collapse
Affiliation(s)
- Tiantian Sun
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China
| | - Jixian Deng
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China.
| | - Leqin Zou
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China
| | - Wenya Du
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China
| | - Shuxia Li
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China
| | - Xianqiang Huo
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China
| | - Linghu Zeng
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi, University, Nanning, Guangxi 530004, China.
| |
Collapse
|
15
|
Long noncoding RNAs profiling in ovary during laying and nesting in Muscovy ducks (Cairina moschata). Anim Reprod Sci 2021; 230:106762. [PMID: 34022609 DOI: 10.1016/j.anireprosci.2021.106762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
There are recent reports of the important functions of long noncoding RNAs (lncRNAs) in female reproductive and ovarian development. Studies in which there was characterization of lncRNAs in the ovaries of laying compared with nesting poultry, however, are limited. In this study, RNA libraries were constructed by obtaining sequencing data of ovarian tissues from laying and nesting Muscovy ducks. In the ovarian tissues of Muscovy ducks, a total of 334 differentially abundant mRNA transcripts (DEGs) and 36 differentially abundant lncRNA transcripts were identified in the nesting period, when compared with during the laying period. These results were subsequently validated by qRT-PCR using nine randomly-selected lncRNAs and six randomly-selected DAMTs. Furthermore, the cis- and trans-regulatory target genes of differentially abundant lncRNA transcripts were identified, and lncRNA-gene interaction networks of 34 differentially abundant lncRNAs and 263 DEGs were constructed. A total of 7601 lncRNAs neighboring 10,542 protein-coding genes were identified and found to be enriched in the Wnt signaling pathway and oocyte meiosis pathways associated with follicular development. Overall, only 11 cis-targets and 57 mRNA-mRNA except trans-targets were involved in the lncRNA-gene interaction networks. Based on the interaction networks, nine DEGs were trans-regulated by differentially abundant lncRNAs and 20 differentially abundant lncRNAs were hypothesized to have important functions in the regulation of broodiness in Muscovy ducks. In this study, a predicted interaction network of differentially abundant lncRNAs and DEGs in Muscovy ducks was constructed for the first time leading to an enhanced understanding of lncRNA and gene interactions regulating broodiness.
Collapse
|
16
|
Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci Rep 2020; 10:13557. [PMID: 32782284 PMCID: PMC7419291 DOI: 10.1038/s41598-020-70546-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Season clearly influences oocyte competence in buffalo (Bubalus bubalis); however, changes in the oocyte molecular status in relation to season are poorly understood. This study characterizes the microRNA (miRNA) and transcriptomic profiles of oocytes (OOs) and corresponding follicular cells (FCs) from buffalo ovaries collected in the breeding (BS) and non-breeding (NBS) seasons. In the BS, cleavage and blastocyst rates are significantly higher compared to NBS. Thirteen miRNAs and two mRNAs showed differential expression (DE) in FCs between BS and NBS. DE-miRNAs target gene analysis uncovered pathways associated with transforming growth factor β (TGFβ) and circadian clock photoperiod. Oocytes cluster in function of season for their miRNA content, showing 13 DE-miRNAs between BS and NBS. Between the two seasons, 22 differentially expressed genes were also observed. Gene Ontology (GO) analysis of miRNA target genes and differentially expressed genes (DEGs) in OOs highlights pathways related to triglyceride and sterol biosynthesis and storage. Co-expression analysis of miRNAs and mRNAs revealed a positive correlation between miR-296-3p and genes related to metabolism and hormone regulation. In conclusion, season significantly affects female fertility in buffalo and impacts on oocyte transcriptomic of genes related to folliculogenesis and acquisition of oocyte competence.
Collapse
|
17
|
Ma X, Cen S, Wang L, Zhang C, Wu L, Tian X, Wu Q, Li X, Wang X. Genome-wide identification and comparison of differentially expressed profiles of miRNAs and lncRNAs with associated ceRNA networks in the gonads of Chinese soft-shelled turtle, Pelodiscus sinensis. BMC Genomics 2020; 21:443. [PMID: 32600250 PMCID: PMC7322844 DOI: 10.1186/s12864-020-06826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background The gonad is the major factor affecting animal reproduction. The regulatory mechanism of the expression of protein-coding genes involved in reproduction still remains to be elucidated. Increasing evidence has shown that ncRNAs play key regulatory roles in gene expression in many life processes. The roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in reproduction have been investigated in some species. However, the regulatory patterns of miRNA and lncRNA in the sex biased expression of protein coding genes remains to be elucidated. In this study, we performed an integrated analysis of miRNA, messenger RNA (mRNA), and lncRNA expression profiles to explore their regulatory patterns in the female ovary and male testis of Pelodiscus sinensis. Results We identified 10,446 mature miRNAs, 20,414 mRNAs and 28,500 lncRNAs in the ovaries and testes, and 633 miRNAs, 11,319 mRNAs, and 10,495 lncRNAs showed differential expression. A total of 2814 target genes were identified for miRNAs. The predicted target genes of these differentially expressed (DE) miRNAs and lncRNAs included abundant genes related to reproductive regulation. Furthermore, we found that 189 DEmiRNAs and 5408 DElncRNAs showed sex-specific expression. Of these, 3 DEmiRNAs and 917 DElncRNAs were testis-specific, and 186 DEmiRNAs and 4491 DElncRNAs were ovary-specific. We further constructed complete endogenous lncRNA-miRNA-mRNA networks using bioinformatics, including 103 DEmiRNAs, 636 DEmRNAs, and 1622 DElncRNAs. The target genes for the differentially expressed miRNAs and lncRNAs included abundant genes involved in gonadal development, including Wt1, Creb3l2, Gata4, Wnt2, Nr5a1, Hsd17, Igf2r, H2afz, Lin52, Trim71, Zar1, and Jazf1. Conclusions In animals, miRNA and lncRNA as master regulators regulate reproductive processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs, lncRNAs, and their targets in P. sinensis might be useful for studying the molecular processes involved in sexual reproduction and genome editing to produce higher quality aquaculture animals. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of P. sinensis reproductive traits for aquaculture.
Collapse
Affiliation(s)
- Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Shuangshuang Cen
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Luming Wang
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Chao Zhang
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qisheng Wu
- Fisheries Research Institute of Fujian, Xiamen, Fujian, 361000, People's Republic of China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| | - Xiaoqing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| |
Collapse
|
18
|
Zhang Z, Tang J, Di R, Liu Q, Wang X, Gan S, Zhang X, Zhang J, Chu M, Hu W. Integrated Hypothalamic Transcriptome Profiling Reveals the Reproductive Roles of mRNAs and miRNAs in Sheep. Front Genet 2020; 10:1296. [PMID: 32010181 PMCID: PMC6974689 DOI: 10.3389/fgene.2019.01296] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Early studies have provided a wealth of information on the functions of microRNAs (miRNAs). However, less is known regarding their functions in the hypothalamus involved in sheep reproduction. To explore the potential roles of hypothalamic messenger RNAs (mRNAs) and miRNAs in sheep without FecB mutation, in total, 172 and 235 differentially expressed genes (DEGs) and 42 and 79 differentially expressed miRNAs (DE miRNAs) were identified in polytocous sheep in the follicular phase versus monotocous sheep in the follicular phase (PF vs. MF) and polytocous sheep in the luteal phase versus monotocous sheep in the luteal phase (PL vs. ML), respectively, using RNA sequencing. We also identified several key mRNAs (e.g., POMC, GNRH1, PRL, GH, TRH, and TTR) and mRNA–miRNAs pairs (e.g., TRH co-regulated by oar-miR-379-5p, oar-miR-30b, oar-miR-152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-miR-218a, oar-miR-148a, and PRL regulated by oar-miR-432) through functional enrichment analysis, and the identified mRNAs and miRNAs may function, conceivably, by influencing gonadotropin-releasing hormone (GnRH) activities and nerve cell survival associated with reproductive hormone release via direct and indirect ways. This study represents an integral analysis between mRNAs and miRNAs in sheep hypothalamus and provides a valuable resource for elucidating sheep prolificacy.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Sun G, Zhang H, Wei Q, Zhao C, Yang X, Wu X, Xia T, Liu G, Zhang L, Gao Y, Sha W, Li Y. Comparative Analyses of Fecal Microbiota in European Mouflon ( Ovis orientalis musimon) and Blue Sheep ( Pseudois nayaur) Living at Low or High Altitudes. Front Microbiol 2019; 10:1735. [PMID: 31417526 PMCID: PMC6682669 DOI: 10.3389/fmicb.2019.01735] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
The gut microbiota is a complex and essential system organ that plays an integrative role in balancing key vital functions in the host. Knowledge of the impact of altitude on the gut microbiota of European mouflon (Ovis orientalis musimon) and blue sheep (Pseudois nayaur) is currently limited. In this study, we compared the characteristics of gut microbiota in 5 mouflon at low altitude (K group), 4 mouflon at high altitude (L group), 4 blue sheep at low altitude (M group), and 4 blue sheep at high altitude (N group). The V3–V4 region of the 16S rRNA gene was analyzed using high-throughput sequencing. Analyses based on the operational taxonomic units showed significant changes in the gut microbial communities between groups at different altitudes. At the phylum level, groups at the high altitudes had a higher relative abundance of Firmicutes and a lower relative abundance of Bacteroidetes than those at the low altitudes. A higher Firmicutes:Bacteroidetes ratio is beneficial to animals in terms of the gut microbiota-mediated energy harvest. The relative abundance of Proteobacteria was significantly higher in the gut microbiota of mouflon sheep at high altitudes. At the genus level, the Bacteroides:Prevotella ratio was significantly higher in the low-altitude group (than the high-altitude group) of mouflon sheep and the ratio was significantly higher in the high-altitude group (than the low-altitude group) in blue sheep. In addition, the Ruminococcaceae_UCG-005 related to cellulose and starch digestion was the predominant genus in blue sheep and the relative abundance of the genus was significant higher in the high-altitude group than the low-altitude group of blue sheep (P < 0.01). In conclusion, our results suggested that the gut microbiota of high-altitude groups of sheep had stronger abilities related to energy metabolism and the decomposition of substances, e.g., fiber and cellulose, and that such abilities are associated with high-altitude adaptation.
Collapse
Affiliation(s)
- Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Qinguo Wei
- College of Life Science, Qufu Normal University, Qufu, China
| | - Chao Zhao
- College of Life Science, Qufu Normal University, Qufu, China
| | - Xiufeng Yang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Xiaoyang Wu
- College of Life Science, Qufu Normal University, Qufu, China
| | - Tian Xia
- College of Life Science, Qufu Normal University, Qufu, China
| | - Guangshuai Liu
- College of Life Science, Qufu Normal University, Qufu, China
| | - Lei Zhang
- College of Life Science, Qufu Normal University, Qufu, China
| | | | - Weilai Sha
- College of Life Science, Qufu Normal University, Qufu, China
| | - Ying Li
- Wild World Jinan, Jinan, China
| |
Collapse
|