1
|
Potapova T, Kostos P, McKinney S, Borchers M, Haug J, Guarracino A, Solar S, Gogol M, Monfort Anez G, de Lima LG, Wang Y, Hall K, Hoffman S, Garrison E, Phillippy AM, Gerton JL. Epigenetic control and inheritance of rDNA arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612795. [PMID: 39372739 PMCID: PMC11451732 DOI: 10.1101/2024.09.13.612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes. Each individual possessed a unique fingerprint of copy number distribution and activity of rDNA arrays. In some cases, entire rDNA arrays were transcriptionally silent. Silent rDNA arrays showed reduced association with the nucleolus and decreased interchromosomal interactions, indicating that the nucleolar organizer function of rDNA depends on transcriptional activity. Methyl-sequencing of flow-sorted chromosomes, combined with long read sequencing, showed epigenetic modification of rDNA promoter and coding region by DNA methylation. Silent arrays were in a closed chromatin state, as indicated by the accessibility profiles derived from Fiber-seq. Removing DNA methylation restored the transcriptional activity of silent arrays. Array activity status remained stable through the iPS cell re-programming. Family trio analysis demonstrated that the inactive rDNA haplotype can be traced to one of the parental genomes, suggesting that the epigenetic state of rDNA arrays may be heritable. We propose that the dosage of rRNA genes is epigenetically regulated by DNA methylation, and these methylation patterns specify nucleolar organizer function and can propagate transgenerationally.
Collapse
Affiliation(s)
- Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paxton Kostos
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jeff Haug
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Caballero-Huertas M, Salazar-Moscoso M, Ribas L. Sex is a Crucial Factor in the Immune Response: An Ichthyological Perspective. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2024:1-21. [DOI: 10.1080/23308249.2024.2390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Marta Caballero-Huertas
- CIRAD, UMR ISEM, Montpellier, France
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marcela Salazar-Moscoso
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Laia Ribas
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
3
|
Fernandes KA, Lim AI. Maternal-driven immune education in offspring. Immunol Rev 2024; 323:288-302. [PMID: 38445769 DOI: 10.1111/imr.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.
Collapse
Affiliation(s)
| | - Ai Ing Lim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
4
|
Franke A, Beemelmanns A, Miest JJ. Are fish immunocompetent enough to face climate change? Biol Lett 2024; 20:20230346. [PMID: 38378140 PMCID: PMC10878809 DOI: 10.1098/rsbl.2023.0346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Ongoing climate change has already been associated with increased disease outbreaks in wild and farmed fish. Here, we evaluate the current knowledge of climate change-related ecoimmunology in teleosts with a focus on temperature, hypoxia, salinity and acidification before exploring interactive effects of multiple stressors. Our literature review reveals that acute and chronic changes in temperature and dissolved oxygen can compromise fish immunity which can lead to increased disease susceptibility. Moreover, temperature and hypoxia have already been shown to enhance the infectivity of certain pathogens/parasites and to accelerate disease progression. Too few studies exist that have focussed on acidification, but direct immune effects seem to be limited while salinity studies have led to contrasting results. Likewise, multi-stressor experiments essential for unravelling the interactions of simultaneously changing environmental factors are still scarce. This ultimately impedes our ability to estimate to what extent climate change will hamper fish immunity. Our review about epigenetic regulation mechanisms highlights the acclimation potential of the fish immune response to changing environments. However, due to the limited number of epigenetic studies, overarching conclusions cannot be drawn. Finally, we provide an outlook on how to better estimate the effects of realistic climate change scenarios in future immune studies in fish.
Collapse
Affiliation(s)
- Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129 Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), 27570 Bremerhaven, Germany
| | - Anne Beemelmanns
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V0A6 Québec, Canada
| | - Joanna J. Miest
- School of Psychology and Life Sciences, Canterbury, Kent CT1 1QU, UK
- School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
5
|
Belasen AM, Peek RA, Adams AJ, Russell ID, De León ME, Adams MJ, Bettaso J, Breedveld KGH, Catenazzi A, Dillingham CP, Grear DA, Halstead BJ, Johnson PG, Kleeman PM, Koo MS, Koppl CW, Lauder JD, Padgett-Flohr G, Piovia-Scott J, Pope KL, Vredenburg V, Westphal M, Wiseman K, Kupferberg SJ. Chytrid infections exhibit historical spread and contemporary seasonality in a declining stream-breeding frog. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231270. [PMID: 38298390 PMCID: PMC10827429 DOI: 10.1098/rsos.231270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Species with extensive geographical ranges pose special challenges to assessing drivers of wildlife disease, necessitating collaborative and large-scale analyses. The imperilled foothill yellow-legged frog (Rana boylii) inhabits a wide geographical range and variable conditions in rivers of California and Oregon (USA), and is considered threatened by the pathogen Batrachochytrium dendrobatidis (Bd). To assess drivers of Bd infections over time and space, we compiled over 2000 datapoints from R. boylii museum specimens (collected 1897-2005) and field samples (2005-2021) spanning 9° of latitude. We observed a south-to-north spread of Bd detections beginning in the 1940s and increase in prevalence from the 1940s to 1970s, coinciding with extirpation from southern latitudes. We detected eight high-prevalence geographical clusters through time that span the species' geographical range. Field-sampled male R. boylii exhibited the highest prevalence, and juveniles sampled in autumn exhibited the highest loads. Bd infection risk was highest in lower elevation rain-dominated watersheds, and with cool temperatures and low stream-flow conditions at the end of the dry season. Through a holistic assessment of relationships between infection risk, geographical context and time, we identify the locations and time periods where Bd mitigation and monitoring will be critical for conservation of this imperilled species.
Collapse
Affiliation(s)
- A. M. Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - R. A. Peek
- California Department of Fish and Wildlife, West Sacramento, CA, USA
| | - A. J. Adams
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - I. D. Russell
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - M. E. De León
- Genome Center, University of California, Davis, CA, USA
| | - M. J. Adams
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA
| | - J. Bettaso
- Six Rivers National Forest, Lower Trinity Ranger District, USDA Forest Service, P.O. Box 68, Willow Creek, CA, USA
| | | | - A. Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | - D. A. Grear
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - B. J. Halstead
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - P. G. Johnson
- Pinnacles National Park, National Park Service, Paicines, CA, USA
| | - P. M. Kleeman
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - M. S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, CA
| | - C. W. Koppl
- Plumas National Forest, USDA Forest Service, Quincy, CA, USA
| | | | | | - J. Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - K. L. Pope
- Pacific Southwest Research Station, USDA Forest Service, Arcata, CA, USA
| | - V. Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - M. Westphal
- Central Coast Field Office, United States Bureau of Land Management, Marina, CA, USA
| | - K. Wiseman
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - S. J. Kupferberg
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
7
|
He Y, Taylor RL, Bai H, Ashwell CM, Zhao K, Li Y, Sun G, Zhang H, Song J. Transgenerational epigenetic inheritance and immunity in chickens that vary in Marek's disease resistance. Poult Sci 2023; 102:103036. [PMID: 37832188 PMCID: PMC10568563 DOI: 10.1016/j.psj.2023.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/15/2023] Open
Abstract
Marek's disease virus (MDV), a naturally oncogenic, highly contagious alpha herpesvirus, induces a T cell lymphoma in chickens that causes severe economic loss. Marek's disease (MD) outcome in an individual is attributed to genetic and environmental factors. Further investigation of the host-virus interaction mechanisms that impact MD resistance is needed to achieve greater MD control. This study analyzed genome-wide DNA methylation patterns in 2 highly inbred parental lines 63 and 72 and 5 recombinant congenic strains (RCS) C, L, M, N, and X strains from those parents. Lines 63 and 72, are MD resistant and susceptible, respectively, whereas the RCS have different combinations of 87.5% Line 63 and 12.5% Line 72. Our DNA methylation cluster showed a strong association with MD incidence. Differentially methylated regions (DMRs) between the parental lines and the 5 RCS were captured. MD-resistant and MD-susceptible markers of DNA methylation were identified as transgenerational epigenetic inheritable. In addition, the growth of v-src DNA tumors and antibody response against sheep red blood cells differed among the 2 parental lines and the RCS. Overall, our results provide very solid evidence that DNA methylation patterns are transgenerational epigenetic inheritance (TEI) in chickens and also play a vital role in MD tumorigenesis and other immune responses; the specific methylated regions may be important modulators of general immunity.
Collapse
Affiliation(s)
- Yanghua He
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822 USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences West Virginia University, Morgantown, WV 26508 USA
| | - Hao Bai
- Department of Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Christopher M Ashwell
- Division of Animal and Nutritional Sciences West Virginia University, Morgantown, WV 26508 USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, GD 510642, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| |
Collapse
|
8
|
Kloc M, Kubiak JZ. The Role of Human and Animal Monocytes and Macrophages in Homeostasis and Disease. Int J Mol Sci 2023; 24:16397. [PMID: 38003587 PMCID: PMC10671400 DOI: 10.3390/ijms242216397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Monocytes and macrophages are the innate immune cells that are the first-line responders to invading pathogens or foreign objects[...].
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- The Houston Methodist Hospital, Department of Surgery, Houston, TX 77030, USA
- MD Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes, Faculty of Medicine, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| |
Collapse
|
9
|
Lopes PC. Responding to infection affects more than just the host. Trends Ecol Evol 2023; 38:799-801. [PMID: 37393181 DOI: 10.1016/j.tree.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
An infection triggers a dramatic suite of changes in host physiology and behavior. While seemingly localized, the host response affects many other organisms, both within and beyond the boundaries of the host's body, with far-reaching ecological implications. Here, I call for more awareness and integration of those potential 'off-host' effects.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| |
Collapse
|
10
|
Rutkowski NAJ, McNamara KB, Jones TM, Foo YZ. Trans-generational immune priming is not mediated by the sex of the parent primed: a meta-analysis of invertebrate data. Biol Rev Camb Philos Soc 2023; 98:1100-1117. [PMID: 36879482 DOI: 10.1111/brv.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Traditionally, only vertebrates were thought capable of acquired immune responses, such as the ability to transfer immunological experience vertically to their offspring (known as trans-generational immune priming, TGIP). Increasing evidence challenges this belief and it is now clear that invertebrates also have the ability to exhibit functionally equivalent TGIP. This has led to a surge in papers exploring invertebrate TGIP, with most focusing on the costs, benefits or factors that affect the evolution of this trait. Whilst many studies have found support for the phenomenon, not all studies do, and there is considerable variation in the strength of positive results. To address this, we conducted a meta-analysis to answer the question: what is the overall effect of TGIP in invertebrates? Then, to understand the specific factors that affect its presence and intensity, we conducted a moderator analysis. Our results corroborate that TGIP occurs in invertebrates (demonstrated by a large, positive effect size). The strength of the positive effect was related to if and how offspring were immune challenged (i.e. whether they were challenged with the same or different insult as their parents or not challenged at all). Interestingly, there was no effect of the ecology or life history of the species or the sex of the parent or the offspring primed, and responses were comparable across different immune elicitors. Our publication bias testing suggests that the literature may suffer from some level of positive-result bias. However, even after accounting for potential bias, our effect size remains positive. Publication bias testing can be influenced by diversity in the data set, which was considerable in our data, even after moderator analysis. It is therefore conceivable that differences among studies could be caused by other moderators that were unable to be included in our meta-analysis. Nonetheless, our results suggest that TGIP does occur in invertebrates, whilst providing some potential avenues to examine the factors that account for variation in effect sizes.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
11
|
Radhika R, Lazzaro BP. No evidence for trans-generational immune priming in Drosophila melanogaster. PLoS One 2023; 18:e0288342. [PMID: 37440541 DOI: 10.1371/journal.pone.0288342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Most organisms are under constant and repeated exposure to pathogens, leading to perpetual natural selection for more effective ways to fight-off infections. This could include the evolution of memory-based immunity to increase protection from repeatedly-encountered pathogens both within and across generations. There is mixed evidence for intra- and trans-generational priming in non-vertebrates, which lack the antibody-mediated acquired immunity characteristic of vertebrates. In this work, we tested for trans-generational immune priming in adult offspring of the fruit fly, Drosophila melanogaster, after maternal challenge with 10 different bacterial pathogens. We focused on natural opportunistic pathogens of Drosophila spanning a range of virulence from 10% to 100% host mortality. We infected mothers via septic injury and tested for enhanced resistance to infection in their adult offspring, measured as the ability to suppress bacterial proliferation and survive infection. We categorized the mothers into four classes for each bacterium tested: those that survived infection, those that succumbed to infection, sterile-injury controls, and uninjured controls. We found no evidence for trans-generational priming by any class of mother in response to any of the bacteria.
Collapse
Affiliation(s)
- R Radhika
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
12
|
Ma J, Trushenski JT, Jones EM, Bruce TJ, McKenney DG, Kurath G, Cain KD. Characterization of maternal immunity following vaccination of broodstock against IHNV or Flavobacterium psychrophilum in rainbow trout (Oncorhynchusmykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108749. [PMID: 37062435 DOI: 10.1016/j.fsi.2023.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/22/2023]
Abstract
Infectious hematopoietic necrosis (IHN) is a significant viral disease affecting salmonids, whereas Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD), remains one of the most significant bacterial pathogens of salmonids. We explored maternal immunity in the context of IHN and BCWD management in rainbow trout (Oncorhynchus mykiss) aquaculture. Two experimental trials were conducted where different groups of female broodstock were immunized prior to spawning with an IHNV DNA vaccine or a live attenuated F. psychrophilum (Fp B.17-ILM) vaccine alone, or in combination. Progeny were challenged with either a low or high dose of IHNV at 13 days post hatch (dph) and 32 dph or challenged with F. psychrophilum at 13 dph. Mortality following a low-dose IHNV challenge at 13 dph was significantly lower in progeny from vaccinated broodstock vs. unvaccinated broodstock, but no significant differences were observed at 32 dph. Mortality due to BCWD was also significantly reduced in 13 dph fry that originated from broodstock immunized with the Fp B.17-ILM vaccine. After vaccination broodstock developed specific or neutralizing antibodies respectively to F. psychrophilum and IHNV; however, antibody titers in eggs and fry were undetectable. In the eggs and fry mRNA transcripts of the complement components C3 and C5 were detected at much higher levels in progeny from vaccinated broodstock and showed a significantly increased and rapid response post-challenge compared with unvaccinated broodstock. After challenges pro-inflammatory cytokine expression was immediately and considerably elevated in the fry from vaccinated broodstock vs. unvaccinated broodstock, whereas adaptive immune genes were elevated to a lesser degree. Results suggest that maternal transfer of innate and adaptive factors at the transcript level occurred because development of lymphomyeloid organs is not complete in such young fry. In addition to documenting maternally derived immunity in teleosts, this study demonstrates that broodstock vaccination can confer some degree of protection to progeny against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | | | - Evan M Jones
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Timothy J Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA; School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Doug G McKenney
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
13
|
Radhika R, Lazzaro BP. No evidence for trans-generational immune priming in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538340. [PMID: 37163106 PMCID: PMC10168321 DOI: 10.1101/2023.04.25.538340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Most organisms are under constant and repeated exposure to pathogens, leading to perpetual natural selection for more effective ways to fight-off infections. This could include the evolution of memory-based immunity to increase protection from repeatedly-encountered pathogens both within and across generations. There is mixed evidence for intra- and trans-generational priming in non-vertebrates, which lack the antibody-mediated acquired immunity characteristic of vertebrates. In this work, we tested for trans-generational immune priming in adult offspring of the fruit fly, Drosophila melanogaster , after maternal challenge with 10 different bacterial pathogens. We focused on natural opportunistic pathogens of Drosophila spanning a range of virulence from 10% to 100% host mortality. We infected mothers via septic injury and tested for enhanced resistance to infection in their adult offspring, measured as the ability to suppress bacterial proliferation and survive infection. We categorized the mothers into four classes for each bacterium tested: those that survived infection, those that succumbed to infection, sterile-injury controls, and uninjured controls. We found no evidence for trans-generational priming by any class of mother in response to any of the bacteria.
Collapse
|
14
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
15
|
Castagné R, Ménard S, Delpierre C. The epigenome as a biological candidate to incorporate the social environment over the life course and generations. Epigenomics 2023; 15:5-10. [PMID: 36916280 DOI: 10.2217/epi-2022-0457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Affiliation(s)
- Raphaële Castagné
- Center for Epidemiology & Research in POPulation Health (CERPOP), UMR 1295, Université Toulouse III Paul Sabatier, INSERM, 31000, Toulouse, France
| | - Sandrine Ménard
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, 31024, France
| | - Cyrille Delpierre
- Center for Epidemiology & Research in POPulation Health (CERPOP), UMR 1295, Université Toulouse III Paul Sabatier, INSERM, 31000, Toulouse, France
| |
Collapse
|
16
|
Sun S, Dziuba MK, Jaye RN, Duffy MA. Transgenerational plasticity in a zooplankton in response to elevated temperature and parasitism. Ecol Evol 2023; 13:e9767. [PMID: 36760704 PMCID: PMC9897957 DOI: 10.1002/ece3.9767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Organisms are increasingly facing multiple stressors, which can simultaneously interact to cause unpredictable impacts compared with a single stressor alone. Recent evidence suggests that phenotypic plasticity can allow for rapid responses to altered environments, including biotic and abiotic stressors, both within a generation and across generations (transgenerational plasticity). Parents can potentially "prime" their offspring to better cope with similar stressors or, alternatively, might produce offspring that are less fit because of energetic constraints. At present, it remains unclear exactly how biotic and abiotic stressors jointly mediate the responses of transgenerational plasticity and whether this plasticity is adaptive. Here, we test the effects of biotic and abiotic environmental changes on within- and transgenerational plasticity using a Daphnia-Metschnikowia zooplankton-fungal parasite system. By exposing parents and their offspring consecutively to the single and combined effects of elevated temperature and parasite infection, we showed that transgenerational plasticity induced by temperature and parasite stress influenced host fecundity and lifespan; offsprings of mothers who were exposed to one of the stressors were better able to tolerate elevated temperature, compared with the offspring of mothers who were exposed to neither or both stressors. Yet, the negative effects caused by parasite infection were much stronger, and this greater reduction in host fitness was not mitigated by transgenerational plasticity. We also showed that elevated temperature led to a lower average immune response, and that the relationship between immune response and lifetime fecundity reversed under elevated temperature: the daughters of exposed mothers showed decreased fecundity with increased hemocyte production at ambient temperature but the opposite relationship at elevated temperature. Together, our results highlight the need to address questions at the interface of multiple stressors and transgenerational plasticity and the importance of considering multiple fitness-associated traits when evaluating the adaptive value of transgenerational plasticity under changing environments.
Collapse
Affiliation(s)
- Syuan‐Jyun Sun
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- International Degree Program in Climate Change and Sustainable DevelopmentNational Taiwan UniversityTaipeiTaiwan
| | - Marcin K. Dziuba
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Riley N. Jaye
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Meghan A. Duffy
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
17
|
Schulz NKE, Mohamed FF, Lo LK, Peuß R, de Buhr MF, Kurtz J. Paternal knockdown of tRNA(cytosine-5-)-methyltransferase (Dnmt2) increases offspring susceptibility to infection in red flour beetles. INSECT MOLECULAR BIOLOGY 2022; 31:711-721. [PMID: 35790040 DOI: 10.1111/imb.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Intergenerational effects from fathers to offspring are increasingly reported from diverse organisms, but the underlying mechanisms remain speculative. Paternal trans-generational immune priming (TGIP) was demonstrated in the red flour beetle Tribolium castaneum: non-infectious bacterial exposure of fathers protects their offspring against an infectious challenge for at least two generations. Epigenetic processes, such as cytosine methylation of nucleic acids, have been proposed to enable transfer of information from fathers to offspring. Here we studied a potential role in TGIP of the Dnmt2 gene (renamed as Trdmt1 in humans), which encodes a highly conserved enzyme that methylates different RNAs, including specific cytosines of a set of tRNAs. Dnmt2 has previously been reported to be involved in intergenerational epigenetic inheritance in mice and protection against viruses in fruit flies. We first studied gene expression and found that Dnmt2 is expressed in various life history stages and tissues of T. castaneum, with high expression in the reproductive organs. RNAi-mediated knockdown of Dnmt2 in fathers was systemic, slowed down offspring larval development and increased mortality of the adult offspring upon bacterial infection. However, these effects were independent of bacterial exposure of the fathers. In conclusion, our results point towards a role of Dnmt2 for paternal effects, while elucidation of the mechanisms behind paternal TGIP needs further studies.
Collapse
Affiliation(s)
- Nora K E Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Fakry F Mohamed
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Virology Muenster, Center for Molecular Biology of Inflammation (ZMBE), University Hospital Muenster, Muenster, Germany
| | - Lai Ka Lo
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Robert Peuß
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Maike F de Buhr
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Rosengaus R, Traniello J, Bakker T. Sociality and disease: behavioral perspectives in ecological and evolutionary immunology. Behav Ecol Sociobiol 2022; 76:98. [PMID: 35821673 PMCID: PMC9263030 DOI: 10.1007/s00265-022-03203-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rebeca Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA 02115-5000 USA
| | - James Traniello
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215 USA
| | - Theo Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
19
|
Lutermann H. Socializing in an Infectious World: The Role of Parasites in Social Evolution of a Unique Rodent Family. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of parasites between hosts is facilitated by close contact of hosts. Consequently, parasites have been proposed as an important constraint to the evolution of sociality accounting for its rarity. Despite the presumed costs associated with parasitism, the majority of species of African mole-rats (Family: Bathyergidae) are social. In fact, only the extremes of sociality (i.e., solitary and singular breeding) are represented in this subterranean rodent family. But how did bathyergids overcome the costs of parasitism? Parasite burden is a function of the exposure and susceptibility of a host to parasites. In this review I explore how living in sealed burrow systems and the group defenses that can be employed by closely related group members can effectively reduce the exposure and susceptibility of social bathyergids to parasites. Evidence suggests that this can be achieved largely by investment in relatively cheap and flexible behavioral rather than physiological defense mechanisms. This also shifts the selection pressure for parasites on successful transmission between group members rather than transmission between groups. In turn, this constrains the evolution of virulence and favors socially transmitted parasites (e.g., mites and lice) further reducing the costs of parasitism for social Bathyergidae. I conclude by highlighting directions for future research to evaluate the mechanisms proposed and to consider parasites as facilitators of social evolution not only in this rodent family but also other singular breeders.
Collapse
|
20
|
Paraskevopoulou S, Gattis S, Ben-Ami F. Parasite resistance and parasite tolerance: insights into transgenerational immune priming in an invertebrate host. Biol Lett 2022; 18:20220018. [PMID: 35382587 PMCID: PMC8984330 DOI: 10.1098/rsbl.2022.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Parasites impose different selection regimes on their hosts, which respond by increasing their resistance and/or tolerance. Parental challenge with parasites can enhance the immune response of their offspring, a phenomenon documented in invertebrates and termed transgenerational immune priming. We exposed two parental generations of the model organism Daphnia magna to the horizontally transmitted parasitic yeast Metschnikowia bicuspidata and recorded resistance- and tolerance-related traits in the offspring generation. We hypothesized that parentally primed offspring will increase either their resistance or their tolerance to the parasite. Our susceptibility assays revealed no impact of parental exposure on offspring resistance. Nonetheless, different fitness-related traits, which are indicative of tolerance, were altered. Specifically, maternal priming increased offspring production and decreased survival. Grandmaternal priming positively affected age at first reproduction and negatively affected brood size at first reproduction. Interestingly, both maternal and grandmaternal priming significantly reduced within-host-parasite proliferation. Nevertheless, Daphnia primed for two consecutive generations had no competitive advantage in comparison to unprimed ones, implying additive maternal and grandmaternal effects. Our findings do not support evidence of transgenerational immune priming from bacterial infections in the same host species, thus, emphasizing that transgenerational immune responses may not be consistent even within the same host species.
Collapse
Affiliation(s)
- Sofia Paraskevopoulou
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Sabrina Gattis
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
21
|
Intersection between parental investment, transgenerational immunity, and termite sociality in the face of disease: a theoretical approach. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03128-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Hernandez CJ, Moeller AH. The microbiome: A heritable contributor to bone morphology? Semin Cell Dev Biol 2022; 123:82-87. [PMID: 34246568 PMCID: PMC8813545 DOI: 10.1016/j.semcdb.2021.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Bone provides structure to the vertebrate body that allows for movement and mechanical stimuli that enable and the proper development of neighboring organs. Bone morphology and density is also highly heritable. In humans, heritability of bone mineral density has been estimated to be 50-80%. However, genome wide association studies have so far explained only 25% of the variation in bone mineral density, suggesting that a substantial portion of the heritability of bone mineral density may be due to environmental factors. Here we explore the idea that the gut microbiome is a heritable environmental factor that contributes to bone morphology and density. The vertebrae skeleton has evolved over the past ~500 million years in the presence of commensal microbial communities. The composition of the commensal microbial communities has co-evolved with the hosts resulting in species-specific microbial populations associated with vertebrate phylogeny. Furthermore, a substantial portion of the gut microbiome is acquired through familial transfer. Recent studies suggest that the gut microbiome also influences postnatal development. Here we review studies from the past decade in mice that have shown that the presence of the gut microbiome can influence postnatal bone growth regulating bone morphology and density. These studies indicate that the presence of the gut microbiome may increase longitudinal bone growth and appositional bone growth, resulting differences cortical bone morphology in long bones. More surprising, however are recent studies showing that transfer of the gut microbiota among inbred mouse strains with distinct bone phenotypes can alter postnatal development and adult bone morphology. Together these studies support the concept that the gut microbiome is a contributor to skeletal phenotype.
Collapse
Affiliation(s)
- Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Ordovás‐Montañés M, Preston GM, Drew GC, Rafaluk‐Mohr C, King KC. Reproductive consequences of transient pathogen exposure across host genotypes and generations. Ecol Evol 2022; 12:e8720. [PMID: 35356553 PMCID: PMC8938310 DOI: 10.1002/ece3.8720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
To maximize fitness upon pathogenic infection, host organisms might reallocate energy and resources among life-history traits, such as reproduction and defense. The fitness costs of infection can result from both immune upregulation and direct pathogen exploitation. The extent to which these costs, separately and together, vary by host genotype and across generations is unknown. We attempted to disentangle these costs by transiently exposing wild isolates and a lab-domesticated strain of Caenorhabditis elegans nematodes to the pathogen Staphylococcus aureus, using exposure to heat-killed pathogens to distinguish costs due to immune upregulation and pathogen exploitation. We found that host nematodes exhibit a short-term delay in offspring production when exposed to live and heat-killed pathogen, but their lifetime fecundity (total offspring produced) recovered to control levels. We also found genetic variation between host isolates for both cumulative offspring production and magnitude of fitness costs. We further investigated whether there were maternal pathogen exposure costs (or benefits) to offspring and revealed a positive correlation between the magnitude of the pathogen-induced delay in the parent's first day of reproduction and the cost to offspring population growth. Our findings highlight the capacity for hosts to recover fecundity after transient exposure to a pathogen.
Collapse
Affiliation(s)
| | | | | | - Charlotte Rafaluk‐Mohr
- Department of ZoologyUniversity of OxfordOxfordUK
- Institute of BiologyFreie Universitat BerlinBerlinGermany
| | | |
Collapse
|
24
|
Widowski TM, Cooley L, Hendriksen S, Peixoto MRLV. Maternal age and maternal environment affect egg composition, yolk testosterone, offspring growth and behaviour in laying hens. Sci Rep 2022; 12:1828. [PMID: 35115547 PMCID: PMC8814016 DOI: 10.1038/s41598-022-05491-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal effects have been reported to alter offspring phenotype in laying hens. In this study, we investigated the effects of maternal environment and maternal age on egg traits and offspring development and behaviour. For this, we ran two experiments. First (E1), commercial hybrid hens were reared either in aviary or barren brooding cages, then housed in aviary, conventional cages or furnished (enriched) cages, thus forming different maternal housing treatments. Hens from each treatment were inseminated at three ages, and measures of egg composition, yolk testosterone concentration and offspring’s development, anxiety and fearfulness were assessed. In experiment 2 (E2), maternal age effects on offspring's growth and behaviour were further investigated using fertile eggs from commercial breeder flocks at three different ages. Results from E1 showed that Old hens laid heavier eggs with less yolk testosterone and produced offspring with fewer indicators of anxiety and fearfulness. Maternal rearing and housing affected egg traits, offspring weight and behaviour, but not in a consistent way. Effects of maternal age were not replicated in E2, possibly due to differences in management or higher tolerance to maternal effects in commercial breeders. Overall, our research confirms that maternal age and maternal environment affects egg composition, with maternal age specifically affecting yolk testosterone concentration, which may mediate physical and behavioural effects in offspring.
Collapse
Affiliation(s)
- Tina M Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | | - Simone Hendriksen
- Department of Animal Sciences, Behavioural Ecology Group, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | | |
Collapse
|
25
|
Ali Mohammadie Kojour M, Baliarsingh S, Jang HA, Yun K, Park KB, Lee JE, Han YS, Patnaik BB, Jo YH. Current knowledge of immune priming in invertebrates, emphasizing studies on Tenebrio molitor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104284. [PMID: 34619174 DOI: 10.1016/j.dci.2021.104284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Vertebrates rely on the most sophisticated adaptive immunity to defend themselves against various pathogens. This includes immunologic memory cells, which mount a stronger and more effective immune response against an antigen after its first encounter. Unlike vertebrates, invertebrates' defense completely depends on the innate immunity mechanisms including humoral and cell-mediated immunity. Furthermore, the invertebrate equivalent of the memory cells was discovered only recently. Since the discovery of transgenerational immune priming (TGIP) in crustaceans, numerous findings have proven the IP in invertebrate classes such as insects. TGIP can be induced through maternal priming pathways such as transcriptional regulation of antimicrobial peptides, and also paternal IP including the induction of proPO system activity. We appraise the diversity and specificity of IP agents to provide sustained immunologic memory in insects, particularly T. molitor in the review. An understanding of IP (more so TGIP) response in T. molitor will deepen our knowledge of invertebrate immunity, and boost the mass-rearing industry by reducing pathogen infection rates.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Snigdha Baliarsingh
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, 756089, India
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Keunho Yun
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Jong Eun Lee
- Department of Biological Science and Biotechnology, Andong National University, Andong, 36729, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, 756089, India.
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
26
|
Duncan EJ, Cunningham CB, Dearden PK. Phenotypic Plasticity: What Has DNA Methylation Got to Do with It? INSECTS 2022; 13:110. [PMID: 35206684 PMCID: PMC8878681 DOI: 10.3390/insects13020110] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
How does one genome give rise to multiple, often markedly different, phenotypes in response to an environmental cue? This phenomenon, known as phenotypic plasticity, is common amongst plants and animals, but arguably the most striking examples are seen in insects. Well-known insect examples include seasonal morphs of butterfly wing patterns, sexual and asexual reproduction in aphids, and queen and worker castes of eusocial insects. Ultimately, we need to understand how phenotypic plasticity works at a mechanistic level; how do environmental signals alter gene expression, and how are changes in gene expression translated into novel morphology, physiology and behaviour? Understanding how plasticity works is of major interest in evolutionary-developmental biology and may have implications for understanding how insects respond to global change. It has been proposed that epigenetic mechanisms, specifically DNA methylation, are the key link between environmental cues and changes in gene expression. Here, we review the available evidence on the function of DNA methylation of insects, the possible role(s) for DNA methylation in phenotypic plasticity and also highlight key outstanding questions in this field as well as new experimental approaches to address these questions.
Collapse
Affiliation(s)
- Elizabeth J. Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | - Peter K. Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
27
|
Prigot-Maurice C, Beltran-Bech S, Braquart-Varnier C. Why and how do protective symbionts impact immune priming with pathogens in invertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104245. [PMID: 34453995 DOI: 10.1016/j.dci.2021.104245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France.
| | - Sophie Beltran-Bech
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| |
Collapse
|
28
|
Schmid-Hempel P. Sociality and parasite transmission. Behav Ecol Sociobiol 2021; 75:156. [PMID: 34720348 PMCID: PMC8540878 DOI: 10.1007/s00265-021-03092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
Parasites and their social hosts form many different relationships. But what kind of selection regimes are important? A look at the parameters that determine fitness of the two parties suggests that social hosts differ from solitary ones primarily in the structure of transmission pathways. Because transmission is, both, the physical encounter of a new host and infecting it, several different elements determine parasite transmission success. These include spatial distance, genetic distance, or the temporal and ecological niche overlaps. Combing these elements into a ‘generalized transmission distance’ that determines parasite fitness aids in the identification of the critical steps. For example, short-distance transmission to genetically similar hosts within the social group is the most frequent process under sociality. Therefore, spatio-genetical distances are the main driver of parasite fitness. Vice versa, the generalized distance identifies the critical host defences. In this case, host defences should be primarily selected to defend against the within-group spread of an infection, especially among closely related group members.
Collapse
Affiliation(s)
- Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, ETH-Zentrum CHN, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| |
Collapse
|
29
|
Casillas-Pérez B, Pull CD, Naiser F, Naderlinger E, Matas J, Cremer S. Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies. Ecol Lett 2021; 25:89-100. [PMID: 34725912 PMCID: PMC9298059 DOI: 10.1111/ele.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Infections early in life can have enduring effects on an organism's development and immunity. In this study, we show that this equally applies to developing 'superorganisms'--incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen's immune system to suppress pathogen proliferation. Early-life queen pathogen exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen's pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism.
Collapse
Affiliation(s)
| | - Christopher D Pull
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Filip Naiser
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
| | | | - Jiri Matas
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
30
|
Gauzere J, Walling CA, Pick JL, Watt K, Jack P, Morris A, Morris S, Pemberton JM. The role of maternally transferred antibodies in maternal performance in red deer. Ecol Lett 2021; 24:2065-2076. [PMID: 34245475 DOI: 10.1111/ele.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022]
Abstract
Maternal effects are ubiquitous. Yet, the pathways through which maternal effects occur in wild mammals remain largely unknown. We hypothesise that maternal immune transfer is a key mechanism by which mothers can affect their offspring fitness, and that individual variation in maternally derived antibodies mainly depends on a mother's characteristics and the environmental conditions she experiences. To test this, we assayed six colostrum-derived antibodies in the plasma of 1447 neonates in a wild red deer population. Neonatal antibody levels were mainly affected by maternal genes, environmental variation and costs of prior reproductive investment. We found consistent heterogeneity in maternal performance across traits, with mothers producing the heaviest calves also having calves with more antibodies. Unexpectedly, antibody levels were not associated with calf survival. We provide a unique example of how evolutionary theory on maternal effects can be used to gain insight into the causes of maternal effects in wild populations.
Collapse
Affiliation(s)
- Julie Gauzere
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Craig A Walling
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Joel L Pick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Penny Jack
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Alison Morris
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Sean Morris
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
31
|
Do Transgenerational Epigenetic Inheritance and Immune System Development Share Common Epigenetic Processes? J Dev Biol 2021; 9:jdb9020020. [PMID: 34065783 PMCID: PMC8162332 DOI: 10.3390/jdb9020020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications regulate gene expression for development, immune response, disease, and other processes. A major role of epigenetics is to control the dynamics of chromatin structure, i.e., the condensed packaging of DNA around histone proteins in eukaryotic nuclei. Key epigenetic factors include enzymes for histone modifications and DNA methylation, non-coding RNAs, and prions. Epigenetic modifications are heritable but during embryonic development, most parental epigenetic marks are erased and reset. Interestingly, some epigenetic modifications, that may be resulting from immune response to stimuli, can escape remodeling and transmit to subsequent generations who are not exposed to those stimuli. This phenomenon is called transgenerational epigenetic inheritance if the epigenetic phenotype persists beyond the third generation in female germlines and second generation in male germlines. Although its primary function is likely immune response for survival, its role in the development and functioning of the immune system is not extensively explored, despite studies reporting transgenerational inheritance of stress-induced epigenetic modifications resulting in immune disorders. Hence, this review draws from studies on transgenerational epigenetic inheritance, immune system development and function, high-throughput epigenetics tools to study those phenomena, and relevant clinical trials, to focus on their significance and deeper understanding for future research, therapeutic developments, and various applications.
Collapse
|
32
|
Frolows N, Ashe A. Small RNAs and chromatin in the multigenerational epigenetic landscape of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200112. [PMID: 33866817 DOI: 10.1098/rstb.2020.0112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For decades, it was thought that the only heritable information transmitted from one individual to another was that encoded in the DNA sequence. However, it has become increasingly clear that this is not the case and that the transmission of molecules from within the cytoplasm of the gamete also plays a significant role in heritability. The roundworm, Caenorhabditis elegans, has emerged as one of the leading model organisms in which to study the mechanisms of transgenerational epigenetic inheritance (TEI). Collaborative efforts over the past few years have revealed that RNA molecules play a critical role in transmitting transgenerational responses, but precisely how they do so is as yet uncertain. In addition, the role of histone modifications in epigenetic inheritance is increasingly apparent, and RNA and histones interact in a way that we do not yet fully understand. Furthermore, both exogenous and endogenous RNA molecules, as well as other environmental triggers, are able to induce heritable epigenetic changes that affect transcription across the genome. In most cases, these epigenetic changes last only for a handful of generations, but occasionally can be maintained much longer: perhaps indefinitely. In this review, we discuss the current understanding of the role of RNA and histones in TEI, as well as making clear the gaps in our knowledge. We also speculate on the evolutionary implications of epigenetic inheritance, particularly in the context of a short-lived, clonally propagating species. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Natalya Frolows
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia.,CSIRO Health and Biosecurity, Sydney, New South Wales, 2113, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
33
|
Goehlich H, Sartoris L, Wagner KS, Wendling CC, Roth O. Pipefish Locally Adapted to Low Salinity in the Baltic Sea Retain Phenotypic Plasticity to Cope With Ancestral Salinity Levels. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibriobacteria) stressor using six different populations of the broad-nosed pipefishSyngnathus typhlethat originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected withVibrio alginolyticusbacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation,trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens.
Collapse
|
34
|
Epidermal Club Cells in Fishes: A Case for Ecoimmunological Analysis. Int J Mol Sci 2021; 22:ijms22031440. [PMID: 33535506 PMCID: PMC7867084 DOI: 10.3390/ijms22031440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermal club cells (ECCs), along with mucus cells, are present in the skin of many fishes, particularly in the well-studied Ostariophysan family Cyprinidae. Most ECC-associated literature has focused on the potential role of ECCs as a component of chemical alarm cues released passively when a predator damages the skin of its prey, alerting nearby prey to the presence of an active predator. Because this warning system is maintained by receiver-side selection (senders are eaten), there is want of a mechanism to confer fitness benefits to the individual that invests in ECCs to explain their evolutionary origin and maintenance in this speciose group of fishes. In an attempt to understand the fitness benefits that accrue from investment in ECCs, we reviewed the phylogenetic distribution of ECCs and their histochemical properties. ECCs are found in various forms in all teleost superorders and in the chondrostei inferring either early or multiple independent origins over evolutionary time. We noted that ECCs respond to several environmental stressors/immunomodulators including parasites and pathogens, are suppressed by immunomodulators such as testosterone and cortisol, and their density covaries with food ration, demonstrating a dynamic metabolic cost to maintaining these cells. ECC density varies widely among and within fish populations, suggesting that ECCs may be a convenient tool with which to assay ecoimmunological tradeoffs between immune stress and foraging activity, reproductive state, and predator-prey interactions. Here, we review the case for ECC immune function, immune functions in fishes generally, and encourage future work describing the precise role of ECCs in the immune system and life history evolution in fishes.
Collapse
|
35
|
Albery GF, Morris A, Morris S, Kenyon F, Nussey DH, Pemberton JM. Fitness Costs of Parasites Explain Multiple Life-History Trade-Offs in a Wild Mammal. Am Nat 2021; 197:324-335. [PMID: 33625970 DOI: 10.1086/712633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractReproduction in wild animals can divert limited resources away from immune defense, resulting in increased parasite burdens. A long-standing prediction of life-history theory states that these parasites can harm the reproductive individual, reducing its subsequent survival and fecundity, producing reproduction-fitness trade-offs. Here, we examined associations among reproductive allocation, immunity, parasitism, and subsequent survival and fecundity in a wild population of individually identified red deer (Cervus elaphus). Using path analysis, we investigated whether costs of lactation in terms of downstream survival and fecundity were mediated by changes in strongyle nematode count and mucosal antibody levels. Lactating females exhibited increased parasite counts, which were in turn associated with substantially decreased fitness in the following year in terms of overwinter survival, fecundity, subsequent calf weight, and parturition date. This study offers observational evidence for parasite regulation of multiple life-history trade-offs, supporting the role of parasites as an important mediating factor in wild mammal populations.
Collapse
|
36
|
Peixoto MRLV, Karrow NA, Newman A, Head J, Widowski TM. Effects of acute stressors experienced by five strains of layer breeders on measures of stress and fear in their offspring. Physiol Behav 2021; 228:113185. [PMID: 32980386 DOI: 10.1016/j.physbeh.2020.113185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Stressors experienced by layer breeders during egg production can lead to changes in the egg hormone content, potentially impacting their offspring, the commercial layers. Genetic differences might also affect the offspring's susceptibility to maternal experiences. In this study, we tested if maternal stress affects measures of stress and fear in five strains of layer breeders: commercial brown 1 & 2, commercial white 1 & 2 and a pure line White Leghorn. Each strain was equally separated into two groups: "Maternal Stress" (MS), where hens were subjected to a series of 8 consecutive days of acute psychological stressors, and "Control," which received routine husbandry. Additional eggs from Control were injected either with corticosterone diluted in a vehicle solution ("CORT") or just "Vehicle." Stress- and fear-responses of the offspring were measured in a plasma corticosterone test and a combined human approach and novel object test. While the stress treatments did not affect the measured endpoints in the offspring, significant strain differences were found. The offspring of the white strains showed a higher physiological response compared to brown strains and the White 2 offspring was the least fearful strain in the human approach test. Our study found that neither the acute psychological stressors experienced by layer breeders nor the egg injections of corticosterone affected the parameters tested in their offspring. Post hoc power analyses suggest that the lack of treatment effects might be due to a small sample size (type II error). Although studies on larger flocks of layers are still needed, our results provide an initial understanding of an important subject, as in poultry production, layer breeders are often subjected to short-term stressors. In addition, our results suggest the dissociation between the physiological and behavioural parameters of stress response in laying hens, showing that increased concentrations of plasma corticosterone in response to stress might not be directly associated with high levels of fear.
Collapse
Affiliation(s)
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - Amy Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1
| | - Jessica Head
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9
| | - Tina M Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1.
| |
Collapse
|
37
|
Mondotte JA, Gausson V, Frangeul L, Suzuki Y, Vazeille M, Mongelli V, Blanc H, Failloux AB, Saleh MC. Evidence For Long-Lasting Transgenerational Antiviral Immunity in Insects. Cell Rep 2020; 33:108506. [PMID: 33326778 PMCID: PMC7758158 DOI: 10.1016/j.celrep.2020.108506] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Transgenerational immune priming (TGIP) allows memory-like immune responses to be transmitted from parents to offspring in many invertebrates. Despite increasing evidence for TGIP in insects, the mechanisms involved in the transfer of information remain largely unknown. Here, we show that Drosophila melanogaster and Aedes aegypti transmit antiviral immunological memory to their progeny that lasts throughout generations. We observe that TGIP, which is virus and sequence specific but RNAi independent, is initiated by a single exposure to disparate RNA viruses and also by inoculation of a fragment of viral double-stranded RNA. The progeny, which inherit a viral DNA that is only a fragment of the viral RNA used to infect the parents, display enriched expression of genes related to chromatin and DNA binding. These findings represent a demonstration of TGIP for RNA viruses in invertebrates, broadly increasing our understanding of the immune response, host genome plasticity, and antiviral memory of the germline.
Collapse
Affiliation(s)
- Juan A Mondotte
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Valérie Gausson
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Lionel Frangeul
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Yasutsugu Suzuki
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Marie Vazeille
- Arboviruses and Insect Vectors Unit, Institut Pasteur, Paris, France
| | - Vanesa Mongelli
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Hervé Blanc
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | | | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France.
| |
Collapse
|
38
|
Warriner TR, Semeniuk CAD, Pitcher TE, Heath DD, Love OP. Mimicking Transgenerational Signals of Future Stress: Thermal Tolerance of Juvenile Chinook Salmon Is More Sensitive to Elevated Rearing Temperature Than Exogenously Increased Egg Cortisol. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.548939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Lockley EC, Fouda L, Correia SM, Taxonera A, Nash LN, Fairweather K, Reischig T, Durão J, Dinis H, Roque SM, Lomba JP, Dos Passos L, Cameron SJK, Stiebens VA, Eizaguirre C. Long-term survey of sea turtles (Caretta caretta) reveals correlations between parasite infection, feeding ecology, reproductive success and population dynamics. Sci Rep 2020; 10:18569. [PMID: 33122760 PMCID: PMC7596700 DOI: 10.1038/s41598-020-75498-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022] Open
Abstract
Long-term monitoring of host-parasite interactions is important for understanding the consequences of infection on host fitness and population dynamics. In an eight-year survey of the loggerhead sea turtle (Caretta caretta) population nesting in Cabo Verde, we determined the spatiotemporal variation of Ozobranchus margoi, a sanguivorous leech best known as a vector for sea turtle fibropapilloma virus. We quantified O. margoi association with turtles’ δ15N and δ13C stable isotopes to identify where infection occurs. We then measured the influence of infection on reproduction and offspring fitness. We found that parasite prevalence has increased from 10% of the population in 2010, to 33% in 2017. Stable isotope analysis of host skin samples suggests transmission occurs within the host’s feeding grounds. Interestingly, we found a significant interaction between individual size and infection on the reproductive success of turtles. Specifically, small, infected females produced fewer offspring of poorer condition, while in contrast, large, infected turtles produced greater clutch sizes and larger offspring. We interpret this interaction as evidence, upon infection, for a size-dependent shift in reproductive strategy from bet hedging to terminal investment, altering population dynamics. This link between infection and reproduction underscores the importance of using long-term monitoring to quantify the impact of disease dynamics over time.
Collapse
Affiliation(s)
- Emma C Lockley
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK.
| | - Leila Fouda
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Sandra M Correia
- Instituto Do Mar I.P. (IMar), Cova de Inglesa, C.P 132, Mindelo, Ilha do São Vicente, Cabo Verde
| | - Albert Taxonera
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK.,Associação Projeto Biodiversidade, Mercado Municipal 22, Santa Maria 4111, Ilha do Sal, Cabo Verde
| | - Liam N Nash
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Kirsten Fairweather
- Associação Projeto Biodiversidade, Mercado Municipal 22, Santa Maria 4111, Ilha do Sal, Cabo Verde
| | | | - Jandira Durão
- Biosfera I, Rua de Moçambique 28, Mindelo, Ilha do São Vicente, Cabo Verde
| | - Herculano Dinis
- Associação Projecto Vitó, Xaguate, São Felipe, Ilha do Fogo, Cabo Verde
| | | | - João Pina Lomba
- Associação Ambiental Caretta Caretta, Achada Igreja, Pedra Badejo, Santa Cruz, Ilha do Santiago, Cabo Verde
| | - Leno Dos Passos
- Fundação Maio Biodiversidade, Cidade de Porto Inglês, Ilha do Maio, Cabo Verde
| | - Sahmorie J K Cameron
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Victor A Stiebens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E14NS, UK
| |
Collapse
|
40
|
Tetreau G, Dhinaut J, Galinier R, Audant-Lacour P, Voisin SN, Arafah K, Chogne M, Hilliou F, Bordes A, Sabarly C, Chan P, Walet-Balieu ML, Vaudry D, Duval D, Bulet P, Coustau C, Moret Y, Gourbal B. Deciphering the molecular mechanisms of mother-to-egg immune protection in the mealworm beetle Tenebrio molitor. PLoS Pathog 2020; 16:e1008935. [PMID: 33057453 PMCID: PMC7591081 DOI: 10.1371/journal.ppat.1008935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.
Collapse
Affiliation(s)
- Guillaume Tetreau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Julien Dhinaut
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Richard Galinier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Pascaline Audant-Lacour
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | - Karim Arafah
- Plateforme BioPark d'Archamps, ArchParc, Saint Julien en Genevois, France
| | - Manon Chogne
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Frédérique Hilliou
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Anaïs Bordes
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Camille Sabarly
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Philippe Chan
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Marie-Laure Walet-Balieu
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - David Vaudry
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - David Duval
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Philippe Bulet
- Plateforme BioPark d'Archamps, ArchParc, Saint Julien en Genevois, France
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, La Tronche, France
| | - Christine Coustau
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Yannick Moret
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
41
|
Roesel CL, Rosengaus RB, Smith W, Vollmer SV. Transcriptomics reveals specific molecular mechanisms underlying transgenerational immunity in Manduca sexta. Ecol Evol 2020; 10:11251-11261. [PMID: 33144962 PMCID: PMC7593158 DOI: 10.1002/ece3.6764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
The traditional view of innate immunity in insects is that every exposure to a pathogen triggers an identical and appropriate immune response and that prior exposures to pathogens do not confer any protective (i.e., adaptive) effect against subsequent exposure to the same pathogen. This view has been challenged by experiments demonstrating that encounters with sublethal doses of a pathogen can prime the insect's immune system and, thus, have protective effects against future lethal doses. Immune priming has been reported across several insect species, including the red flour beetle, the honeycomb moth, the bumblebee, and the European honeybee, among others. Immune priming can also be transgenerational where the parent's pathogenic history influences the immune response of its offspring. Phenotypic evidence of transgenerational immune priming (TGIP) exists in the tobacco moth Manduca sexta where first-instar progeny of mothers injected with the bacterium Serratia marcescens exhibited a significant increase of in vivo bacterial clearance. To identify the gene expression changes underlying TGIP in M. sexta, we performed transcriptome-wide, transgenerational differential gene expression analysis on mothers and their offspring after mothers were exposed to S. marcescens. We are the first to perform transcriptome-wide analysis of the gene expression changes associated with TGIP in this ecologically relevant model organism. We show that maternal exposure to both heat-killed and live S. marcescens has strong and significant transgenerational impacts on gene expression patterns in their offspring, including upregulation of peptidoglycan recognition protein, toll-like receptor 9, and the antimicrobial peptide cecropin.
Collapse
Affiliation(s)
| | | | - Wendy Smith
- Marine Science CenterNortheastern UniversityNahantMAUSA
| | | |
Collapse
|
42
|
Amiri E, Herman JJ, Strand MK, Tarpy DR, Rueppell O. Egg transcriptome profile responds to maternal virus infection in honey bees, Apis mellifera. INFECTION GENETICS AND EVOLUTION 2020; 85:104558. [PMID: 32947033 DOI: 10.1016/j.meegid.2020.104558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Trans-generational disease effects include vertical pathogen transmission but also immune priming to enhance offspring immunity. Accordingly, the survival consequences of maternal virus infection can vary and its molecular consequences during early development are poorly understood. The honey bee queen is long-lived and represents the central hub for vertical virus transmission as the sole reproductive individual in her colony. Even though virus symptoms in queens are mild, viral infection may have severe consequences for the offspring. Thus, transcriptome patterns during early developmental are predicted to respond to maternal virus infection. To test this hypothesis, gene expression patterns were compared among pooled honey bee eggs laid by queens that were either infected with Deformed wing virus (DWV1), Sacbrood virus (SBV2), both viruses (DWV and SBV), or no virus. Whole transcriptome analyses revealed significant expression differences of a few genes, some of which have hitherto no known function. Despite the paucity of single gene effects, functional enrichment analyses revealed numerous biological processes in the embryos to be affected by virus infection. Effects on several regulatory pathways were consistent with maternal responses to virus infection and correlated with responses to DWV and SBV in honey bee larvae and pupae. Overall, effects on egg transcriptome patterns were specific to each virus and the results of dual-infection samples suggested synergistic effects of DWV and SBV. We interpret our results as consequences of maternal infections. Thus, this first study to document and characterize virus-associated changes in the transcriptome of honey bee eggs represents an important contribution to understanding trans-generational virus effects, although more in-depth studies are needed to understand the detailed mechanisms of how viruses affect honey bee embryos.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jacob J Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Micheline K Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, Durham, NC 27709, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
43
|
Paniagua Voirol LR, Weinhold A, Johnston PR, Fatouros NE, Hilker M. Legacy of a Butterfly's Parental Microbiome in Offspring Performance. Appl Environ Microbiol 2020; 86:e00596-20. [PMID: 32276976 PMCID: PMC7267186 DOI: 10.1128/aem.00596-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
An insect's phenotype can be influenced by the experiences of the parental generation. However, the effects of the parental symbiotic microbiome and host plant use on the offspring are unclear. We addressed this gap of knowledge by studying Pieris brassicae, a multivoltine butterfly species feeding on different brassicaceous plants across generations. We investigated how disturbance of the parental bacterial community by antibiotic treatment affects F1 larval traits. We tested the effects depending on whether F1 larvae are feeding on the same plant species as their parents or on a different one. The parental treatment alone had no impact on the biomass of F1 larvae feeding on the parental plant species. However, the parental treatment had a detrimental effect on F1 larval biomass when F1 larvae had a different host plant than their parents. This effect was linked to higher larval prophenoloxidase activity and greater downregulation of the major allergen gene (MA), a glucosinolate detoxification gene of P. brassicae Bacterial abundance in untreated adult parents was high, while it was very low in F1 larvae from either parental type, and thus unlikely to directly influence larval traits. Our results suggest that transgenerational effects of the parental microbiome on the offspring's phenotype become evident when the offspring is exposed to a transgenerational host plant shift.IMPORTANCE Resident bacterial communities are almost absent in larvae of butterflies and thus are unlikely to affect their host. In contrast, adult butterflies contain conspicuous amounts of bacteria. While the host plant and immune state of adult parental butterflies are known to affect offspring traits, it has been unclear whether also the parental microbiome imposes direct effects on the offspring. Here, we show that disturbance of the bacterial community in parental butterflies by an antibiotic treatment has a detrimental effect on those offspring larvae feeding on a different host plant than their parents. Hence, the study indicates that disturbance of an insect's parental microbiome by an antibiotic treatment shapes how the offspring individuals can adjust themselves to a novel host plant.
Collapse
Affiliation(s)
- Luis R Paniagua Voirol
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Arne Weinhold
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nina E Fatouros
- Department of Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Monika Hilker
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
44
|
Yañez O, Chávez-Galarza J, Tellgren-Roth C, Pinto MA, Neumann P, de Miranda JR. The honeybee (Apis mellifera) developmental state shapes the genetic composition of the deformed wing virus-A quasispecies during serial transmission. Sci Rep 2020; 10:5956. [PMID: 32249797 PMCID: PMC7136270 DOI: 10.1038/s41598-020-62673-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/17/2020] [Indexed: 11/23/2022] Open
Abstract
The main biological threat to the western honeybee (Apis mellifera) is the parasitic mite Varroa destructor, largely because it vectors lethal epidemics of honeybee viruses that, in the absence of this mite, are relatively innocuous. The severe pathology is a direct consequence of excessive virus titres caused by this novel transmission route. However, little is known about how the virus adapts genetically during transmission and whether this influences the pathology. Here, we show that upon injection into honeybee pupae, the deformed wing virus type-A (DWV-A) quasispecies undergoes a rapid, extensive expansion of its sequence space, followed by strong negative selection towards a uniform, common shape by the time the pupae have completed their development, with no difference between symptomatic and asymptomatic adults in either DWV titre or genetic composition. This suggests that the physiological and molecular environment during pupal development has a strong, conservative influence on shaping the DWV-A quasispecies in emerging adults. There was furthermore no evidence of any progressive adaptation of the DWV-A quasispecies to serial intra-abdominal injection, simulating mite transmission, despite the generation of ample variation immediately following each transmission, suggesting that the virus either had already adapted to transmission by injection, or was unaffected by it.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, CH-3000, Switzerland
| | - Julio Chávez-Galarza
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253, Bragança, Portugal
- Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima, Perú
| | | | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253, Bragança, Portugal
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, CH-3000, Switzerland
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.
| |
Collapse
|
45
|
Tragust S, Brinker P, Rossel N, Otti O. Balancing Life History Investment Decisions in Founding Ant Queens. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Peixoto MRLV, Karrow NA, Newman A, Widowski TM. Effects of Maternal Stress on Measures of Anxiety and Fearfulness in Different Strains of Laying Hens. Front Vet Sci 2020; 7:128. [PMID: 32292791 PMCID: PMC7118700 DOI: 10.3389/fvets.2020.00128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 01/21/2023] Open
Abstract
Maternal stress can affect the offspring of birds, possibly due to hormone deposition in the egg. Additionally, phenotypic diversity resulting from domestication and selection for productivity has created a variety of poultry lines that may cope with stress differently. In this study, we investigated the effects of maternal stress on the behavior of different strains of laying hens and the role of corticosterone as its mediator. For this, fertilized eggs of five genetic lines-two brown (Brown 1 and 2), two white (White 1 and 2), and one pure line White Leghorn-were reared identically as four flocks of 27 birds (24F: 3M) per strain. Each strain was equally separated into two groups: Maternal Stress ("MS"), where hens were subjected to a series of daily acute psychological stressors for 8 days before egg collection, and "Control," which received routine husbandry. Fertile eggs from both treatments were collected at three different ages forming different offspring groups that were treated as replicates; additional eggs from Control were injected either with corticosterone diluted in a vehicle solution ("CORT") or just "Vehicle." Eggs from each replicate were incubated and hatched, and offspring (N = 1,919) were brooded under identical conditions. To measure the effects of maternal stress on anxiety and fear-like behavior, offspring were subjected to a social isolation test (SI) between 5 and 10 days of age and a tonic immobility test (TI) at 9 weeks of age. Compared to Control, MS decreased the number of distress vocalizations emitted by White 2 in SI. No effects of MS were observed in TI, and no effects of CORT were observed in any tests. Overall, brown lines vocalized more in SI and remained in TI for a longer duration than white strains, suggesting genetic differences in fear behavior. Females vocalized more than males in TI and showed a trend toward significance for the same trait in SI. Overall, results suggest that the effects of maternal stress on fearfulness are not directly mediated by corticosterone. Moreover, it highlights behavioral differences across various strains of laying hens, suggesting that fear responses are highly dependent on genotype.
Collapse
Affiliation(s)
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Amy Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Tina M. Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
47
|
Cole EL, Empringham JS, Biro C, Thompson GJ, Rosengaus RB. Relish as a Candidate Marker for Transgenerational Immune Priming in a Dampwood Termite (Blattodae: Archeotermopsidae). INSECTS 2020; 11:E149. [PMID: 32120840 PMCID: PMC7143124 DOI: 10.3390/insects11030149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
Natural selection should favor the transfer of immune competence from one generation to the next in a context-dependent manner. Transgenerational immune priming (TGIP) is expected to evolve when species exploit pathogen-rich environments and exhibit extended overlap of parent-offspring generations. Dampwood termites are hemimetabolous, eusocial insects (Blattodea: Archeotermopsidae) that possess both of these traits. We predict that offspring of pathogen-exposed queens of Zootermopsis angusticollis will show evidence of a primed immune system relative to the offspring of unexposed controls. We found that Relish transcripts, one of two immune marker loci tested, were enhanced in two-day-old embryos when laid by Serratia-injected queens. These data implicate the immune deficiency (IMD) signaling pathway in TGIP. Although an independent antibacterial assay revealed that embryos do express antibacterial properties, these do not vary as a function of parental treatment. Taken together, Z. angusticollis shows transcriptional but not translational evidence for TGIP. This apparent incongruence between the transcriptional and antimicrobial response from termites suggests that effectors are either absent in two-day-old embryos or their activity is too subtle to detect with our antibacterial assay. In total, we provide the first suggestive evidence of transgenerational immune priming in a termite.
Collapse
Affiliation(s)
- Erin L. Cole
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| | - Jessica S. Empringham
- Department of Biology, Western University, 1151 Richmond St. London, ON N6A 5B7, Canada; (J.S.E.); (G.J.T.)
| | - Colette Biro
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| | - Graham J. Thompson
- Department of Biology, Western University, 1151 Richmond St. London, ON N6A 5B7, Canada; (J.S.E.); (G.J.T.)
| | - Rebeca B. Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, 134 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, MA 02115, USA; (E.L.C.); (C.B.)
| |
Collapse
|
48
|
Ben-Ami F, Orlic C, Regoes RR. Disentangling non-specific and specific transgenerational immune priming components in host-parasite interactions. Proc Biol Sci 2020; 287:20192386. [PMID: 32075526 PMCID: PMC7031663 DOI: 10.1098/rspb.2019.2386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exposure to a pathogen primes many organisms to respond faster or more efficiently to subsequent exposures. Such priming can be non-specific or specific, and has been found to extend across generations. Disentangling and quantifying specific and non-specific effects is essential for understanding the genetic epidemiology of a system. By combining a large infection experiment and mathematical modelling, we disentangle different transgenerational effects in the crustacean model Daphnia magna exposed to different strains of the bacterial parasite Pasteuria ramosa. In the experiment, we exposed hosts to a high dose of one of three parasite strains, and subsequently challenged their offspring with multiple doses of the same (homologous) or a different (heterologous) strain. We find that exposure of Daphnia to Pasteuria decreases the susceptibility of their offspring by approximately 50%. This transgenerational protection is not larger for homologous than for heterologous parasite challenges. Methodologically, our work represents an important contribution not only to the analysis of immune priming in ecological systems but also to the experimental assessment of vaccines. We present, for the first time, an inference framework to investigate specific and non-specific effects of immune priming on the susceptibility distribution of hosts—effects that are central to understanding immunity and the effect of vaccines.
Collapse
Affiliation(s)
- Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Christian Orlic
- Zoologisches Institut, Evolutionsbiologie, Universität Basel, Vesalgasse 1, Basel 4051, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
49
|
Peixoto MRLV, Karrow NA, Widowski TM. Effects of prenatal stress and genetics on embryonic survival and offspring growth of laying hens. Poult Sci 2020; 99:1618-1627. [PMID: 32111329 PMCID: PMC7587848 DOI: 10.1016/j.psj.2019.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Early-life exposure to stressors can shape the phenotype of the offspring resulting in changes that may affect their prehatch and posthatch development. This can be modeled indirectly through maternal exposure to stressors (natural model) or by offspring exposure to stress hormones (pharmacological model). In this study, both models were used to investigate the effects of genetic line on hatchability, late embryonic mortality, sex ratio, and body weight until 17 wk of age. To form the parent stock, fertilized eggs of 4 commercial genetic lines — two brown (brown 1 and 2), two white (white 1 and 2), and a pure line White Leghorn — were incubated, hatched, and housed identically in 4 flocks of 27 birds (24 females and 3 males) per strain. Each strain was equally separated into 2 groups: “maternal stress,” where hens were subjected to a series of acute psychological stressors (e.g., physical restraint, transportation) for 8 D before egg collection, and “control,” where hens received routine husbandry. At 3 maternal ages, fertile eggs from both treatments were collected, and additional eggs from the control group were injected with corticosterone (10 ng/mL egg content) (“CORT”). A “vehicle” treatment was included to account for effects of egg manipulation. Each maternal age comprised a replicate over time. Eggs were incubated and hatched, and the offspring (N = 1,919) were brooded until 17 wk under identical conditions. The results show that prenatal stress interacted with strain to decrease embryonic survival and growth. Among all strains, brown 2 was consistently the most affected line in both prehatch and posthatch development. Our study shows that embryonic survival and offspring growth are mostly affected by the pharmacological model and that strain differences may increase susceptibility to prenatal stress. Moreover, it suggests that the natural stressor model may be useful for quantifying the response of the mother to stressors, whereas the pharmacological model may be useful for quantifying the response of the embryo to increased levels of corticosterone.
Collapse
Affiliation(s)
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - Tina M Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1.
| |
Collapse
|
50
|
Bernier C, Boidin-Wichlacz C, Tasiemski A, Hautekèete N, Massol F, Cuvillier-Hot V. Transgenerational Immune Priming in the Field: Maternal Environmental Experience Leads to Differential Immune Transfer to Oocytes in the Marine Annelid Hediste diversicolor. Genes (Basel) 2019; 10:genes10120989. [PMID: 31805627 PMCID: PMC6947409 DOI: 10.3390/genes10120989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022] Open
Abstract
Transgenerational immune priming (TGIP) is an intriguing form of parental care which leads to the plastic adjustment of the progeny’s immunity according to parental immune experience. Such parental effect has been described in several vertebrate and invertebrate taxa. However, very few empirical studies have been conducted from the field, with natural host-parasite systems and real ecological settings, especially in invertebrates. We investigated TGIP in wild populations of the marine annelid Hediste diversicolor. Females laid eggs in a mud tube and thus shared the local microbial threats with the first developmental stages, thus meeting expectations for the evolution of TGIP. We evidenced that a maternal bacterial challenge led to the higher antibacterial defense of the produced oocytes, with higher efficiency in the case of Gram-positive bacterial challenge, pointing out a prevalent role of these bacteria in the evolutionary history of TGIP in this species. Underlying mechanisms might involve the antimicrobial peptide hedistin that was detected in the cytoplasm of oocytes and whose mRNAs were selectively stored in higher quantity in mature oocytes, after a maternal immune challenge. Finally, maternal immune transfer was significantly inhibited in females living in polluted areas, suggesting associated costs and the possible trade-off with female’s protection.
Collapse
Affiliation(s)
- Clémentine Bernier
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - Céline Boidin-Wichlacz
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - Aurélie Tasiemski
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nina Hautekèete
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - François Massol
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Virginie Cuvillier-Hot
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- Correspondence:
| |
Collapse
|