1
|
Quintela M, García‐Seoane E, Dahle G, Klevjer TA, Melle W, Lille‐Langøy R, Besnier F, Tsagarakis K, Geoffroy M, Rodríguez‐Ezpeleta N, Jacobsen E, Côté D, Knutar S, Unneland L, Strand E, Glover K. Genetics in the Ocean's Twilight Zone: Population Structure of the Glacier Lanternfish Across Its Distribution Range. Evol Appl 2024; 17:e70032. [PMID: 39513049 PMCID: PMC11540841 DOI: 10.1111/eva.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/15/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
The mesopelagic zone represents one of the few habitats that remains relatively untouched from anthropogenic activities. Among the many species inhabiting the north Atlantic mesopelagic zone, glacier lanternfish (Benthosema glaciale) is the most abundant and widely distributed. This species has been regarded as a potential target for a dedicated fishery despite the scarce knowledge of its population genetic structure. Here, we investigated its genetic structure across the North Atlantic and into the Mediterranean Sea using 121 SNPs, which revealed strong differentiation among three main groups: the Mediterranean Sea, oceanic samples, and Norwegian fjords. The Mediterranean samples displayed less than half the genetic variation of the remaining ones. Very weak or nearly absent genetic structure was detected among geographically distinct oceanic samples across the North Atlantic, which contrasts with the low motility of the species. In contrast, a longitudinal gradient of differentiation was observed in the Mediterranean Sea, where genetic connectivity is known to be strongly shaped by oceanographic processes such as current patterns and oceanographic discontinuities. In addition, 12 of the SNPs, in linkage disequilibrium, drove a three clusters' pattern detectable through Principal Component Analysis biplot matching the genetic signatures generally associated with large chromosomal rearrangements, such as inversions. The arrangement of this putative inversion showed frequency differences between open-ocean and more confined water bodies such as the fjords and the Mediterranean, as it was fixed in the latter for the second most common arrangement of the fjord's samples. However, whether genetic differentiation was driven by local adaptation, secondary contact, or a combination of both factors remains undetermined. The major finding of this study is that B. glaciale in the North Atlantic-Mediterranean is divided into three major genetic units, information that should be combined with demographic properties to outline the management of this species prior to any eventual fishery attempt.
Collapse
Affiliation(s)
- María Quintela
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Eva García‐Seoane
- Plankton GroupInstitute of Marine ResearchBergenNorway
- Sustainable Oceans and CoastsMøreforsking ASÅlesundNorway
| | - Geir Dahle
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Thor A. Klevjer
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Webjørn Melle
- Plankton GroupInstitute of Marine ResearchBergenNorway
| | | | - François Besnier
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Konstantinos Tsagarakis
- Hellenic Centre for Marine ResearchInstitute of Marine Biological Resources and Inland WatersAthensGreece
| | - Maxime Geoffroy
- Centre for Fisheries Ecosystems ResearchFisheries and Marine Institute of Memorial University of Newfoundland and LabradorSt. John'sNewfoundland and LabradorCanada
- Faculty of Biosciences, Fisheries and EconomicsUiT the Arctic University of NorwayTromsøNorway
| | | | - Eugenie Jacobsen
- Centre for Fisheries Ecosystems ResearchFisheries and Marine Institute of Memorial University of Newfoundland and LabradorSt. John'sNewfoundland and LabradorCanada
| | - David Côté
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sCanada
| | - Sofie Knutar
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Laila Unneland
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Espen Strand
- Plankton GroupInstitute of Marine ResearchBergenNorway
| | - Kevin Glover
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| |
Collapse
|
2
|
Barratt CD, Preißler K, Jennert PR, Eckhardt F, Nadjafzadeh M, Steinfartz S. A decision-making framework to maximise the evolutionary potential of populations - Genetic and genomic insights from the common midwife toad (Alytes obstetricans) at its range limits. Heredity (Edinb) 2024; 133:249-261. [PMID: 39223228 PMCID: PMC11436998 DOI: 10.1038/s41437-024-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Anthropogenic habitat modification and climate change are fundamental drivers of biodiversity declines, reducing the evolutionary potential of species, particularly at their distributional limits. Supportive breeding or reintroductions of individuals are often made to replenish declining populations, sometimes informed by genetic analysis. However, most approaches utilised (i.e. single locus markers) do not have the resolution to account for local adaptation to environmental conditions, a crucial aspect to consider when selecting donor and recipient populations. Here, we incorporate genetic (microsatellite) and genome-wide SNP (ddRAD-seq) markers, accounting for both neutral and putative adaptive genetic diversity, to inform the conservation management of the threatened common midwife toad, Alytes obstetricans at the northern and eastern edges of its range in Europe. We find geographically structured populations (n = 4), weak genetic differentiation and fairly consistent levels of genetic diversity across localities (observed heterozygosity and allelic richness). Categorising individuals based on putatively adaptive regions of the genome showed that the majority of localities are not strongly locally adapted. However, several localities present high numbers of private alleles in tandem with local adaptation to warmer conditions and rough topography. Combining genetic diversity and local adaptations with estimates of migration rates, we develop a decision-making framework for selecting donor and recipient populations which maximises the geographic dispersal of neutral and putatively adaptive genetic diversity. Our framework is generally applicable to any species, but especially to amphibians, so armed with this information, conservationists may avoid the reintroduction of unsuitable/maladapted individuals to new sites and increase the evolutionary potential of populations within species.
Collapse
Affiliation(s)
- Christopher D Barratt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.
- University of Leipzig, Ritterstrasse 26, 04109, Leipzig, Germany.
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Kathleen Preißler
- University of Leipzig, Institute of Biology, Molecular Evolution and Systematics of Animals, Talstrasse 33, 04103, Leipzig, Germany
| | - Pauline R Jennert
- University of Leipzig, Institute of Biology, Molecular Evolution and Systematics of Animals, Talstrasse 33, 04103, Leipzig, Germany
| | - Falk Eckhardt
- NABU (Nature and Biodiversity Conservation Union) Lower Saxony, Alleestrasse 36, 30167, Hannover, Germany
| | - Mirjam Nadjafzadeh
- NABU (Nature and Biodiversity Conservation Union) Lower Saxony, Alleestrasse 36, 30167, Hannover, Germany
| | - Sebastian Steinfartz
- University of Leipzig, Institute of Biology, Molecular Evolution and Systematics of Animals, Talstrasse 33, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Dolan TE, Feldheim KA, O'Leary SJ, Fede CM, McElroy AE, Frisk MG. Patterns of persistence: Genetic and behavioral population complexity of winter flounder amid population declines. JOURNAL OF FISH BIOLOGY 2024; 105:1280-1297. [PMID: 39109654 DOI: 10.1111/jfb.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 10/09/2024]
Abstract
Winter flounder Pseudopleuronectes americanus (Walbaum 1792) are a coastal flatfish species of economic and cultural importance that have dwindled to <15, % of their historic abundance in the southern New England/Mid-Atlantic region of the United States, with evidence indicating near-extirpation of certain local populations. This species exhibits intricate behaviors in spawning and migration that contribute to population complexity and resilience. These behaviors encompass full or partial philopatry to natal estuaries, the generation of multiple pulses of larval delivery, and partial migration. The patterns of genetic diversity within and among estuaries and cohorts presented here carry important implications in understanding the susceptibility to demographic shocks, even if the full extent of genetic diversity within and among winter flounder stocks on the US East Coast remains unresolved. Our findings reveal connectivity between estuaries in Long Island, New York, suggesting the potential for genetic rescue of depleted subpopulations. Family reconstruction and relatedness analysis indicate that split cohorts and migration contingents are not the result of genetically distinct lineages. We found no evidence for genetic structure separating these groups, and in some instances, we were able to detect closely related individuals that belonged to different migratory contingents or cohorts. Characterizing the spatial and behavioral organization of this species at the population level is crucial for comprehending its potential for recovery, not only in terms of biomass but also in reinstating the complex population structure that supports resilience. The search for generality in winter flounder spawning and migration behavior remains elusive, but perhaps the lack of generalities within this species is what has allowed it to persist in the face of decades of environmental and anthropogenic stressors.
Collapse
Affiliation(s)
- Tara E Dolan
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
- Massachusetts Division of Marine Fisheries, Salem, Massachusetts, USA
| | - Kevin A Feldheim
- Prizker Laboratory for Molecular Systematics and Evolution, The Field Museum, Chicago, Illinois, USA
| | - Shannon J O'Leary
- Department of Biological Sciences, St Anselm College, Goffstown, New Hampshire, USA
| | - Catherine M Fede
- Marine Resources Division, New York State Department of Environmental Conservation, Kings Park, New York, USA
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Michael G Frisk
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Sbiba SE, Quintela M, Øyro J, Dahle G, Jurado-Ruzafa A, Iita K, Nikolioudakis N, Bazairi H, Chlaida M. Genetic investigation of population structure in Atlantic chub mackerel, Scomber colias Gmelin, 1789 along the West African coast. PeerJ 2024; 12:e17928. [PMID: 39247552 PMCID: PMC11380841 DOI: 10.7717/peerj.17928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Sustainable management of transboundary fish stocks hinges on accurate delineation of population structure. Genetic analysis offers a powerful tool to identify potential subpopulations within a seemingly homogenous stock, facilitating the development of effective, coordinated management strategies across international borders. Along the West African coast, the Atlantic chub mackerel (Scomber colias) is a commercially important and ecologically significant species, yet little is known about its genetic population structure and connectivity. Currently, the stock is managed as a single unit in West African waters despite new research suggesting morphological and adaptive differences. Here, eight microsatellite loci were genotyped on 1,169 individuals distributed across 33 sampling sites from Morocco (27.39°N) to Namibia (22.21°S). Bayesian clustering analysis depicts one homogeneous population across the studied area with null overall differentiation (F ST = 0.0001ns), which suggests panmixia and aligns with the migratory potential of this species. This finding has significant implications for the effective conservation and management of S. colias within a wide scope of its distribution across West African waters from the South of Morocco to the North-Centre of Namibia and underscores the need for increased regional cooperation in fisheries management and conservation.
Collapse
Affiliation(s)
- Salah Eddine Sbiba
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Research and Development Unit on Marine Biology, National Institute of Fisheries Research, Casablanca, Morocco
| | - María Quintela
- Department of Population Genetics, Institute of Marine Research, Bergen, Norway
| | - Johanne Øyro
- Department of Population Genetics, Institute of Marine Research, Bergen, Norway
| | - Geir Dahle
- Department of Population Genetics, Institute of Marine Research, Bergen, Norway
| | - Alba Jurado-Ruzafa
- Oceanographic Centre of the Canary Islands, Spanish Institute of Oceanography (IEO-CSIC), Tenerife, Spain
| | - Kashona Iita
- National Marine Information and Research Centre (NATMIRC), Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
| | | | - Hocein Bazairi
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- University of Gibraltar, Europa Point Campus, Natural Sciences and Environment Research Hub, Gibraltar, Gibraltar
| | - Malika Chlaida
- Research and Development Unit on Marine Biology, National Institute of Fisheries Research, Casablanca, Morocco
| |
Collapse
|
5
|
Leone A, Arnaud-Haond S, Babbucci M, Bargelloni L, Coscia I, Damalas D, Delord C, Franch R, Garibaldi F, Macias D, Mariani S, Martinsohn J, Megalofonou P, Micarelli P, Nikolic N, Prodöhl PA, Sperone E, Stagioni M, Zanzi A, Cariani A, Tinti F. Population Genomics of the Blue Shark, Prionace glauca, Reveals Different Populations in the Mediterranean Sea and the Northeast Atlantic. Evol Appl 2024; 17:e70005. [PMID: 39296540 PMCID: PMC11408569 DOI: 10.1111/eva.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Populations of marine top predators have been sharply declining during the past decades, and one-third of chondrichthyans are currently threatened with extinction. Sustainable management measures and conservation plans of large pelagic sharks require knowledge on population genetic differentiation and demographic connectivity. Here, we present the case of the Mediterranean blue shark (Prionace glauca, L. 1758), commonly found as bycatch in longline fisheries and classified by the IUCN as critically endangered. The management of this species suffers from a scarcity of data about population structure and connectivity within the Mediterranean Sea and between this basin and the adjacent Northeast Atlantic. Here, we assessed the genetic diversity and spatial structure of blue shark from different areas of the Mediterranean Sea and the Northeast Atlantic through genome scan analyses. Pairwise genetic differentiation estimates (F ST) on 203 specimens genotyped at 14,713 ddRAD-derived SNPs revealed subtle, yet significant, genetic differences within the Mediterranean sampling locations, and between the Mediterranean Sea and the Northeast Atlantic Ocean. Genetic differentiation suggests some degree of demographic independence between the Western and Eastern Mediterranean blue shark populations. Furthermore, results show limited genetic connectivity between the Mediterranean and the Atlantic basins, supporting the hypothesis of two distinct populations of blue shark separated by the Strait of Gibraltar. Although reproductive interactions may be limited, the faint genetic signal of differentiation suggests a recent common history between these units. Therefore, Mediterranean blue sharks may function akin to a metapopulation relying upon local demographic processes and connectivity dynamics, whereby the limited contemporary gene flow replenishment from the Atlantic may interplay with currently poorly regulated commercial catches and large-scale ecosystem changes. Altogether, these results emphasise the need for revising management delineations applied to these critically endangered sharks.
Collapse
Affiliation(s)
- Agostino Leone
- Department of Biological, Geological and Environmental Sciences (BiGeA), Laboratory of Genetics and Genomics of Marine Resources and Environment University of Bologna Ravenna Italy
- MARBEC - University of Montpellier, CNRS, Ifremer, IRD Sète France
- Department of Earth and Marine Sciences (DiSTeM) University of Palermo Palermo Italy
- NBFC, National Biodiversity Future Center Palermo Italy
| | | | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science University of Padova Legnaro Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science University of Padova Legnaro Italy
| | | | - Dimitrios Damalas
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources Ispra Italy
- Hellenic Centre for Marine Research Institute of Marine Biological Resources & Inland Waters, Former US Base at Gournes Heraklion Crete Greece
| | | | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science University of Padova Legnaro Italy
| | - Fulvio Garibaldi
- Department of Earth, Environmental and Life Sciences University of Genova Genova Italy
| | - David Macias
- Instituto Español de Oceanografía Centro Oceanográfico de Málaga Malaga Spain
| | - Stefano Mariani
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| | - Jann Martinsohn
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources Ispra Italy
| | - Persefoni Megalofonou
- Department of Zoology-Marine Biology, Faculty of Biology National and Kapodistrian University of Athens Athens Greece
| | - Primo Micarelli
- Sharks Studies Center-Scientific Institute Massa Marittima Italy
| | | | - Paulo A Prodöhl
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast Belfast UK
| | - Emilio Sperone
- Department of Biology, Ecology and Earth Sciences University of Calabria Arcavacata di Rende Italy
| | - Marco Stagioni
- Laboratory of Marine Biology and Fisheries, Department of Biological, Geological and Environmental Sciences (BiGeA) University of Bologna Fano Italy
| | - Antonella Zanzi
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources Ispra Italy
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences (BiGeA), Laboratory of Genetics and Genomics of Marine Resources and Environment University of Bologna Ravenna Italy
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Laboratory of Genetics and Genomics of Marine Resources and Environment University of Bologna Ravenna Italy
| |
Collapse
|
6
|
Govaert M, Rotsaert C, Vannieuwenhuyse C, Duysburgh C, Medlin S, Marzorati M, Jarrett H. Survival of Probiotic Bacterial Cells in the Upper Gastrointestinal Tract and the Effect of the Surviving Population on the Colonic Microbial Community Activity and Composition. Nutrients 2024; 16:2791. [PMID: 39203927 PMCID: PMC11357584 DOI: 10.3390/nu16162791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Many health-promoting effects have been attributed to the intake of probiotic cells. However, it is important that probiotic cells arrive at the site of their activity in a viable state in order to exert their beneficial effects. Careful selection of the appropriate probiotic formulation is therefore required as mainly the type of probiotic species/strain and the administration strategy may affect survival of the probiotic cells during the upper gastrointestinal (GIT) passage. Therefore, the current study implemented Simulator of the Human Microbial Ecosystem (SHIME®) technology to investigate the efficacy of different commercially available probiotic formulations on the survival and culturability of probiotic bacteria during upper GIT passage. Moreover, Colon-on-a-Plate (CoaP™) technology was applied to assess the effect of the surviving probiotic bacteria on the gut microbial community (activity and composition) of three human donors. Significantly greater survival and culturability rates were reported for the delayed-release capsule formulation (>50%) as compared to the powder, liquid, and standard capsule formulations (<1%) (p < 0.05), indicating that the delayed-release capsule was most efficacious in delivering live bacteria cells. Indeed, administration of the delayed-release capsule probiotic digest resulted in enhanced production of SCFAs and shifted gut microbial community composition towards beneficial bacterial species. These results thus indicate that careful selection of the appropriate probiotic formulation and administration strategy is crucial to deliver probiotic cells in a viable state at the site of their activity (distal ileum and colon).
Collapse
Affiliation(s)
- Marlies Govaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Chloë Rotsaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | | | - Cindy Duysburgh
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Sophie Medlin
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Harry Jarrett
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| |
Collapse
|
7
|
Duysburgh C, Velumani D, Garg V, Cheong JWY, Marzorati M. Combined Supplementation of Inulin and Bacillus coagulans Lactospore Demonstrates Synbiotic Potential in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME ®) Model. J Diet Suppl 2024; 21:737-755. [PMID: 39087597 DOI: 10.1080/19390211.2024.2380262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Prebiotic and probiotic combinations may lead to a synbiotic effect, demonstrating superior health benefits over either component alone. Using the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®) model, the effects of repeated supplementation with inulin (prebiotic, which is expected to provide a source of nutrition for the live microorganisms in the gut to potentially support optimal digestive health), Bacillus coagulans lactospore (probiotic), and a low and high dose of a synbiotic combination of the two on the gut microbial community activity and composition were evaluated. Test product supplementation increased the health-promoting short-chain fatty acids acetate and butyrate compared with levels recorded during the control period, demonstrating a stimulation of saccharolytic fermentation. This was likely the result of the increased abundance of several saccharolytic bacterial groups, including Megamonas, Bifidobacterium, and Faecalibacterium, following test product supplementation. The stimulation of acetate and butyrate production, as well as the increased abundance of saccharolytic bacterial groups were more evident in treatment week 3 compared with treatment week 1, demonstrating the value of repeated product administration. Further, the synbiotic formulations tended to result in greater changes compared with prebiotic or probiotic alone. Overall, the findings demonstrate a synbiotic potential for inulin and B. coagulans lactospore and support repeated administration of these products, indicating a potential for promoting gut health.
Collapse
Affiliation(s)
| | - Deepapriya Velumani
- Haleon (GlaxoSmithKline Consumer Healthcare Pte Ltd), Rochester Park, Singapore
| | - Vandana Garg
- Haleon (GlaxoSmithKline Consumer Healthcare Pte Ltd), Rochester Park, Singapore
| | | | | |
Collapse
|
8
|
Pettersson ME, Quintela M, Besnier F, Deng Q, Berg F, Kvamme C, Bekkevold D, Mosbech MB, Bunikis I, Lille-Langøy R, Leonori I, Wallberg A, Glover KA, Andersson L. Limited Parallelism in Genetic Adaptation to Brackish Water Bodies in European Sprat and Atlantic Herring. Genome Biol Evol 2024; 16:evae133. [PMID: 38918882 PMCID: PMC11226789 DOI: 10.1093/gbe/evae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The European sprat is a small plankton-feeding clupeid present in the northeastern Atlantic Ocean, in the Mediterranean Sea, and in the brackish Baltic Sea and Black Sea. This species is the target of a major fishery and, therefore, an accurate characterization of its genetic population structure is crucial to delineate proper stock assessments that aid ensuring the fishery's sustainability. Here, we present (i) a draft genome assembly, (ii) pooled whole genome sequencing of 19 population samples covering most of the species' distribution range, and (iii) the design and test of a single nucleotide polymorphism (SNP)-chip resource and use this to validate the population structure inferred from pooled sequencing. These approaches revealed, using the populations sampled here, three major groups of European sprat: Oceanic, Coastal, and Brackish with limited differentiation within groups even over wide geographical stretches. Genetic structure is largely driven by six large putative inversions that differentiate Oceanic and Brackish sprats, while Coastal populations display intermediate frequencies of haplotypes at each locus. Interestingly, populations from the Baltic and the Black Seas share similar frequencies of haplotypes at these putative inversions despite their distant geographic location. The closely related clupeids European sprat and Atlantic herring both show genetic adaptation to the brackish Baltic Sea, providing an opportunity to explore the extent of genetic parallelism. This analysis revealed limited parallelism because out of 125 independent loci detected in the Atlantic herring, three showed sharp signals of selection that overlapped between the two species and contained single genes such as PRLRA, which encodes the receptor for prolactin, a freshwater-adapting hormone in euryhaline species, and THRB, a receptor for thyroid hormones, important both for metabolic regulation and the development of red cone photoreceptors.
Collapse
Affiliation(s)
- Mats E Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Qiaoling Deng
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Florian Berg
- Institute of Marine Research, 5817 Bergen, Norway
| | | | - Dorte Bekkevold
- DTU-Aqua National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | | | | | - Iole Leonori
- CNR IRBIM, Italian National Research Council, Institute for Marine Biological Resources and Biotechnology, 60125 Ancona, Italy
| | - Andreas Wallberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
de Moraes Magaldi L, Gueratto PE, Ortega‐Abboud E, Sobral‐Souza T, Joron M, de Souza AP, Freitas AVL, Silva‐Brandão KL. Montane diversification as a mechanism of speciation in neotropical butterflies. Ecol Evol 2024; 14:e11704. [PMID: 39005883 PMCID: PMC11239956 DOI: 10.1002/ece3.11704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
The mountains in the Atlantic Forest domain are environments that harbor a high biodiversity, including species adapted to colder climates that were probably influenced by the climatic variations of the Pleistocene. To understand the phylogeographic pattern and assess the taxonomic boundaries between two sister montane species, a genomic study of the butterflies Actinote mantiqueira and A. alalia (Nymphalidae: Acraeini) was conducted. Analyses based on partial sequences of the mitochondrial gene COI (barcode region) failed to recover any phylogenetic or genetic structure discriminating the two species or sampling localities. However, single nucleotide polymorphisms gathered using Genotyping-by-Sequencing provided a strong isolation pattern in all analyses (genetic distance, phylogenetic hypothesis, clustering analyses, and F ST statistics) which is consistent with morphology, separating all individuals of A. alalia from all populations of A. mantiqueira. The three sampled mountain ranges where A. mantiqueira populations occur-Serra do Mar, Serra da Mantiqueira, and Poços de Caldas Plateau-were identified as three isolated clusters. Paleoclimate simulations indicate that both species' distributions changed according to climatic oscillations in the Pleistocene period, with the two species potentially occurring in areas of lower altitude during glacial periods when compared to the interglacial periods (as the present). Besides, a potential path between their distribution through the Serra do Mar Mountain range was inferred. Therefore, the Pleistocene climatic fluctuation had a significant impact on the speciation process between A. alalia and A. mantiqueira, which was brought on by isolation at different mountain summits during interglacial periods, as shown by the modeled historical distribution and the observed genetic structure.
Collapse
Affiliation(s)
- Luiza de Moraes Magaldi
- Departamento de Biologia Animal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasSPBrazil
| | - Patrícia Eyng Gueratto
- Departamento de Biologia Animal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasSPBrazil
| | - Enrique Ortega‐Abboud
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | | | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasSPBrazil
| | | | | |
Collapse
|
10
|
Kreling SES, Reese EM, Cavalluzzi OM, Bozzi NB, Messinger R, Schell CJ, Long RA, Prugh LR. City divided: Unveiling family ties and genetic structuring of coyotes in Seattle. Mol Ecol 2024; 33:e17427. [PMID: 38837263 DOI: 10.1111/mec.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Linear barriers pose significant challenges for wildlife gene flow, impacting species persistence, adaptation, and evolution. While numerous studies have examined the effects of linear barriers (e.g., fences and roadways) on partitioning urban and non-urban areas, understanding their influence on gene flow within cities remains limited. Here, we investigated the impact of linear barriers on coyote (Canis latrans) population structure in Seattle, Washington, where major barriers (i.e., interstate highways and bodies of water) divide the city into distinct quadrants. Just under 1000 scats were collected to obtain genetic data between January 2021 and December 2022, allowing us to identify 73 individual coyotes. Notably, private allele analysis underscored limited interbreeding among quadrants. When comparing one quadrant to each other, there were up to 16 private alleles within a single quadrant, representing nearly 22% of the population allelic diversity. Our analysis revealed weak isolation by distance, and despite being a highly mobile species, genetic structuring was apparent between quadrants even with extremely short geographic distance between individual coyotes, implying that Interstate 5 and the Ship Canal act as major barriers. This study uses coyotes as a model species for understanding urban gene flow and its consequences in cities, a crucial component for bolstering conservation of rarer species and developing wildlife friendly cities.
Collapse
Affiliation(s)
- Samantha E S Kreling
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Ellen M Reese
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Olivia M Cavalluzzi
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Natalee B Bozzi
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Riley Messinger
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Christopher J Schell
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, California, USA
| | | | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Walter WD, Fameli A, Russo‐Petrick K, Edson JE, Rosenberry CS, Schuler KL, Tonkovich MJ. Large-scale assessment of genetic structure to assess risk of populations of a large herbivore to disease. Ecol Evol 2024; 14:e11347. [PMID: 38774134 PMCID: PMC11106048 DOI: 10.1002/ece3.11347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Chronic wasting disease (CWD) can spread among cervids by direct and indirect transmission, the former being more likely in emerging areas. Identifying subpopulations allows the delineation of focal areas to target for intervention. We aimed to assess the population structure of white-tailed deer (Odocoileus virginianus) in the northeastern United States at a regional scale to inform managers regarding gene flow throughout the region. We genotyped 10 microsatellites in 5701 wild deer samples from Maryland, New York, Ohio, Pennsylvania, and Virginia. We evaluated the distribution of genetic variability through spatial principal component analysis and inferred genetic structure using non-spatial and spatial Bayesian clustering algorithms (BCAs). We simulated populations representing each inferred wild cluster, wild deer in each state and each physiographic province, total wild population, and a captive population. We conducted genetic assignment tests using these potential sources, calculating the probability of samples being correctly assigned to their origin. Non-spatial BCA identified two clusters across the region, while spatial BCA suggested a maximum of nine clusters. Assignment tests correctly placed deer into captive or wild origin in most cases (94%), as previously reported, but performance varied when assigning wild deer to more specific origins. Assignments to clusters inferred via non-spatial BCA performed well, but efficiency was greatly reduced when assigning samples to clusters inferred via spatial BCA. Differences between spatial BCA clusters are not strong enough to make assignment tests a reliable method for inferring the geographic origin of deer using 10 microsatellites. However, the genetic distinction between clusters may indicate natural and anthropogenic barriers of interest for management.
Collapse
Affiliation(s)
- W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research UnitThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Alberto Fameli
- Pennsylvania Cooperative Fish and Wildlife Research UnitThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Kelly Russo‐Petrick
- Pennsylvania Cooperative Fish and Wildlife Research UnitThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Jessie E. Edson
- Pennsylvania Cooperative Fish and Wildlife Research UnitThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Krysten L. Schuler
- Cornell Wildlife Health Lab, New York State Wildlife Health ProgramIthacaNew YorkUSA
| | | |
Collapse
|
12
|
Jorde PE, van der Meeren T, Quintela M, Dahle G, Mateos‐Rivera A, Aase M, Norberg B, Sævik PN, Bjørn PA, Glover KA. Genetic analyses verify sexually mature escaped farmed Atlantic cod and farmed cod eggs in the natural environment. Evol Appl 2024; 17:e13688. [PMID: 38633132 PMCID: PMC11022607 DOI: 10.1111/eva.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Elucidating the effects of domesticated organisms escaping into the natural environment represents a topic of importance in both evolutionary and conservation biology. However, when excluding the abundant data on salmonids, there is a lack of knowledge on this topic for marine fish aquaculture, which continues to expand globally. In order to bridge this empirical gap, we investigated a suspected escape of sexually mature domesticated Atlantic cod from a commercial marine fish farm in northern Norway. This involved genotyping samples of fish from cages on the farm, putatively identified escapees and wild cod captured in the region and samples of recently spawned eggs collected in the sea. Genetic analyses confirmed a farmed ancestry of the suspected escapees, and significantly, 27% of the sampled cod eggs. Furthermore, statistical analyses revealed a strong reduction in genetic variation in all samples of the farmed cod, including low effective population size and high degree of siblingship. These results thus document the escape of sexually mature adult cod and the release of fertilized domesticated cod eggs into the natural environment. Although it is possible that some of the mature escapees spawned post-escape, the fact that only a single egg of potential hybrid farmed × wild origin was identified, together with the high number of mature cod in the farm, points to within cage spawning as the primary source of these eggs. This suggestion is supported by oceanic particle-drift modelling, verifying that transport of eggs between the farm and the egg sampling locations was plausible. This study represents a rare documentation of interaction between domesticated and wild populations for a marine fish, pointing towards potential impacts on the local wild population.
Collapse
Affiliation(s)
| | | | | | - Geir Dahle
- Institute of Marine ResearchBergenNorway
| | | | - Marit Aase
- The Directorate of FisheriesTrondheimNorway
| | | | | | | | | |
Collapse
|
13
|
Kim KR, Kim KY, Song HY. Genetic Structure and Diversity of Hatchery and Wild Populations of Yellow Catfish Tachysurus fulvidraco (Siluriformes: Bagridae) from Korea. Int J Mol Sci 2024; 25:3923. [PMID: 38612732 PMCID: PMC11011370 DOI: 10.3390/ijms25073923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Yellow catfish Tachysurus fulvidraco is an important commercial fish species in South Korea. However, due to their current declines in its distribution area and population size, it is being released from hatchery populations into wild populations. Hatchery populations also produced from wild broodstocks are used for its captive breeding. We reported 15 new microsatellite DNA markers of T. fulvidraco to identify the genetic diversity and structure of its hatchery and wild populations, providing baseline data for useful resource development strategies. The observed heterozygosity of the hatchery populations ranged from 0.816 to 0.873, and that of the wild populations ranged from 0.771 to 0.840. Their inbreeding coefficient ranged from -0.078 to 0.024. All populations experienced a bottleneck (p < 0.05), with effective population sizes ranging from 21 to infinity. Their gene structure was divided into two groups with STRUCTURE results of K = 2. It was confirmed that each hatchery population originated from a different wild population. This study provides genetic information necessary for the future development and conservation of fishery resources for T. fulvidraco.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Department of Life Science & Biotechnology, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Keun-Yong Kim
- Department of Genetic Analysis, AquaGenTech Co., Ltd., Busan 48300, Republic of Korea;
| | - Ha Yoon Song
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan 32762, Republic of Korea
| |
Collapse
|
14
|
Kim KR, Sung MS, Hwang Y, Jeong JH, Yu JN. Assessment of the Genetic Diversity and Structure of the Korean Endemic Freshwater Fish Microphysogobio longidorsalis (Gobioninae) Using Microsatellite Markers: A First Glance from Population Genetics. Genes (Basel) 2024; 15:69. [PMID: 38254959 PMCID: PMC10815670 DOI: 10.3390/genes15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Microphysogobio longidorsalis is endemic to South Korea and inhabits small areas of the Namhangang, Bukhangang, and Imjingang Rivers in the Hangang River water system. Endemic species usually are more vulnerable than species with a wide distribution. Notably, there is a lack of basic conservation data for M. longidorsalis. We analyzed 19 microsatellite loci in six populations of M. longidorsalis in South Korea to characterize their population structure and genetic diversity. The genetic diversity of the microsatellites was 0.741-0.779, which is lower than that of other freshwater fishes. The pairwise genetic differentiation of microsatellite (FST) values ranged from 0.007 to 0.041, suggesting low genetic differentiation between the populations. The Jojongicheon stream population (CP) had an effective population size of <100. Therefore, conservation efforts are required to prevent inbreeding depression in M. longidorsalis. Discriminant analysis of principal components showed that the Hangang River water system would be a single management unit (MU). Our findings provide fundamental genetic insights for the formulation of conservation strategies for M. longidorsalis.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Mu-Sung Sung
- Muldeuli Research, Icheon 12607, Republic of Korea;
| | - Yujin Hwang
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Ju Hui Jeong
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (Y.H.); (J.H.J.)
| |
Collapse
|
15
|
Roved J. MHCtools 1.5: Analysis of MHC Sequencing Data in R. Methods Mol Biol 2024; 2809:275-295. [PMID: 38907904 DOI: 10.1007/978-1-0716-3874-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The genes of the major histocompatibility complex (MHC) play a vital role in the vertebrate immune system and have attracted considerable interest in evolutionary biology. While the MHC has been characterized in detail in humans (human leukocyte antigen, HLA) and in model organisms such as the mouse, studies in non-model organisms often lack prior knowledge about structure, genetic variability, and evolutionary properties of this locus. MHC genotyping in non-model species commonly relies on PCR-based amplicon sequencing, and while several published protocols facilitate generation of MHC sequence data, there is a lack of transparent and standardized tools for downstream data analysis.Here, I present the R package MHCtools version 1.5, which contains 15 tools that (i) assist accurate MHC genotyping from high-throughput amplicon sequencing data, and provide standardized methods to analyze (ii) MHC diversity, (iii) MHC supertypes, and (iv) MHC haplotypes.I hope that MHCtools will be helpful in future studies of the MHC in non-model species and that it may help to advance our understanding of the important roles of the MHC in ecology and evolution.
Collapse
Affiliation(s)
- Jacob Roved
- Section for Molecular Ecology and Evolution, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Fan X, Dai RC, Zhang S, Geng YY, Kang M, Guo DW, Mei YN, Pan YH, Sun ZY, Xu YC, Gong J, Xiao M. Tandem gene duplications contributed to high-level azole resistance in a rapidly expanding Candida tropicalis population. Nat Commun 2023; 14:8369. [PMID: 38102133 PMCID: PMC10724272 DOI: 10.1038/s41467-023-43380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Invasive diseases caused by the globally distributed commensal yeast Candida tropicalis are associated with mortality rates of greater than 50%. Notable increases of azole resistance have been observed in this species, particularly within Asia-Pacific regions. Here, we carried out a genetic population study on 1571 global C. tropicalis isolates using multilocus sequence typing (MLST). In addition, whole-genome sequencing (WGS) analysis was conducted on 629 of these strains, comprising 448 clinical invasive strains obtained in this study and 181 genomes sourced from public databases. We found that MLST clade 4 is the predominant azole-resistant clone. WGS analyses demonstrated that dramatically increasing rates of azole resistance are associated with a rapid expansion of cluster AZR, a sublineage of clade 4. Cluster AZR isolates exhibited a distinct high-level azole resistance, which was induced by tandem duplications of the ERG11A395T gene allele. Ty3/gypsy-like retrotransposons were found to be highly enriched in this population. The alarming expansion of C. tropicalis cluster AZR population underscores the urgent need for strategies against growing threats of antifungal resistance.
Collapse
Affiliation(s)
- Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Rong-Chen Dai
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Peking University First Hospital - National Institute for Communicable Disease Control and Prevention Joint Laboratory of Pathogenic Fungi, Beijing, 102206, China
| | - Yuan-Yuan Geng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Peking University First Hospital - National Institute for Communicable Disease Control and Prevention Joint Laboratory of Pathogenic Fungi, Beijing, 102206, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Da-Wen Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ya-Ning Mei
- Department of Clinical Laboratory, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Yu-Hong Pan
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Zi-Yong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ying-Chun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jie Gong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- Peking University First Hospital - National Institute for Communicable Disease Control and Prevention Joint Laboratory of Pathogenic Fungi, Beijing, 102206, China.
| | - Meng Xiao
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
17
|
Vera M, Wilmes SB, Maroso F, Hermida M, Blanco A, Casanova A, Iglesias D, Cao A, Culloty SC, Mahony K, Orvain F, Bouza C, Robins PE, Malham SK, Lynch S, Villalba A, Martínez P. Heterogeneous microgeographic genetic structure of the common cockle (Cerastoderma edule) in the Northeast Atlantic Ocean: biogeographic barriers and environmental factors. Heredity (Edinb) 2023; 131:292-305. [PMID: 37596415 PMCID: PMC10539317 DOI: 10.1038/s41437-023-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Knowledge of genetic structure at the finest level is essential for the conservation of genetic resources. Despite no visible barriers limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) is a bivalve of great commercial and ecological value inhabiting the Northeast Atlantic Ocean. Previous population genomics studies demonstrated significant structure both across the Northeast Atlantic, but also within small geographic areas, highlighting the need to investigate fine-scale structuring. Here, we analysed two geographic areas that could represent opposite models of structure for the species: (1) the SW British Isles region, highly fragmented due to biogeographic barriers, and (2) Galicia (NW Spain), a putative homogeneous region. A total of 9250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the analysis. The entire SNP dataset mostly confirmed previous observations related to genetic diversity and differentiation; however, neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring both regions. While Galicia showed a homogeneous structure, the SW British Isles region was split into four reliable genetic regions related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered supports specific management policies of cockle resources in SW British and Galician regions also considering their particular socio-economic characteristics; further, these new data will be added to those recently reported in the Northeast Atlantic to define sustainable management actions across the whole distribution range of the species.
Collapse
Affiliation(s)
- Manuel Vera
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - Sophie B Wilmes
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Francesco Maroso
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Adrián Casanova
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - David Iglesias
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Kate Mahony
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Francis Orvain
- UNICAEN - UMR BOREA "Biologie des ORganismes et Ecosystèmes Aquatiques" MNHN, UPMC, UCBN, CNRS-7208, IRD-207, University of Caen, Caen, France
| | - Carmen Bouza
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Peter E Robins
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Sharon Lynch
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
- Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
18
|
Suchocki CR, Ka'apu-Lyons C, Copus JM, Walsh CAJ, Lee AM, Carter JM, Johnson EA, Etter PD, Forsman ZH, Bowen BW, Toonen RJ. Geographic destiny trumps taxonomy in the Roundtail Chub, Gila robusta species complex (Teleostei, Leuciscidae). Sci Rep 2023; 13:15810. [PMID: 37737242 PMCID: PMC10517014 DOI: 10.1038/s41598-023-41719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
The Gila robusta species complex in the lower reaches of the Colorado River includes three nominal and contested species (G. robusta, G. intermedia, and G. nigra) originally defined by morphological and meristic characters. In subsequent investigations, none of these characters proved diagnostic, and species assignments were based on capture location. Two recent studies applied conservation genomics to assess species boundaries and reached contrasting conclusions: an ezRAD phylogenetic study resolved 5 lineages with poor alignment to species categories and proposed a single species with multiple population partitions. In contrast, a dd-RAD coalescent study concluded that the three nominal species are well-supported evolutionarily lineages. Here we developed a draft genome (~ 1.229 Gbp) to apply genome-wide coverage (10,246 SNPs) with nearly range-wide sampling of specimens (G. robusta N = 266, G. intermedia N = 241, and G. nigra N = 117) to resolve this debate. All three nominal species were polyphyletic, whereas 5 of 8 watersheds were monophyletic. AMOVA partitioned 23.1% of genetic variance among nominal species, 30.9% among watersheds, and the Little Colorado River was highly distinct (FST ranged from 0.79 to 0.88 across analyses). Likewise, DAPC identified watersheds as more distinct than species, with the Little Colorado River having 297 fixed nucleotide differences compared to zero fixed differences among the three nominal species. In every analysis, geography explains more of the observed variance than putative taxonomy, and there are no diagnostic molecular or morphological characters to justify species designation. Our analysis reconciles previous work by showing that species identities based on type location are supported by significant divergence, but natural geographic partitions show consistently greater divergence. Thus, our data confirm Gila robusta as a single polytypic species with roughly a dozen highly isolated geographic populations, providing a strong scientific basis for watershed-based future conservation.
Collapse
Affiliation(s)
- Christopher R Suchocki
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Cassie Ka'apu-Lyons
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Joshua M Copus
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Cameron A J Walsh
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Anne M Lee
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Julie Meka Carter
- Arizona Game and Fish Department, 5000 W. Carefree Highway, Phoenix, AZ, 85086, USA
| | - Eric A Johnson
- Institute of Molecular Biology, University of Oregon, 1585 E 13th Ave., Eugene, OR, 97403, USA
| | - Paul D Etter
- Institute of Molecular Biology, University of Oregon, 1585 E 13th Ave., Eugene, OR, 97403, USA
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
- Reefscape Restoration Initiative, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, 46-007 Lilipuna Road, Kāne'ohe, HI, 96744, USA.
| |
Collapse
|
19
|
Bhowmik N, Seaborn T, Ringwall KA, Dahlen CR, Swanson KC, Hulsman Hanna LL. Genetic Distinctness and Diversity of American Aberdeen Cattle Compared to Common Beef Breeds in the United States. Genes (Basel) 2023; 14:1842. [PMID: 37895190 PMCID: PMC10606367 DOI: 10.3390/genes14101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
American Aberdeen (AD) cattle in the USA descend from an Aberdeen Angus herd originally brought to the Trangie Agricultural Research Centre, New South Wales, AUS. Although put under specific selection pressure for yearling growth rate, AD remain genomically uncharacterized. The objective was to characterize the genetic diversity and structure of purebred and crossbred AD cattle relative to seven common USA beef breeds using available whole-genome SNP data. A total of 1140 animals consisting of 404 purebred (n = 8 types) and 736 admixed individuals (n = 10 types) was used. Genetic diversity metrics, an analysis of molecular variance, and a discriminant analysis of principal components were employed. When linkage disequilibrium was not accounted for, markers influenced basic diversity parameter estimates, especially for AD cattle. Even so, intrapopulation and interpopulation estimates separate AD cattle from other purebred types (e.g., Latter's pairwise FST ranged from 0.1129 to 0.2209), where AD cattle were less heterozygous and had lower allelic richness than other purebred types. The admixed AD-influenced cattle were intermediate to other admixed types for similar parameters. The diversity metrics separation and differences support strong artificial selection pressures during and after AD breed development, shaping the evolution of the breed and making them genomically distinct from similar breeds.
Collapse
Affiliation(s)
- Nayan Bhowmik
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Travis Seaborn
- School of Natural Resource Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kris A. Ringwall
- Dickinson Research Extension Center, North Dakota State University, Dickinson, ND 58601, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
20
|
Hackerott S, Virdis F, Flood PJ, Souto DG, Paez W, Eirin-Lopez JM. Relationships between phenotypic plasticity and epigenetic variation in two Caribbean Acropora corals. Mol Ecol 2023; 32:4814-4828. [PMID: 37454286 DOI: 10.1111/mec.17072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef-building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes of Acropora cervicornis and A. palmata corals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent in A. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.
Collapse
Affiliation(s)
- Serena Hackerott
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| | - Francesca Virdis
- Reef Renewal Foundation Bonaire, Kralendijk, Caribbean Netherlands
| | - Peter J Flood
- Florida International University, Miami, Florida, USA
| | - Daniel Garcia Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Wendy Paez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| |
Collapse
|
21
|
Oh KP, Van de Weyer N, Ruscoe WA, Henry S, Brown PR. From chip to SNP: Rapid development and evaluation of a targeted capture genotyping-by-sequencing approach to support research and management of a plaguing rodent. PLoS One 2023; 18:e0288701. [PMID: 37590245 PMCID: PMC10434965 DOI: 10.1371/journal.pone.0288701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
The management of invasive species has been greatly enhanced by population genetic analyses of multilocus single-nucleotide polymorphism (SNP) datasets that provide critical information regarding pest population structure, invasion pathways, and reproductive biology. For many applications there is a need for protocols that offer rapid, robust and efficient genotyping on the order of hundreds to thousands of SNPs, that can be tailored to specific study populations and that are scalable for long-term monitoring schemes. Despite its status as a model laboratory species, there are few existing resources for studying wild populations of house mice (Mus musculus spp.) that strike this balance between data density and laboratory efficiency. Here we evaluate the utility of a custom targeted capture genotyping-by-sequencing approach to support research on plaguing house mouse populations in Australia. This approach utilizes 3,651 hybridization capture probes targeting genome-wide SNPs identified from a sample of mice collected in grain-producing regions of southeastern Australia genotyped using a commercially available microarray platform. To assess performance of the custom panel, we genotyped wild caught mice (N = 320) from two adjoining farms and demonstrate the ability to correctly assign individuals to source populations with high confidence (mean >95%), as well as robust kinship inference within sites. We discuss these results in the context of proposed applications for future genetic monitoring of house mice in Australia.
Collapse
Affiliation(s)
- Kevin P. Oh
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | - Nikki Van de Weyer
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | | | - Steve Henry
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | - Peter R. Brown
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
22
|
Cullingham C, Peery RM, Miller JM. A roadmap to robust discriminant analysis of principal components. Mol Ecol Resour 2023; 23:519-522. [PMID: 36282622 DOI: 10.1111/1755-0998.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 10/31/2022]
Abstract
Identification of population structure is a common goal for a variety of applications, including conservation, wildlife management, and medical genetics. The outcome of these analyses can have far reaching implications; therefore, it is important to ensure an understanding of the strengths and weaknesses of the methodologies used. Increasing in popularity, the discriminant analysis of principal components (DAPC) method incorporates combinations of genetic variables (alleles) into a model that differentiates individuals into genetic clusters. However, users may not have a full understanding of how to best parameterize the model. In this issue of Thia (Molecular Ecology Resources, 2022) looks under the hood of the DAPC. Using simulated data, he demonstrates the importance of careful parameter selection in developing a DAPC model, what the implications are for over-fitting the model, and finally, how best to evaluate the results of DAPC models. This work highlights the issues that can arise when over-parameterizing the DAPC model when gene flow is high among clusters and provides important guidelines to ensure researchers are making conclusions that are biologically relevant.
Collapse
Affiliation(s)
| | - Rhiannon M Peery
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Joshua M Miller
- Biological Sciences, MacEwan University, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Sheridan NE, Seyoum S, Sharp WC, Titus BM, Daly M, Richards CL, Schrey AW. Conservation genomics of an exploited, popular aquarium trade species: the giant Caribbean sea anemone Condylactis gigantea (Anthozoa: Actiniidae). CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
24
|
Genetic diversity and connectivity of moose (Alces americanus americanus) in eastern North America. CONSERV GENET 2023. [DOI: 10.1007/s10592-022-01496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractGenetic diversity is critical to a population’s ability to overcome gradual environment change. Large-bodied wildlife existing in regions with relatively high human population density are vulnerable to isolation-induced genetic drift, population bottlenecks, and loss of genetic diversity. Moose (Alces americanus americanus) in eastern North America have a complex history of drastic population changes. Current and potential threats to moose populations in this region could be exacerbated by loss of genetic diversity and connectivity among subpopulations. Existing genetic diversity, gene flow, and population clustering and fragmentation of eastern North American moose are not well quantified, while physical and anthropogenic barriers to population connectivity already exist. Here, single nucleotide polymorphism (SNP) genotyping of 507 moose spanning five northeastern U.S. states and one southeastern Canadian province indicated low diversity, with a high proportion of the genomes sharing identity-by-state, with no consistent evidence of non-random mating. Gene flow estimates indicated bidirectionality between all pairs of sampled areas, with magnitudes reflecting clustering and differentiation patterns. A Discriminant Analysis of Principal Components analysis indicated that these genotypic data were best described with four clusters and indicated connectivity across the Saint Lawrence River and Seaway, a potential physical barrier to gene flow. Tests for genetic differentiation indicated restricted gene flow between populations across the Saint Lawrence River and Seaway, and between many sampled areas facing expanding human activity. These results document current genetic variation and connectivity of moose populations in eastern North America, highlight potential challenges to current population connectivity, and identify areas for future research and conservation.
Collapse
|
25
|
Conservation genomics of an endangered arboreal mammal following the 2019-2020 Australian megafire. Sci Rep 2023; 13:480. [PMID: 36627361 PMCID: PMC9831986 DOI: 10.1038/s41598-023-27587-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The impacts of a changing climate threaten species, populations and ecosystems. Despite these significant and large-scale impacts on threatened species, many remain understudied and have little to no genetic information available. The greater glider, Petauroides volans, is an endangered species highly sensitive to the predicted changes in temperature under a changing climate and was recently severely impacted by a megafire natural disaster (85% estimated population loss). Baseline genetic data is essential for conservation management and for detecting detrimental changes in fire-effected populations. We collected genetic samples within 2 years post the 2019-2020 catastrophic Australian bushfires to examine adaptive potential, baseline genetic diversity and population structure, across their southern range in the state of New South Wales. Population genomic analyses were conducted using 8493 genome-wide SNPs for 86 greater glider individuals across 14 geographic locations. Substantial genetic structure was detected across locations, with low genetic diversity and effective population sizes observed in isolated areas. Additionally, we found signals of putative adaptation in response to temperature in greater gliders using a genotype-environment association analysis. These findings have important implications for the management of greater glider populations by identifying at-risk populations and identifying adaptive potential. We demonstrate the importance of baseline genetic information for endangered species as a practical approach to conservation. This is particularly important given the threat that changes in temperatures and megafire events, as predicted under a changing climate, poses for this species.
Collapse
|
26
|
Thomas NE, Hailer F, Bruford MW, Chadwick EA. Country-wide genetic monitoring over 21 years reveals lag in genetic recovery despite spatial connectivity in an expanding carnivore (Eurasian otter, Lutra lutra) population. Evol Appl 2022; 15:2125-2141. [PMID: 36540646 PMCID: PMC9753835 DOI: 10.1111/eva.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous terrestrial mammal species have experienced extensive population declines during past centuries, due largely to anthropogenic pressures. For some species, including the Eurasian otter (Lutra lutra), environmental and legal protection has more recently led to population growth and recolonization of parts of their historic ranges. While heralded as conservation success, only few such recoveries have been examined from a genetic perspective, i.e. whether genetic variability and connectivity have been restored. We here use large-scale and long-term genetic monitoring data from UK otters, whose population underwent a well-documented population decline between the 1950s and 1970s, to explore the dynamics of a population re-expansion over a 21-year period. We genotyped otters from across Wales and England at five time points between 1994 and 2014 using 15 microsatellite loci. We used this combination of long-term temporal and large-scale spatial sampling to evaluate 3 hypotheses relating to genetic recovery that (i) gene flow between subpopulations would increase over time, (ii) genetic diversity of previously isolated populations would increase and that (iii) genetic structuring would weaken over time. Although we found an increase in inter-regional gene flow and admixture levels among subpopulations, there was no significant temporal change in either heterozygosity or allelic richness. Genetic structuring among the main subpopulations hence remained strong and showed a clear historical continuity. These findings highlight an underappreciated aspect of population recovery of endangered species: that genetic recovery may often lag behind the processes of spatial and demographic recovery. In other words, the restoration of the physical connectivity of populations does not necessarily lead to genetic connectivity. Our findings emphasize the need for genetic data as an integral part of conservation monitoring, to enable the potential vulnerability of populations to be evaluated.
Collapse
Affiliation(s)
- Nia E. Thomas
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Frank Hailer
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Michael W. Bruford
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Elizabeth A. Chadwick
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| |
Collapse
|
27
|
Onoufriou AB, Gaggiotti OE, Aguilar de Soto N, McCarthy ML, Morin PA, Rosso M, Dalebout M, Davison N, Baird RW, Baker CS, Berrow S, Brownlow A, Burns D, Caurant F, Claridge D, Constantine R, Demaret F, Dreyer S, Ðuras M, Durban JW, Frantzis A, Freitas L, Genty G, Galov A, Hansen SS, Kitchener AC, Martin V, Mignucci-Giannoni AA, Montano V, Moulins A, Olavarría C, Poole MM, Reyes Suárez C, Rogan E, Ryan C, Schiavi A, Tepsich P, Urban R. J, West K, Olsen MT, Carroll EL. Biogeography in the deep: Hierarchical population genomic structure of two beaked whale species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Population genomics of the neotropical palm Copernicia prunifera (Miller) H. E. Moore: Implications for conservation. PLoS One 2022; 17:e0276408. [PMID: 36327224 PMCID: PMC9632875 DOI: 10.1371/journal.pone.0276408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Copernicia prunifera (Miller) H. E. Moore is a palm tree native to Brazil. The products obtained from its leaf extracts are a source of income for local families and the agroindustry. Owing to the reduction of natural habitats and the absence of a sustainable management plan, the maintenance of the natural populations of this palm tree has been compromised. Therefore, this study aimed to evaluate the diversity and genetic structure of 14 C. prunifera populations using single nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing (GBS) to provide information that contributes to the conservation of this species. A total of 1,013 SNP markers were identified, of which 84 loci showed outlier behavior and may reflect responses to natural selection. Overall, the level of genomic diversity was compatible with the biological aspects of this species. The inbreeding coefficient (f) was negative for all populations, indicating excess heterozygotes. Most genetic variations occurred within populations (77.26%), and a positive correlation existed between genetic and geographic distances. The population structure evaluated through discriminant analysis of principal components (DAPC) revealed low genetic differentiation between populations. The results highlight the need for efforts to conserve C. prunifera as well as its distribution range to preserve its global genetic diversity and evolutionary potential.
Collapse
|
29
|
Spring JF, Revolinski SR, Young FL, Lyon DJ, Burke IC. Weak population differentiation and high diversity in Salsola tragus in the inland Pacific Northwest, USA. PEST MANAGEMENT SCIENCE 2022; 78:4728-4740. [PMID: 35872633 DOI: 10.1002/ps.7093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Salsola tragus is a widespread and problematic weed of semi-arid wheat production globally, and in the inland Pacific Northwest region of the USA. The species exhibits high levels of phenotypic diversity across its range and, at least in California USA, previous work has described cryptic diversity comprising a multi-species complex. Such cryptic diversity could suggest the potential for a differential response to management inputs between groups, and have important implications for the spread of herbicide resistance or other adaptive traits within populations. We used a genotyping-by-sequencing approach to characterize the population structure of S. tragus in the inland Pacific Northwest. RESULTS Our results indicated that the population in this region is comprised of a single, tetraploid species (S. tragus sensu latu) with weak population structure on a regional scale. Isolation-by-distance appears to be the primary pattern of structure, but an independent set of weakly differentiated clusters of unknown origin were also apparent, along with a mixed mating system and high levels of largely unstructured genetic diversity. CONCLUSIONS Despite considerable phenotypic variability within S. tragus in the region, agronomic weed managers can likely consider it as a single entity across the region, rather than a collection of cryptic subgroups with possible differential responses to management inputs or agroecosystem conditions. A lack of strong barriers to migration and gene flow mean that adaptive traits, such as herbicide resistance, can be expected to spread rapidly through populations across the region. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- John F Spring
- Oregon State University Central Oregon Agricultural Research and Extension Center, Madras, OR, USA
| | - Samuel R Revolinski
- Washington State University Department of Crop and Soil Sciences, Pullman, WA, USA
| | - Frank L Young
- USDA-ARS Northwest Sustainable Agroecosystems Research Unit, Pullman, WA, USA
| | - Drew J Lyon
- Washington State University Department of Crop and Soil Sciences, Pullman, WA, USA
| | - Ian C Burke
- Washington State University Department of Crop and Soil Sciences, Pullman, WA, USA
| |
Collapse
|
30
|
Lim QL, Yong CSY, Ng WL, Ismail A, Rovie-Ryan JJ, Rosli N, Inoue-Murayama M, Annavi G. Population genetic structure of wild Malayan tapirs (Tapirus indicus) in Peninsular Malaysia revealed by nine cross-species microsatellite markers. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
van der Reis AL, Norrie CR, Jeffs AG, Lavery SD, Carroll EL. Genetic and particle modelling approaches to assessing population connectivity in a deep sea lobster. Sci Rep 2022; 12:16783. [PMID: 36202873 PMCID: PMC9537507 DOI: 10.1038/s41598-022-19790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of high resolution population genetic techniques, such as genotyping-by-sequencing (GBS), in combination with recent advances in particle modelling of larval dispersal in marine organisms, can deliver powerful new insights to support fisheries conservation and management. In this study, we used this combination to investigate the population connectivity of a commercial deep sea lobster species, the New Zealand scampi, Metanephrops challengeri, which ranges across a vast area of seafloor around New Zealand. This species has limited dispersal capabilities, including larvae with weak swimming abilities and short pelagic duration, while the reptant juvenile/adult stages of the lifecycle are obligate burrow dwellers with limited home ranges. Ninety-one individuals, collected from five scampi fishery management areas around New Zealand, were genotyped using GBS. Using 983 haplotypic genomic loci, three genetically distinct groups were identified: eastern, southern and western. These groups showed significant genetic differentiation with clear source-sink dynamics. The direction of gene flow inferred from the genomic data largely reflected the hydrodynamic particle modelling of ocean current flow around New Zealand. The modelled dispersal during pelagic larval phase highlights the strong connectivity among eastern sampling locations and explains the low genetic differentiation detected among these sampled areas. Our results highlight the value of using a transdisciplinary approach in the inference of connectivity among populations for informing conservation and fishery management.
Collapse
Affiliation(s)
- Aimee L van der Reis
- Institute of Marine Science, University of Auckland, Auckland, New Zealand. .,School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Craig R Norrie
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, USA
| | - Andrew G Jeffs
- Institute of Marine Science, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shane D Lavery
- Institute of Marine Science, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Emma L Carroll
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Gunn JC, Berkman LK, Koppelman J, Taylor AT, Brewer SK, Long JM, Eggert LS. Genomic divergence, local adaptation, and complex demographic history may inform management of a popular sportfish species complex. Ecol Evol 2022; 12:e9370. [PMID: 36225830 PMCID: PMC9534746 DOI: 10.1002/ece3.9370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022] Open
Abstract
The Neosho Bass (Micropterus velox), a former subspecies of the keystone top-predator and globally popular Smallmouth Bass (M. dolomieu), is endemic and narrowly restricted to small, clear streams of the Arkansas River Basin in the Central Interior Highlands (CIH) ecoregion, USA. Previous studies have detected some morphological, genetic, and genomic differentiation between the Neosho and Smallmouth Basses; however, the extent of neutral and adaptive divergence and patterns of intraspecific diversity are poorly understood. Furthermore, lineage diversification has likely been impacted by gene flow in some Neosho populations, which may be due to a combination of natural biogeographic processes and anthropogenic introductions. We assessed: (1) lineage divergence, (2) local directional selection (adaptive divergence), and (3) demographic history among Smallmouth Bass populations in the CIH using population genomic analyses of 50,828 single-nucleotide polymorphisms (SNPs) obtained through ddRAD-seq. Neosho and Smallmouth Bass formed monophyletic clades with 100% bootstrap support. We identified two major lineages within each species. We discovered six Neosho Bass populations (two nonadmixed and four admixed) and three nonadmixed Smallmouth Bass populations. We detected 29 SNPs putatively under directional selection in the Neosho range, suggesting populations may be locally adapted. Two populations were admixed via recent asymmetric secondary contact, perhaps after anthropogenic introduction. Two other populations were likely admixed via combinations of ancient and recent processes. These species comprise independently evolving lineages, some having experienced historical and natural admixture. These results may be critical for management of Neosho Bass as a distinct species and may aid in the conservation of other species with complex biogeographic histories.
Collapse
Affiliation(s)
- Joe C. Gunn
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | | | - Andrew T. Taylor
- Department of BiologyUniversity of Central OklahomaEdmondOklahomaUSA
- Department of BiologyUniversity of North GeorgiaDahlonegaGeorgiaUSA
| | - Shannon K. Brewer
- U.S. Geological Survey, Alabama Cooperative Fish and Wildlife Research Unit, School of Fisheries, Aquaculture, and Aquatic SciencesAuburn UniversityAuburnAlabamaUSA
| | - James M. Long
- U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Lori S. Eggert
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
33
|
Winans GA, Baker J, Johnson L, Spies IB, West JE. Isolation by Distance and Proximity to Urban Areas Affect Genetic Differentiation among Collections of English Sole (Parophrys vetulus, Family Pleuronectidae) in the Northeastern Pacific Ocean and Salish Sea. NORTHWEST SCIENCE 2022. [DOI: 10.3955/046.095.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gary A. Winans
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112
| | - Jon Baker
- Mariner High School, 200 120th Street, Everett, Washington 98204
| | | | - Ingrid B. Spies
- Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, Washington 98115
| | - James E. West
- Washington Department of Fish and Wildlife, 1111 Washington Street SE, Olympia, Washington 98501
| |
Collapse
|
34
|
Piñeros VJ, Del R Pedraza-Marrón C, Betancourt-Resendes I, Calderón-Cortés N, Betancur-R R, Domínguez-Domínguez O. Genome-wide species delimitation analyses of a silverside fish species complex in central Mexico indicate taxonomic over-splitting. BMC Ecol Evol 2022; 22:108. [PMID: 36104671 PMCID: PMC9472351 DOI: 10.1186/s12862-022-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Delimiting species across a speciation continuum is a complex task, as the process of species origin is not generally instantaneous. The use of genome-wide data provides unprecedented resolution to address convoluted species delimitation cases, often unraveling cryptic diversity. However, because genome-wide approaches based on the multispecies coalescent model are known to confound population structure with species boundaries, often resulting in taxonomic over-splitting, it has become increasingly evident that species delimitation research must consider multiple lines of evidence. In this study, we used phylogenomic, population genomic, and coalescent-based species delimitation approaches, and examined those in light of morphological and ecological information, to investigate species numbers and boundaries comprising the Chirostoma "humboltianum group" (family Atherinidae). The humboltianum group is a taxonomically controversial species complex where previous morphological and mitochondrial studies produced conflicting species delimitation outcomes. We generated ddRADseq data for 77 individuals representing the nine nominal species in the group, spanning their distribution range in the central Mexican plateau. RESULTS Our results conflict with the morphospecies and ecological delimitation hypotheses, identifying four independently evolving lineages organized in three geographically cohesive clades: (i) chapalae and sphyraena groups in Lake Chapala, (ii) estor group in Lakes Pátzcuaro and Zirahuén, and (iii) humboltianum sensu stricto group in Lake Zacapu and Lerma river system. CONCLUSIONS Overall, our study provides an atypical example where genome-wide analyses delineate fewer species than previously recognized on the basis of morphology. It also highlights the influence of the geological history of the Chapala-Lerma hydrological system in driving allopatric speciation in the humboltianum group.
Collapse
Affiliation(s)
- Victor Julio Piñeros
- Laboratorio de Ecología Molecular, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico
| | | | - Isaí Betancourt-Resendes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de Las Ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, Mexico
| | - Nancy Calderón-Cortés
- Laboratorio de Ecología Molecular, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Ricardo Betancur-R
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" Planta Baja, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
- Laboratorio Nacional de Análisis y Síntesis Ecológica Para la Conservación de Recursos Genéticos de México, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Apartado Postal 27-3 (Xangari), 58089, Michoacán, Morelia, Mexico.
| |
Collapse
|
35
|
Genetic structure of Sclerotinia sclerotiorum populations from sunflower and cabbage in West Azarbaijan province of Iran. Sci Rep 2022; 12:9263. [PMID: 35662267 PMCID: PMC9166751 DOI: 10.1038/s41598-022-13350-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/11/2022] [Indexed: 11/08/2022] Open
Abstract
Sclerotinia sclerotiorum is one of the most destructive fungal pathogens infecting a wide array of plant species worldwide. Management of this pathogen relies on the coordinated use of fungicides and resistant host cultivars with other control measures, but the effectiveness of these methods requires knowledge of the genetic variability and structure of the fungal populations. To provide insight into the genetic diversity and structure of this pathogen in West Azarbaijan province of Iran, a total of 136 isolates were collected from symptomatic sunflower and cabbage plants within fields in three regions and analysed using inter-simple sequence repeat (ISSR) markers and intergenic spacer (IGS) region of the rRNA gene sequences. A total of 83 ISSR multilocus genotypes (MLGs) were identified, some of which were shared among at least two regional or host populations but in a low frequency. High genotypic diversity, low levels of clonal fraction, and random association of ISSR loci in a region indicated a low level of clonal reproduction, and possibly a high level of sexually recombining life cycle for the pathogen in the province. Marker analyses revealed that the pathogen was spatially homogeneous among fields, and thus similar control measures, such as the choice of resistant cultivars and fungicides, may effectively manage S. sclerotiorum within the region. Four IGS haplotypes (IGS1-IGS4) were detected within populations with IGS3 being the most prevalent haplotype. The low IGS haplotype diversity, the absence of spatial structure, and shared MLGs among populations may suggest a single introduction and subsequent dispersal of S. sclerotiorum within West Azarbaijan province.
Collapse
|
36
|
Genetic identification and diversity of stocks of the African bonytongue, Heterotis niloticus (Osteoglossiformes: Arapaiminae), in Nigeria, West Africa. Sci Rep 2022; 12:8417. [PMID: 35589859 PMCID: PMC9120501 DOI: 10.1038/s41598-022-12428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Inland fisheries are an important source of protein and income for people in Africa. Their sustainable management can greatly benefit from identification of regional genetic stocks and characterization of their genetic diversity, but such information is lacking for most African freshwater fisheries. The African bonytongue, Heterotis niloticus, is an important component of inland fisheries in West Africa. Nigeria has the largest fishery for African bonytongues, representing ~ 86% of the global total. Recent declines in yields at some Nigerian locations, however, suggest current levels of exploitation may be unsustainable. Habitat degradation also may be impacting some stocks. Despite its commercial and nutritional importance, the African bonytongue has been the subject of scant genetic research to support management. We examined patterns of genetic diversity in natural populations of H. niloticus at four locations in Nigeria, including Kainji Lake, a reservoir on the Niger River in north-central Nigeria, and three southern localities (Ethiope River, Igbokoda River, and Epe Lagoon), as well fish from the Ouémé River delta near Porto Novo, Benin. Eighty-five specimens were genotyped for nine microsatellite-loci. Genetic diversity estimates were highest at Kainji Lake, and substantially lower at southern localities. High levels of genetic differentiation were detected between samples from Kainji Lake and those from southern localities. Low, yet significant FST values were observed among samples from southern Nigerian localities that were more differentiated from the sample from nearby coastal Benin. We thus recommend that African bonytongues from the five locations be considered distinct genetic stocks and managed accordingly.
Collapse
|
37
|
Neveceralova P, Carroll EL, Steel D, Vermeulen E, Elwen S, Zidek J, Stafford JK, Chivell W, Hulva P. Population Changes in a Whale Breeding Ground Revealed by Citizen Science Noninvasive Genetics. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
38
|
Contrasting genetic trajectories of endangered and expanding red fox populations in the western U.S. Heredity (Edinb) 2022; 129:123-136. [PMID: 35314789 PMCID: PMC9338314 DOI: 10.1038/s41437-022-00522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
As anthropogenic disturbances continue to drive habitat loss and range contractions, the maintenance of evolutionary processes will increasingly require targeting measures to the population level, even for common and widespread species. Doing so requires detailed knowledge of population genetic structure, both to identify populations of conservation need and value, as well as to evaluate suitability of potential donor populations. We conducted a range-wide analysis of the genetic structure of red foxes in the contiguous western U.S., including a federally endangered distinct population segment of the Sierra Nevada subspecies, with the objectives of contextualizing field observations of relative scarcity in the Pacific mountains and increasing abundance in the cold desert basins of the Intermountain West. Using 31 autosomal microsatellites, along with mitochondrial and Y-chromosome markers, we found that populations of the Pacific mountains were isolated from one another and genetically depauperate (e.g., estimated Ne range = 3–9). In contrast, red foxes in the Intermountain regions showed relatively high connectivity and genetic diversity. Although most Intermountain red foxes carried indigenous western matrilines (78%) and patrilines (85%), the presence of nonindigenous haplotypes at lower elevations indicated admixture with fur-farm foxes and possibly expanding midcontinent populations as well. Our findings suggest that some Pacific mountain populations could likely benefit from increased connectivity (i.e., genetic rescue) but that nonnative admixture makes expanding populations in the Intermountain basins a non-ideal source. However, our results also suggest contact between Pacific mountain and Intermountain basin populations is likely to increase regardless, warranting consideration of risks and benefits of proactive measures to mitigate against unwanted effects of Intermountain gene flow.
Collapse
|
39
|
A reduced SNP panel to trace gene flow across southern European wolf populations and detect hybridization with other Canis taxa. Sci Rep 2022; 12:4195. [PMID: 35264717 PMCID: PMC8907317 DOI: 10.1038/s41598-022-08132-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Intra- and inter-specific gene flow are natural evolutionary processes. However, human-induced hybridization is a global conservation concern across taxa, and the development of discriminant genetic markers to differentiate among gene flow processes is essential. Wolves (Canis lupus) are affected by hybridization, particularly in southern Europe, where ongoing recolonization of historic ranges is augmenting gene flow among divergent populations. Our aim was to provide diagnostic canid markers focused on the long-divergent Iberian, Italian and Dinaric wolf populations, based on existing genomic resources. We used 158 canid samples to select a panel of highly informative single nucleotide polymorphisms (SNPs) to (i) distinguish wolves in the three regions from domestic dogs (C. l. familiaris) and golden jackals (C. aureus), and (ii) identify their first two hybrid generations. The resulting 192 SNPs correctly identified the five canid groups, all simulated first-generation (F1) hybrids (0.482 ≤ Qi ≤ 0.512 between their respective parental groups) and all first backcross (BC1) individuals (0.723 ≤ Qi ≤ 0.827 to parental groups). An assay design and test with invasive and non-invasive canid samples performed successfully for 178 SNPs. By separating natural population admixture from inter-specific hybridization, our reduced panel can help advance evolutionary research, monitoring, and timely conservation management.
Collapse
|
40
|
Darling JD, Audley K, Cheeseman T, Goodwin B, Lyman EG, Urbán RJ. Humpback whales ( Megaptera novaeangliae) attend both Mexico and Hawaii breeding grounds in the same winter: mixing in the northeast Pacific. Biol Lett 2022; 18:20210547. [PMID: 35168377 PMCID: PMC8849110 DOI: 10.1098/rsbl.2021.0547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humpback whales that assemble on winter breeding grounds in Mexico and Hawaii have been presumed to be, at least, seasonally isolated. Recently, these assemblies were declared Distinct Population Segments under the US Endangered Species Act. We report two humpback whales attending both breeding grounds in the same season—one moving from Hawaii to Mexico and the other from Mexico to Hawaii. The first was photo-identified in Maui, Hawaii on 23 February 2006 and again, after 53 days and 4545 km, on 17 April 2006 in the Revillagigedo Archipelago, Mexico. The second was photo-identified off Guerrero, Mexico on 16 February 2018 and again, 49 days and 5944 km later, on 6 April 2018 off Maui. The 2006 whale was identified in summer off Kodiak Island, Alaska; the 2018 whale off British Columbia. These Mexico–Hawaii identifications provide definitive evidence that whales in these two winter assemblies may mix during one winter season. This, combined with other lines of evidence on Mexico–Hawaii mixing, including interchange of individuals year to year, long-term similarity of everchanging songs, one earlier same-season travel record, and detection of humpback whales mid-ocean between these locations in winter, suggests reassessment of the ‘distinctiveness' of these populations may be warranted.
Collapse
Affiliation(s)
| | | | - Ted Cheeseman
- Happywhale, Santa Cruz, CA 95060, USA.,Marine Ecology Research Centre, Southern Cross University, Lismore, Australia
| | - Beth Goodwin
- Eye of the Whale Marine Mammal Research, Kamuela, HI 96743, USA
| | - Edward G Lyman
- Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, HI 96753, USA
| | - R Jorge Urbán
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, B.C.S. 23080, México
| |
Collapse
|
41
|
Strong population genetic structure and cryptic diversity in the Florida bonneted bat (Eumops floridanus). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Snetsinger M, Row JR, Hazell ME, Plain D, Lougheed SC. Comparing the population structure of the specialist Butler’s Gartersnake (Thamnophis butleri) and the generalist Eastern Gartersnake (Thamnophis sirtalis sirtalis) in Ontario (Canada) and Michigan (USA). CAN J ZOOL 2022. [DOI: 10.1139/cjz-2020-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Species differing in life-history attributes vary in their responses to features within a shared landscape. We evaluated genetic structure of sympatric gartersnake species in southwestern Ontario (Canada) and southeastern Michigan (USA), where habitat fragmentation is high due to agriculture and urbanization. We surveyed genetic structure of a habitat specialist, Butler’s Gartersnake (Thamnophis butleri (Cope, 1889)), and a habitat generalist, Eastern Gartersnake (Thamnophis sirtalis sirtalis (Linnaeus, 1758)), using DNA microsatellites. Bayesian clustering, discriminant analysis of principal components, and pairwise population comparisons revealed genetic differentiation among three major regional clusters of Butler’s Gartersnake with evidence of further division within one. Genetic clustering of Butler’s Gartersnake suggest that inhospitable habitat limits dispersal. Eastern Gartersnakes showed less structure, with assignment tests implying a single genetic cluster. We found positive significant Mantel’s r for both species in the smallest distance class (<15 km), but significant isolation by distance for Butler’s Gartersnake only. These findings together imply that connectivity for Eastern Gartersnakes is less impacted by habitat loss and fragmentation or that we were less able to detect their effects. Our study shows the value of multispecies comparisons in studies seeking to understand the underlying causes of genetic structure in natural populations.
Collapse
Affiliation(s)
- Megan Snetsinger
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jeffrey R. Row
- Minnow Environmental Inc., 2 Lamb Street, Georgetown, ON L7G 3M9, Canada
| | - Megan E. Hazell
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Dennis Plain
- Aamjiwnaang First Nation, Band Office, 978 Tashmoo Avenue, Sarnia, ON N7T 7H5, Canada
| | | |
Collapse
|
43
|
Glück M, Geue JC, Thomassen HA. Environmental differences explain subtle yet detectable genetic structure in a widespread pollinator. BMC Ecol Evol 2022; 22:8. [PMID: 35105300 PMCID: PMC8808969 DOI: 10.1186/s12862-022-01963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. Consequently, these species might falsely be considered quasi-panmictic and hence potentially mismanaged. A species this might apply to, is the buff-tailed bumble bee (Bombus terrestris), an economically important and widespread pollinator, which is considered to be quasi-panmictic at mainland continental scales. Here we aimed to (i) quantify genetic structure in 21+ populations of the buff-tailed bumble bee, sampled throughout two Eastern European countries, and (ii) analyse the degree to which structure is explained by environmental differences, habitat permeability and geographic distance. Using 12 microsatellite loci, we characterised populations of this species with Fst analyses, complemented by discriminant analysis of principal components and Bayesian clustering approaches. We then applied generalized dissimilarity modelling to simultaneously assess the informativeness of geographic distance, habitat permeability and environmental differences among populations in explaining divergence. RESULTS Genetic structure of the buff-tailed bumble bee quantified by means of Fst was subtle and not detected by Bayesian clustering. Discriminant analysis of principal components suggested insignificant but still noticeable structure that slightly exceeded estimates obtained through Fst analyses. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed. CONCLUSIONS In contrast to previous studies reporting quasi-panmixia in continental populations of this species, we demonstrated the presence of subtle population structure related to environmental heterogeneity. Environmental data proved to be highly useful in unravelling the drivers of genetic structure in this vagile and opportunistic species. We highlight the potential of including these data to obtain a better understanding of population structure and the processes driving it in species considered to be quasi-panmictic.
Collapse
Affiliation(s)
- Marcel Glück
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany.
| | - Julia C Geue
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Henri A Thomassen
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany
| |
Collapse
|
44
|
Sønstebø JH, Trucchi E, Nordén J, Skrede I, Miettinen O, Haridas S, Pangilinan J, Grigoriev IV, Martin F, Kauserud H, Maurice S. Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Mol Ecol 2022; 31:1963-1979. [PMID: 35076968 DOI: 10.1111/mec.16369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
Genome sequencing of spatially distributed individuals sheds light on how evolution structures genetic variation. Populations of Phellopilus nigrolimitatus, a red-listed wood-inhabiting fungus associated with old-growth coniferous forests, have decreased in size over the last century due to a loss of suitable habitats. We assessed the population genetic structure and investigated local adaptation in P. nigrolimitatus, by establishing a reference genome and genotyping 327 individuals sampled from 24 locations in Northern Europe by RAD sequencing. We revealed a shallow population genetic structure, indicating large historical population sizes and high levels of gene flow. Despite this weak sub-structuring, two genetic groups were recognized; a western group distributed mostly in Norway and an eastern group covering most of Finland, Poland and Russia. This sub-structuring may reflect co-immigration with the main host, Norway spruce (Picea abies), into Northern Europe after the last ice age. We found evidence of low levels of genetic diversity in southwestern Finland, which has a long history of intensive forestry and urbanization. Numerous loci were significantly associated with one or more environmental factors, indicating adaptation to specific environments. These loci clustered into two groups with different associations with temperature and precipitation. Overall, our findings indicate that the current population genetic structure of P. nigrolimitatus results from a combination of gene flow, genetic drift and selection. The acquisition of similar knowledge especially over broad geographic scales, linking signatures of adaptive genetic variation to evolutionary processes and environmental variation, for other fungal species will undoubtedly be useful for assessment of the combined effects of habitat fragmentation and climate change on fungi strongly bound to old-growth forests.
Collapse
Affiliation(s)
- Jørn Henrik Sønstebø
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Jenni Nordén
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Otto Miettinen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014, Finland
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, INRAE GrandEst-Nancy, 54280, Champenoux, France
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| |
Collapse
|
45
|
Tvedebrink T. Review of the Forensic Applicability of Biostatistical Methods for Inferring Ancestry from Autosomal Genetic Markers. Genes (Basel) 2022; 13:genes13010141. [PMID: 35052480 PMCID: PMC8774801 DOI: 10.3390/genes13010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
The inference of ancestry has become a part of the services many forensic genetic laboratories provide. Interest in ancestry may be to provide investigative leads or identify the region of origin in cases of unidentified missing persons. There exist many biostatistical methods developed for the study of population structure in the area of population genetics. However, the challenges and questions are slightly different in the context of forensic genetics, where the origin of a specific sample is of interest compared to the understanding of population histories and genealogies. In this paper, the methodologies for modelling population admixture and inferring ancestral populations are reviewed with a focus on their strengths and weaknesses in relation to ancestry inference in the forensic context.
Collapse
Affiliation(s)
- Torben Tvedebrink
- Department of Mathematical Sciences, Aalborg University, DK-9220 Aalborg, Denmark;
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1165 Copenhagen, Denmark
| |
Collapse
|
46
|
Azzurro E, Nourigat M, Cohn F, Ben Souissi J, Bernardi G. Right out of the gate: the genomics of Lessepsian invaders in the vicinity of the Suez Canal. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractMarine organisms that enter the Mediterranean from the Red Sea via the Suez Canal are known as Lessepsian bioinvaders. In general, genetic studies of Lessepsian fishes have shown little structure between Red Sea and Mediterranean populations. Yet notable exceptions suggest the importance of life-history factors that may influence patterns of spatial genetic variation. In this study, by sampling two invasive fishes with different life histories (the rabbitfish Siganus rivulatus and the filefish Stephanolepis diaspros), we looked at evidence of population structure and selection at the boundary between the Red Sea and the Mediterranean (the Suez Canal), using thousands of molecular markers. Results illustrate two divergent patterns of genetic patterns, with little genetic structure in S. rivulatus and strong population structure in S. diaspros, even at such small spatial scale. We discuss differences in ecological characteristics between the two species to account for such differences. In addition, we report that in the face of both high (S. rivulatus) and low (S. diaspros) gene flow, loci under selection were uncovered, and some protein coding genes were identified as being involved with osmoregulation, which seems to be an important feature of individuals crossing the salinity-variable Suez Canal. The presence of genes under selection in populations near the Suez Canal supports the idea that selection may be active and essential for successful invasions right out of the gate.
Collapse
|
47
|
Lima-Cordón RA, Cahan SH, McCann C, Dorn PL, Justi SA, Rodas A, Monroy MC, Stevens L. Insights from a comprehensive study of Trypanosoma cruzi: A new mitochondrial clade restricted to North and Central America and genetic structure of TcI in the region. PLoS Negl Trop Dis 2021; 15:e0010043. [PMID: 34919556 PMCID: PMC8719664 DOI: 10.1371/journal.pntd.0010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/31/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
More than 100 years since the first description of Chagas Disease and with over 29,000 new cases annually due to vector transmission (in 2010), American Trypanosomiasis remains a Neglected Tropical Disease (NTD). This study presents the most comprehensive Trypanosoma cruzi sampling in terms of geographic locations and triatomine species analyzed to date and includes both nuclear and mitochondrial genomes. This addresses the gap of information from North and Central America. We incorporate new and previously published DNA sequence data from two mitochondrial genes, Cytochrome oxidase II (COII) and NADH dehydrogenase subunit 1 (ND1). These T. cruzi samples were collected over a broad geographic range including 111 parasite DNA samples extracted from triatomines newly collected across North and Central America, all of which were infected with T. cruzi in their natural environment. In addition, we present parasite reduced representation (Restriction site Associated DNA markers, RAD-tag) genomic nuclear data combined with the mitochondrial gene sequences for a subset of the triatomines (27 specimens) collected from Guatemala and El Salvador. Our mitochondrial phylogenetic reconstruction revealed two of the major mitochondrial lineages circulating across North and Central America, as well as the first ever mitochondrial data for TcBat from a triatomine collected in Central America. Our data also show that within mtTcIII, North and Central America represent an independent, distinct clade from South America, named here as mtTcIIINA-CA, geographically restricted to North and Central America. Lastly, the most frequent lineage detected across North and Central America, mtTcI, was also an independent, distinct clade from South America, noted as mtTcINA-CA. Furthermore, nuclear genome data based on Single Nucleotide Polymorphism (SNP) showed genetic structure of lineage TcI from specimens collected in Guatemala and El Salvador supporting the hypothesis that genetic diversity at a local scale has a geographical component. Our multiscale analysis contributes to the understanding of the independent and distinct evolution of T. cruzi lineages in North and Central America regions. Neglected Tropical Diseases (NTDs) represents socioeconomic burden in most countries of Latin America. Chagas disease, a NTD, is caused by the parasite Trypanosoma cruzi. The disease can be mild, causing swelling and fever, or it can be long-lasting. Left untreated, it often causes heart failure. This study focused on T. cruzi lineages, emphasizing the gap of information from Central America and complementing what is known in North America. Our diverse collection of kissing bugs from North America (United States and Mexico) and Central America identified two of the major mitochondrial lineages circulating in these regions, both representing distinct clades within the already established three clusters of the T. cruzi parasite (mtTcI-mtTcIII): mtTcINA-CA and mtTcIIINA-CA. At a local scale, population genetic structure of T. cruzi revealed that genetic diversity has a notable geographic component. The important insights into the genetic and evolutionary diversity of T. cruzi in North and Central America provide not only the necessity for referencing genomes to identify lineages but the basis to develop more precise and comprehensive diagnostic assays to better detect T. cruzi infections.
Collapse
Affiliation(s)
| | - Sara Helms Cahan
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Cai McCann
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Patricia L Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana, United States of America
| | - Silvia Andrade Justi
- The Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, Maryland, United States of America.,Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.,Smithsonian Institution-National Museum of Natural History, Department of Entomology, Washington, DC, United States of America
| | - Antonieta Rodas
- The Applied Entomology and Parasitology Laboratory, Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - María Carlota Monroy
- The Applied Entomology and Parasitology Laboratory, Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala City, Guatemala
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
48
|
Šnjegota D, Stronen AV, Boljte B, Ćirović D, Djan M, Huber D, Jelenčič M, Konec M, Kusak J, Skrbinšek T. Population genetic structure of wolves in the northwestern Dinaric-Balkan region. Ecol Evol 2021; 11:18492-18504. [PMID: 35003687 PMCID: PMC8717286 DOI: 10.1002/ece3.8444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
The Balkan Peninsula and the Dinaric Mountains possess extraordinary biodiversity and support one of the largest and most diverse wolf (Canis lupus) populations in Europe. Results obtained with diverse genetic markers show west-east substructure, also seen in various other species, despite the absence of obvious barriers to movement. However, the spatial extent of the genetic clusters remains unresolved, and our aim was to combine fine-scale sampling with population and spatial genetic analyses to improve resolution of wolf genetic clusters. We analyzed 16 autosomal microsatellites from 255 wolves sampled in Slovenia, Croatia, Bosnia and Herzegovina (BIH), and Serbia and documented three genetic clusters. These comprised (1) Slovenia and the regions of Gorski kotar and Lika in Croatia, (2) the region of Dalmatia in southern Croatia and BIH, and (3) Serbia. When we mapped the clusters geographically, we observed west-east genetic structure across the study area, together with some specific structure in BIH-Dalmatia. We observed that cluster 1 had a smaller effective population size, consistent with earlier reports of population recovery since the 1980s. Our results provide foundation for future genomic studies that would further resolve the observed west-east population structure and its evolutionary history in wolves and other taxa in the region and identify focal areas for habitat conservation. They also have immediate importance for conservation planning for the wolves in one of the most important parts of the species' European range.
Collapse
Affiliation(s)
- Dragana Šnjegota
- Department of Biology and EcologyFaculty of Natural Sciences and MathematicsUniversity of Banja LukaBanja LukaBosnia and Herzegovina
| | - Astrid Vik Stronen
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Barbara Boljte
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Duško Ćirović
- Faculty of BiologyUniversity of BelgradeBelgradeSerbia
| | - Mihajla Djan
- Department of Biology and EcologyFaculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Djuro Huber
- Department of BiologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Maja Jelenčič
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Marjeta Konec
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Josip Kusak
- Department of BiologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Tomaž Skrbinšek
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
49
|
Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs. Sci Rep 2021; 11:23119. [PMID: 34848793 PMCID: PMC8632914 DOI: 10.1038/s41598-021-02545-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022] Open
Abstract
We investigated the genetic structure of three phenotypically distinct ecotypic groups of Norway spruce (Picea abies) belonging to three elevational classes; namely, low- (acuminata), medium- (europaea), and high-elevation (obovata) form, each represented by 150 trees. After rigorous filtering, we used 1916 Genotyping-by-Sequencing generated SNPs for analysis. Outputs from three multivariate analysis methods (Bayesian clustering algorithm implemented in STRUCTURE, Principal Component Analysis, and the Discriminant Analysis of Principal Components) indicated the presence of a distinct genetic cluster representing the high-elevation ecotypic group. Our findings bring a vital message to forestry practice affirming that artificial transfer of forest reproductive material, especially for stands under harsh climate conditions, should be considered with caution.
Collapse
|
50
|
Qin X, Lock TR, Kallenbach RL. DA: Population structure inference using discriminant analysis. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinghu Qin
- Beijing Institute of Genomics Chinese Academy of Sciences Beijing China
| | - Thomas Ryan Lock
- Division of Plant Sciences University of Missouri Columbia MO USA
| | | |
Collapse
|