1
|
Jang H, Cho A, Kim HJ, Kim H, Jeong SH, Huh SM, Yu HJ, Kim DK, Kim JH, Mun JH. Chromosome-level assemblies of the endemic Korean species Abeliophyllum distichum and Forsythia ovata. Sci Data 2024; 11:1372. [PMID: 39695258 DOI: 10.1038/s41597-024-04252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Abeliophyllum distichum and Forsythia ovata are closely related species endemic to Korea and are highly valued as ornamental shrubs in the Oleaceae family. A combination of PacBio and Illumina sequencing with Hi-C scaffolding technologies was employed to develop chromosome-level genome assemblies of these species. The assembled genome sizes are 795.72 Mb for A. distichum and 1,108.53 Mb for F. ovata. The assemblies exhibit scaffold N50 lengths of 53.12 Mb and 68.97 Mb, with minimal gaps measuring 323.40 kb and 149.00 kb, and 97.71% and 98.82% BUSCO scores for Embryophyta single-copy orthologs, respectively, indicating high contiguity and completeness. The genomes contain 485.24 Mb and 691.68 Mb of repetitive sequences, 4,926 and 7,175 full-length long terminal repeat retrotransposons, and 49,414 and 57,587 protein-coding genes, respectively. The 14 pseudochromosomes encompass 93.80% of the A. distichum genome and 89.11% of the F. ovata genome, thereby demonstrating one-to-one chromosome-level collinearity. These high-quality genome assemblies serve as invaluable resources for genetic and breeding studies, facilitating a deeper understanding of the evolutionary history of these distinctive species.
Collapse
Affiliation(s)
- Hoyeol Jang
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Ara Cho
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, 11186, Korea
| | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, 11186, Korea
| | - Haneul Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Seung-Hoon Jeong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Sun Mi Huh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Hee-Ju Yu
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Dong-Kab Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, 11186, Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Korea.
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea.
| |
Collapse
|
2
|
Du Z, Jin Y, Yang X, Xia K, Chen Z. Multi-omics analyses and botanical perfumer hypothesis provide insights into the formation and maintenance of aromatic characteristics of Dendrobium loddigesii flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108891. [PMID: 38959568 DOI: 10.1016/j.plaphy.2024.108891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/28/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Dendrobium loddigesii, a member of the Orchidaceae family, is a valuable horticultural crop known for its aromatic qualities. However, the mechanisms responsible for the development of its aromatic characteristics remain poorly understood. To elucidate these underlying mechanisms, we assembled the first chromosome-level reference genome of D. loddigesii using PacBio HiFi-reads, Illumina short-reads, and Hi-C data. The assembly comprises 19 pseudochromosomes with N50 contig and N50 scaffold sizes of 55.15 and 89.94 Mb, respectively, estimating the genome size to be 1.68 Gb, larger than that of other sequenced Dendrobium species. During the flowering stages, we conducted a comprehensive analysis combining volatilomics and transcriptomics to understand the characteristics and biosynthetic mechanisms pathways of the floral scent. Our findings emphasize the significant contribution of aromatic terpenoids, especially monoterpenoids, in defining the floral aroma. Furthermore, we identified two crucial terpene synthase (TPS) genes that play a key role in maintaining the aroma during flowering. Through the integration volatilomics data with catalytic assays of DlTPSbs proteins, we identified specific compounds responsible for the aromatic characteristics of D. loddigesii. This integrated analysis of the genome, transcriptome, and volatilome, offers valuable insights into the development and preservation of D. loddigesii's aromatic characteristics, setting the stage for further exploration of the botanical perfumer hypothesis.
Collapse
Affiliation(s)
- Zhihui Du
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Yuxuan Jin
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Xiyu Yang
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Kuaifei Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Zhilin Chen
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China.
| |
Collapse
|
3
|
Chen G, Shao T, Zhou Y, Chen F, Zhang D, Gu H, Yue Y, Wang L, Yang X. Analysis of the Aging-Related AP2/ERF Transcription Factor Gene Family in Osmanthus fragrans. Int J Mol Sci 2024; 25:8025. [PMID: 39125596 PMCID: PMC11312093 DOI: 10.3390/ijms25158025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Ethylene-Responsive Factor (ERF) is a key element found in the middle and lower reaches of the ethylene signal transduction pathway. It is widely distributed in plants and plays important roles in plant growth and development, hormone signal transduction, and various stress processes. Although there is research on AP/ERF family members, research on AP2/ERF in Osmanthus fragrans is lacking. Thus, in this work, AP2/ERF in O. fragrans was extensively and comprehensively analyzed. A total of 298 genes encoding OfAP2/ERF proteins with complete AP2/ERF domains were identified. Based on the number of AP2/ERF domains and the similarity among amino acid sequences between AP2/ERF proteins from A. thaliana and O. fragrans, the 298 putative OfAP2/ERF proteins were divided into four different families, including AP2 (45), ERF (247), RAV (5), and SOLOIST (1). In addition, the exon-intron structure characteristics of these putative OfAP2/ERF genes and the conserved protein motifs of their encoded OfAP2/ERF proteins were analyzed, and the results were found to be consistent with those of the population classification. A tissue-specific analysis showed the spatiotemporal expression of OfAP2/ERF in the stems and leaves of O. fragrans at different developmental stages. Specifically, 21 genes were not expressed in any tissue, while high levels of expression were found for 25 OfAP2/ERF genes in several tissues, 60 genes in the roots, 34 genes in the stems, 37 genes in young leaves, 34 genes in old leaves, 32 genes in the early flowering stage, 18 genes in the full flowering stage, and 37 genes in the late flowering stage. Quantitative RT-PCR experiments showed that OfERF110a and OfERF110b had the highest expression levels at the full-bloom stage (S4), and this gradually decreased with the senescence of petals. The expression of OfERF119c decreased first and then increased, while the expression levels of OfERF4c and OfERF5a increased constantly. This indicated that these genes may play roles in flower senescence and the ethylene response. In the subsequent subcellular localization experiments, we found that ERF1-4 was localized in the nucleus, indicating that it was expressed in the nucleus. In yeast self-activation experiments, we found that OfERF112, OfERF228, and OfERF23 had self-activation activity. Overall, these results suggest that OfERFs may have the function of regulating petal senescence in O. fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiulian Yang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (G.C.); (T.S.); (Y.Z.); (F.C.); (D.Z.); (H.G.); (Y.Y.); (L.W.)
| |
Collapse
|
4
|
Shi T, Zhou L, Ye Y, Yang X, Wang L, Yue Y. Characterization of YABBY transcription factors in Osmanthus fragrans and functional analysis of OfYABBY12 in floral scent formation and leaf morphology. BMC PLANT BIOLOGY 2024; 24:589. [PMID: 38902627 PMCID: PMC11191298 DOI: 10.1186/s12870-024-05047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The plant-specific YABBY transcription factor family plays important roles in plant growth and development, particularly leaf growth, floral organ formation, and secondary metabolite synthesis. RESULTS Here, we identified a total of 13 OfYABBY genes from the Osmanthus fragrans genome. These 13 OfYABBY genes were divided into five subfamilies through phylogenetic analysis, and genes in the same subfamily showed similar gene structures and conserved protein motifs. Gene duplication promoted the expansion of the OfYABBY family in O. fragrans. Tissue-specific expression analysis showed that the OfYABBY family was mainly expressed in O. fragrans leaves and floral organs. To better understand the role of OfYABBY genes in plant growth and development, OfYABBY12 was selected for heterologous stable overexpression in tobacco, and OfYABBY12-overexpressing tobacco leaves released significantly fewer volatile organic compounds than wild-type tobacco leaves. Overexpression of OfYABBY12 led to the downregulation of NtCCD1/4 and decreased β-ionone biosynthesis. Correspondingly, a dual-luciferase assay showed that OfYABBY12 negatively regulated the expression of OfCCD4, which promotes β-ionone synthesis. Furthermore, tobacco leaves overexpressing OfYABBY12 were curled and wrinkled and had significantly reduced leaf thickness and leaf inclusions and significantly extended flower pistils (styles). CONCLUSION Overall, the results suggest that the OfYABBY gene family may influence the biosynthesis of the floral scent (especially β-ionone) in O. fragrans and may regulate leaf morphogenesis and lateral organs.
Collapse
Affiliation(s)
- Tingting Shi
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Ling Zhou
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunfang Ye
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiulian Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| | - Lianggui Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yuanzheng Yue
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Zhong S, Zhu H, Li W, Wu D, Miao Y, Dong B, Wang Y, Xiao Z, Fang Q, Deng J, Zhao H. DNA methylome analysis reveals novel insights into active hypomethylated regulatory mechanisms of temperature-dependent flower opening in Osmanthus fragrans. HORTICULTURE RESEARCH 2024; 11:uhae010. [PMID: 38464472 PMCID: PMC10923647 DOI: 10.1093/hr/uhae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/01/2024] [Indexed: 03/12/2024]
Abstract
Short-term ambient low temperature (ALT) stimulation is necessary for Osmanthus fragrans to facilitate continued flower opening after floral bud development reaches maturity. DNA methylation, a vital epigenetic modification, regulates various biological processes in response to temperature fluctuations. However, its role in temperature-driven flower opening remains elusive. In this study, we identified the pivotal timeframe during which O. fragrans promptly detected temperature cues. Using whole-genome bisulfite sequencing, we explored global DNA hypomethylation during this phase, with the most significant changes occurring in CHH sequence contexts. Auxin transport inhibitor (TIBA) application revealed that ALT-induced endogenous auxin accumulation promoted peduncle elongation. In our mRNA-seq analysis, we discovered that the differentially expressed genes (DEGs) with hypo-differentially methylated regions (hypo-DMRs) were mainly enriched in auxin and temperature response, RNA processing, and carbohydrate and lipid metabolism. Transcripts of three DNA demethylase genes (OfROS1a, OfDML3, OfDME) showed upregulation. Furthermore, all DNA methylase genes, except OfCMT2b, also displayed increased expression, specifically with two of them, OfCMT3a and OfCMT1, being associated with hypo-DMRs. Promoter assays showed that OfROS1a, with promoters containing low-temperature- and auxin-responsive elements, were activated by ALT and exogenous IAA at low concentrations but inhibited at high concentrations. Overexpression of OfROS1 reduced endogenous auxin levels but enhanced the expression of genes related to auxin response and spliceosome in petunia. Furthermore, OfROS1 promoted sucrose synthesis in petunia corollas. Our data characterized the rapid response of active DNA hypomethylation to ALT and suggested a possible epiregulation of temperature-dependent flower opening in O. fragrans. This study revealed the pivotal role of DNA hypomethylation in O. fragrans during the ALT-responsive phase before flower opening, involving dynamic DNA demethylation, auxin signaling modulation, and a potential feedback loop between hypomethylation and methylation.
Collapse
Affiliation(s)
- Shiwei Zhong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huijun Zhu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cao L, Jiang F, Liu D, Zhang J, Yang T, Zhang J, Che D, Fan J. Genome-Wide Characterization of Differentially Expressed Scent Genes in the MEP Control Network of the Flower of Lilium 'Sorbonne'. Mol Biotechnol 2024:10.1007/s12033-024-01063-3. [PMID: 38379074 DOI: 10.1007/s12033-024-01063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Fragrance is an important feature of ornamental lilies. Components of volatile substances and important genes for monoterpene synthesis in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway were examined in this study. Twenty volatile compounds (2 in the budding stage, 3 in the initial flowering stage, 7 in the semi-flowering stage, 17 in the full-flowering stage, and 5 in withering stage) were detected in the Oriental lily 'Sorbonne' using gas chromatography-mass spectrometry. The semi- and full-flowering stages were key periods for volatile substance production and enzyme function. Sequence assembly from samples collected during all flowering stages resulted in the detection of 274,849 genes and 129,017 transcripts. RNA sequencing and heatmapping led to the detection of genes in the MEP monoterpene metabolism pathway. Through gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we extracted key genes (LiDXS2, LiLIS, and LiMYS) and transcription factors (in the bHLH, MYB, HD-ZIP, and NAC families) associated with the MEP pathway. Tissue localization revealed that LiDXS2, LiLIS, and LiMYS were expressed in Lilium 'Sorbonne' petals in the full-flowering stage. Genes regulating the 1-deoxy-D-X-lignone-5-phosphate synthase family of rate-limiting enzymes, involved in the first step of monoterpene synthesis, showed high expression in the semi- and full-flowering stages. LiDXS2 was cloned and localized in chloroplast subcells. The relative expression of terpene-related genes in the MEP and mevalonic acid pathways of wild-type and LiLIS/LiMYS transgenic Arabidopsis thaliana, and changes in chemical composition, confirmed that LiLIS/LiMYS regulates the monoterpene synthesis pathway. The results of this study provide a theoretical basis for the synthesis of lily aromatic substances and the cultivation of new garden flower varieties.
Collapse
Affiliation(s)
- Lei Cao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Dongying Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaohua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jinping Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Fleck SJ, Tomlin C, da Silva Coelho FA, Richter M, Danielson ES, Backenstose N, Krabbenhoft T, Lindqvist C, Albert VA. High quality genomes produced from single MinION flow cells clarify polyploid and demographic histories of critically endangered Fraxinus (ash) species. Commun Biol 2024; 7:54. [PMID: 38184717 PMCID: PMC10771460 DOI: 10.1038/s42003-023-05748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
With populations of threatened and endangered species declining worldwide, efforts are being made to generate high quality genomic records of these species before they are lost forever. Here, we demonstrate that data from single Oxford Nanopore Technologies (ONT) MinION flow cells can, even in the absence of highly accurate short DNA-read polishing, produce high quality de novo plant genome assemblies adequate for downstream analyses, such as synteny and ploidy evaluations, paleodemographic analyses, and phylogenomics. This study focuses on three North American ash tree species in the genus Fraxinus (Oleaceae) that were recently added to the International Union for Conservation of Nature (IUCN) Red List as critically endangered. Our results support a hexaploidy event at the base of the Oleaceae as well as a subsequent whole genome duplication shared by Syringa, Osmanthus, Olea, and Fraxinus. Finally, we demonstrate the use of ONT long-read sequencing data to reveal patterns in demographic history.
Collapse
Affiliation(s)
- Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| | - Crystal Tomlin
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | | - Nathan Backenstose
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Trevor Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
8
|
Li Y, Li X, Nie S, Zhang M, Yang Q, Xu W, Duan Y, Wang X. Reticulate evolution of the tertiary relict Osmanthus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:145-160. [PMID: 37837261 DOI: 10.1111/tpj.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
When interspecific gene flow is common, species relationships are more accurately represented by a phylogenetic network than by a bifurcating tree. This study aimed to uncover the role of introgression in the evolution of Osmanthus, the only genus of the subtribe Oleinae (Oleaceae) with its distribution center in East Asia. We built species trees, detected introgression, and constructed networks using multiple kinds of sequencing data (whole genome resequencing, transcriptome sequencing, and Sanger sequencing of nrDNA) combined with concatenation and coalescence approaches. Then, based on well-understood species relationships, historical biogeographic analyses and diversification rate estimates were employed to reveal the history of Osmanthus. Osmanthus originated in mid-Miocene Europe and dispersed to the eastern Tibetan Plateau in the late Miocene. Thereafter, it continued to spread eastwards. Phylogenetic conflict is common within the 'Core Osmanthus' clade and is seen at both early and late stages of diversification, leading to hypotheses of net-like species relationships. Incomplete lineage sorting proved ineffective in explaining phylogenetic conflicts and thus supported introgression as the main cause of conflicts. This study elucidates the diversification history of a relict genus in the subtropical regions of eastern Asia and reveals that introgression had profound effects on its evolutionary history.
Collapse
Affiliation(s)
- Yongfu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qinghua Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wenbin Xu
- Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
9
|
Li Y, Xia HX, Cushman SA, Zhao H, Guo P, Liu YP, Lin N, Shang FD. A new mechanism of flowering regulation by the competition of isoforms in Osmanthus fragrans. ANNALS OF BOTANY 2023; 132:1089-1102. [PMID: 37666004 PMCID: PMC10809039 DOI: 10.1093/aob/mcad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
The regulation of flowering time is typically governed by transcription factors or epigenetic modifications. Transcript isoforms can play important roles in flowering regulation. Recently, transcript isoforms were discovered in the key genes, OfAP1 and OfTFL1, of the flowering regulatory network in Osmanthus fragrans. OfAP1-b generates a full-length isoform of OfAP1-b1 as well as an isoform of OfAP1-b2 that lacks the C-terminal domain. Although OfAP1-b2 does not possess an activation domain, it has a complete K domain that allows it to form heterodimers. OfAP1-b2 competes with OfAP1-b1 by binding with OfAGL24 to create non-functional and functional heterodimers. As a result, OfAP1-b1 promotes flowering while OfAP1-b2 delays flowering. OfTFL1 produces two isoforms located in different areas: OfTFL1-1 in the cytoplasm and OfTFL1-2 in the nucleus. When combined with OfFD, OfTFL1-1 does not enter the nucleus to repress AP1 expression, leading to early flowering. Conversely, when combined with OfFD, OfTFL1-2 enters the nucleus to repress AP1 expression, resulting in later flowering. Tissue-specific expression and functional conservation testing of OfAP1 and OfTFL1 support the new model's effectiveness in regulating flowering. Overall, this study provides new insights into regulating flowering time by the competition of isoforms.
Collapse
Affiliation(s)
- Yong Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote 010022, China
| | - He-Xiao Xia
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Samuel A Cushman
- Northern Arizona University, School of Forestry, Flagstaff, AZ 86011-4084, USA
| | - Heng Zhao
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Guo
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan-Pei Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Nan Lin
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Fu-De Shang
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
10
|
Cai K, Zhao Q, Li H, Zhang Q, Li Y, Han R, Jiang T, Pei X, Zhang L, Zhao X. Deciphering aroma formation during flowering in nectar tree ( Tilia amurensis): insights from integrated metabolome and transcriptome analysis. FORESTRY RESEARCH 2023; 3:24. [PMID: 39526254 PMCID: PMC11524258 DOI: 10.48130/fr-2023-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2024]
Abstract
Tilia amurensis is a significant ornamental and economically-important tree species, known for its fragrant flowers, which are a source of high-quality honey production. However, the regulatory mechanisms involved in aroma formation during flower development in T. amurensis remains limited. The current study revealed the detection of plant hormones at every assessed stage of flower development. Among them, auxin and brassinosteroid contents significantly increased at stage 3, potentially regulating crucial functions during T. amurensis flower development. Moreover, the study examined the levels and change patterns of secondary metabolites and employed a combination of transcriptomics and metabolomics to comprehensively assess essential structural genes implicated in the biosynthesis pathways of terpenoid and phenylpropanoid. A comprehensive set of 89,526 differentially expressed genes (DEGs) was uncovered, including candidate structural genes ACAT, HDS, TPS, 4CL, CAD, and CCOAMT, which are specifically involved in the biosynthesis of terpenoids and phenylpropanoids. Maslinic acid, 2α,3α-dihydroxyursolic acid, and betulinic acid were accumulated in the terpenoid biosynthesis pathway. In contrast, metabolites with differential accumulation, such as phenylalanine, coniferyl alcohol, and cinnamic acid, were specifically enriched in the phenylpropanoid biosynthesis pathway. The C2H2, MYB, and NAC transcription factor families are crucially associated with the terpenoid and phenylpropanoid biosynthesis pathways. Two transcription factors, C2H2-17 and MYB-24, exhibited strong co-expression with structural genes in two networks, and were identified as central regulatory factors. These findings establish a solid groundwork for elucidating the generation of floral fragrance and provide comprehensive genetic and metabolic information for further studies on T. amurensis.
Collapse
Affiliation(s)
- Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qinhui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaona Pei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of information technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Lan Y, Zhang K, Wang L, Liang X, Liu H, Zhang X, Jiang N, Wu M, Yan H, Xiang Y. The R2R3-MYB transcription factor OfMYB21 positively regulates linalool biosynthesis in Osmanthus fragrans flowers. Int J Biol Macromol 2023; 249:126099. [PMID: 37543267 DOI: 10.1016/j.ijbiomac.2023.126099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Osmanthus fragrans is a well-known landscape ornamental tree species for its pleasing floral fragrance and abundance of flowers. Linalool, the core floral volatiles of O. fragrans, has tremendous economic value in the pharmaceuticals, cleaning products and cosmetics industries. However, the transcriptional regulatory network for the biosynthesis of linalool in O. fragrans remains unclear. Here, OfMYB21, a potential transcription factor regulating the linalool synthetase OfTPS2, was identified using RNA-seq data and qRT-PCR analysis. Yeast one-hybrid, dual-luciferase and EMSA showed that OfMYB21 directly binds to the promoter of OfTPS2 and activates its expression. Overexpression of OfMYB21 in the petals of O. fragrans led to up-regulation of OfTPS2 and increased accumulation of linalool, while silencing of OfMYB21 led to down-regulation of OfTPS2 and decreased biosynthesis of linalool. Subsequently, yeast two-hybrid, pull-down and BiFC experiments showed that OfMYB21 interacts with JA signaling factors OfJAZ2/3 and OfMYC2. Interestingly, the interaction between OfMYC2 and OfMYB21 further enhanced the transcription of OfTPS2, whereas OfJAZ3 attenuated this effect. Overall, our studies provided novel finding on the regulatory mechanisms responsible for the biosynthesis of the volatile monoterpenoid linalool in O. fragrans.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Honxia Liu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyue Zhang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Nianqin Jiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
12
|
Guo P, Huang Z, Zhao W, Lin N, Wang Y, Shang F. Mechanisms for leaf color changes in Osmanthus fragrans 'Ziyan Gongzhu' using physiology, transcriptomics and metabolomics. BMC PLANT BIOLOGY 2023; 23:453. [PMID: 37752431 PMCID: PMC10523669 DOI: 10.1186/s12870-023-04457-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Color-leaved O. fragrans is a variety of Osmanthus fragrans, which has both the fragrance of Osmanthus and the color of color-leaved plants. However, the molecular mechanism of color change of color-leaved O. fragrans is not clear. In this study, we analyzed the regulatory mechanism of four different color leaves of 'Ziyan Gongzhu' through physiological, transcriptome and metabolome levels. RESULTS Firstly, we measured the leaf pigments content and leaf chromatic parameters for correlation analysis, indicating a significant correlation between them. Overall, the content of chlorophyll a + b is low and the content of anthocyanin is high in T1 and T2 leaves, along with low expression of chlorophyll synthesis genes (HEMA, CHLG, and CAO, etc.) and high expression of anthocyanin synthesis genes (F3H, F3'H, DFR and ANS, etc.), resulting purple red and light purple in T1 and T2 leaves, respectively. It was also found that the pigment closely related to the color leaves of 'Ziyan Gongzhu' was cyanidin. The content anthocyanins, may be regulated by two putative MYB activators (OfMYB3 and OfMYB4) and two putative MYB repressors (OfMYB1 and OfMYB2). In contrast, the content of chlorophyll a + b is high and the content of anthocyanin is low in T3 and T4 leaves, along with high expression of chlorophyll synthesis genes and low expression of anthocyanin synthesis genes, resulting yellow green and dark green in T3 and T4 leaves, respectively. And abnormal chloroplast development affects chlorophyll content in T1, T2, and T3 leaves. Although the content of carotenoids first dropped in T2 leaves, it then rapidly accumulated in T4 leaves, in sync with the increase in the expression of genes related to carotenoid biosynthesis (ZDS, LHYB, and ZEP, for example). Analysis of photosynthetic, carbohydrate and hormone-related differentially abundant metabolites (DAMs) and DEGs found that they may participate in the regulation of leaf color change of 'Ziyan Gongzhu' by affecting pigment synthesis. CONCLUSION Our results pave the way for a comprehensive knowledge of the regulatory processes governing leaf color in 'Ziyan Gongzhu' and identify possible genes for application regarding molecular colored-leaf cultivar breeding.
Collapse
Affiliation(s)
- Peng Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Ziqi Huang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Wei Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Nan Lin
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China
| | - Yihan Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China.
| | - Fude Shang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
13
|
Ding H, Yang Z, Zai Z, Feng K, Wang L, Yue Y, Yang X. Genome-Wide Analysis of ZAT Gene Family in Osmanthus fragrans and the Function Exploration of OfZAT35 in Cold Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2346. [PMID: 37375971 PMCID: PMC10305554 DOI: 10.3390/plants12122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Osmanthus fragrans is a popular ornamental and odorant plant with high commercial value, but its cultivation and exploitation are limited by low temperature. The ZAT (zinc finger of Arabidopsis thaliana) genes as a subclass of the C2H2-type zinc finger proteins (C2H2-ZFP) family play essential roles in various abiotic stresses. However, their roles in cold stress response in O. fragrans remain unclear. This study identified 38 OfZATs, which could be divided into 5 subgroups based on the phylogenetic tree, with OfZATs in the same subgroup harboring similar gene structures and motif patterns. In addition, 49 segmental and 5 tandem duplication events were detected among OfZAT genes, while some OfZAT genes exhibited specific expression patterns in different tissues. Furthermore, two OfZATs were induced in salt stress and eight OfZATs responded to cold stress. Interestingly, OfZAT35 showed a continuously increasing expression trend under cold stress, while its protein showed nucleus localization with no transcriptional activation activity. Transiently transformed tobacco overexpressing OfZAT35 exhibited a significantly higher relative electrolyte leakage (REL) level and increased activities of superoxide dismutase (SOD), peroxidase (POD), and Ascorbate peroxidase (APX), while there was significantly decreased activity of catalase (CAT). Moreover, CAT, DREB3, and LEA5, which are associated with cold stress, were dramatically decreased after cold treatment in transiently transformed tobacco, suggesting that overexpression of OfZAT35 negatively regulated cold stress. This study provides a basis for exploring the roles of ZAT genes and contributes to uncovering the mechanism of ZAT-mediated cold stress response in O. fragrans.
Collapse
Affiliation(s)
- Huifen Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhandong Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouying Zai
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Keyi Feng
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Pirker T, Pferschy-Wenzig EM, Bampali E, Bochkov V, Bauer R. Glycolipid-enriched fraction of Osmanthus fragrans inhibits LPS-induced expression of inflammatory genes, COX-2, E-selectin, and Interleukin-8. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116328. [PMID: 36870464 DOI: 10.1016/j.jep.2023.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osmanthus fragrans Lour. is a small ornamental tree native to the Southeastern parts of China. It is mainly cultivated because of its characteristic fragrance, and used in the food and perfume industry. Besides, its flowers are used in traditional Chinese medicine to treat a variety of diseases including those related to inflammation. AIM OF THE STUDY The aim of the study was to investigate in more detail the anti-inflammatory properties of O. fragrans flowers, and to characterize their active principles and mechanisms of action. MATERIALS AND METHODS O. fragrans flowers were successively extracted with n-hexane, dichloromethane and methanol. The extracts were further fractionated by chromatographic separation. COX-2 mRNA expression in PMA-differentiated, LPS-stimulated THP-1 cells was used as lead assay for activity-guided fractionation. The most potent fraction was chemically analyzed by LC-HRMS. The pharmacological activity was also evaluated in other inflammation-related in-vitro models, such as analysis of IL-8 secretion and E-selectin expression in HUVECtert cells and selective inhibition of COX-isoenzymes. RESULTS n-Hexane and dichloromethane extracts of O. fragrans flowers significantly inhibited COX-2 (PTGS2) mRNA expression. Additionally, both extracts inhibited COX-2 enzyme activity, whereas COX-1 enzyme activity was affected to a significantly lower extent. Fractionation of the extracts led to a highly active, glycolipid-containing fraction. In total, 10 glycolipids were tentatively annotated by LC-HRMS. This fraction also inhibited LPS-induced COX-2 mRNA expression, IL-8 secretion and E-selectin expression. The effects were limited to LPS-induced inflammation and not observed when inflammatory genes were induced by TNF-α, IL-1β or FSL-1. Since all these inducers of inflammation act via different receptors, it is likely that the fraction interferes with the binding of LPS to the TLR4-receptor, which mediates pro-inflammatory effects of LPS. CONCLUSION Taken together, the results demonstrate the anti-inflammatory potential of O. fragrans flower extracts in general, and of the glycolipid-enriched fraction in particular. The effects of glycolipid-enriched fraction are potentially mediated via the inhibition of the TLR4 receptor complex.
Collapse
Affiliation(s)
- Teresa Pirker
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Beethovenstraße 8, University of Graz, Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Beethovenstraße 8, University of Graz, Graz, Austria
| | - Evangelia Bampali
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Beethovenstraße 8, University of Graz, Graz, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Humboldtstraße 46/III, University of Graz, Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Beethovenstraße 8, University of Graz, Graz, Austria.
| |
Collapse
|
15
|
Yang J, Gu T, Lu Y, Xu Y, Gan RY, Ng SB, Sun Q, Peng Y. Edible Osmanthus fragrans flowers: aroma and functional components, beneficial functions, and applications. Crit Rev Food Sci Nutr 2023; 64:10055-10068. [PMID: 37287270 DOI: 10.1080/10408398.2023.2220130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osmanthus fragrans (O. fragrans) has been cultivated in China for over 2,500 years as a traditional fragrant plant. Recently, O. fragrans has drawn increasing attention due to its unique aroma and potential health benefits. In this review, the aroma and functional components of O. fragrans are summarized, and their biosynthetic mechanism is discussed. The beneficial functions and related molecular mechanism of O. fragrans extract are then highlighted. Finally, potential applications of O. fragrans are summarized, and future perspectives are proposed and discussed. According to the current research, O. fragrans extracts and components have great potential to be developed into value-added functional ingredients with preventive effects on certain chronic diseases. However, it is crucial to develop efficient, large-scale, and commercially viable extraction methods to obtain the bioactive components from O. fragrans. Furthermore, more clinical studies are highly needed to explore the beneficial functions of O. fragrans and guide its development into functional food products.
Collapse
Affiliation(s)
- Jiani Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | | | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
16
|
Chen G, Mostafa S, Lu Z, Du R, Cui J, Wang Y, Liao Q, Lu J, Mao X, Chang B, Gan Q, Wang L, Jia Z, Yang X, Zhu Y, Yan J, Jin B. The Jasmine (Jasminum sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00171-1. [PMID: 36587654 PMCID: PMC10372924 DOI: 10.1016/j.gpb.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Jasminum sambac (jasmine flower), a world-renowned plant appreciated for its exceptional flower fragrance, is of cultural and economic importance. However, the genetic basis of its fragrance is largely unknown. Here, we present the first de novo genome of J. sambac with 550.12 Mb (scaffold N50 = 40.10 Mb) assembled into 13 pseudochromosomes. Terpene synthase genes associated with flower fragrance are significantly amplified in the form of gene clusters through tandem duplications in the genome. Gene clusters within the salicylic acid/benzoic acid/theobromine (SABATH) and BAHD superfamilies were identified as related to the biosynthesis of phenylpropanoid/benzenoid compounds. Several key genes involved in jasmonate biosynthesis were duplicated, causing increased copy numbers. In addition, multi-omics analyses identified various aromatic compounds and many genes involved in fragrance biosynthesis pathways. Furthermore, the roles of JsTPS3 in β-ocimene biosynthesis, as well as JsAOC1 and JsAOS in jasmonic acid biosynthesis, were functionally validated. The genome assembled in this study for J. sambac offers a basic genetic resource for studying floral scent and jasmonate biosynthesis and provides a foundation for functional genomic research and variety improvements in Jasminum.
Collapse
Affiliation(s)
- Gang Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qinggang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jinkai Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Mao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bang Chang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhichao Jia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiulian Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
| | - Yingfang Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Int J Mol Sci 2022; 23:ijms232415932. [PMID: 36555572 PMCID: PMC9781956 DOI: 10.3390/ijms232415932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.
Collapse
|
18
|
Comparative Transcriptome Analysis of CCCH Family in Roles of Flower Opening and Abiotic Stress in Osmanthus fragrans. Int J Mol Sci 2022; 23:ijms232315363. [PMID: 36499688 PMCID: PMC9735588 DOI: 10.3390/ijms232315363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
CCCH is a zinc finger family with a typical CCCH-type motif which performs a variety of roles in plant growth and development and responses to environmental stressors. However, the information about this family has not been reported for Osmanthus fragrans. In this study, a total of 66 CCCH predicted genes were identified from the O. fragrans genome, the majority of which had multiple CCCH motifs. The 66 OfCCCHs were found to be unevenly distributed on 21 chromosomes and were clustered into nine groups based on their phylogenetic analysis. In each group, the gene structure and domain makeup were comparatively conserved. The expression profiles of the OfCCCH genes were examined in various tissues, the flower-opening processes, and under various abiotic stresses using transcriptome sequencing and qRT-PCR (quantitative real-time PCR). The results demonstrated the widespread expression of OfCCCHs in various tissues, the differential expression of 22 OfCCCHs during flower-opening stages, and the identification of 4, 5, and 13 OfCCCHs after ABA, salt, and drought stress treatment, respectively. Furthermore, characterization of the representative OfCCCHs (OfCCCH8, 23, 27, and 36) revealed that they were all localized in the nucleus and that the majority of them had transcriptional activation in the yeast system. Our research offers the first thorough examination of the OfCCCH family and lays the groundwork for future investigations regarding the functions of CCCH genes in O. fragrans.
Collapse
|
19
|
Li X, Cheng X, Yang J, Wang X, Lü X. Unraveling the difference in physicochemical properties, sensory, and volatile profiles of dry chili sauce and traditional fresh dry chili sauce fermented by Lactobacillus plantarum PC8 using electronic nose and HS-SPME-GC-MS. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Qi X, Wang H, Chen S, Feng J, Chen H, Qin Z, Blilou I, Deng Y. The genome of single-petal jasmine ( Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1045194. [PMID: 36340389 PMCID: PMC9627619 DOI: 10.3389/fpls.2022.1045194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Jasmine [Jasminum sambac (L.) Aiton] is a commercially important cultivated plant species known for its fragrant flowers used in the perfume industry, medicine and cosmetics. In the present study, we obtained a draft genome for the J. sambac cultivar 'Danbanmoli' (JSDB, a single-petal phenotype). We showed that the final genome of J. sambac was 520.80 Mb in size (contig N50 = 145.43 kb; scaffold N50 = 145.53 kb) and comprised 35,363 genes. Our analyses revealed that the J. sambac genome has undergone only an ancient whole-genome duplication (WGD) event. We estimated that the lineage that has given rise to J. sambac diverged from the lineage leading to Osmanthus fragrans and Olea europaea approximately 31.1 million years ago (Mya). On the basis of a combination of genomic and transcriptomic analyses, we identified 92 transcription factors (TFs) and 206 genes related to heat stress response. Base on a combination of genomic, transcriptomic and metabolomic analyses, a range of aroma compounds and genes involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways were identified. In the newly assembled J. sambac genome, we identified a total of 122 MYB, 122 bHLH and 69 WRKY genes. Our assembled J. sambac JSDB genome provides fundamental knowledge to study the molecular mechanism of heat stress tolerance, and improve jasmine flowers and dissect its fragrance.
Collapse
Affiliation(s)
- Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huadi Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ziyi Qin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ikram Blilou
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Insights into the Cytochrome P450 Monooxygenase Superfamily in Osmanthus fragrans and the Role of OfCYP142 in Linalool Synthesis. Int J Mol Sci 2022; 23:ijms232012150. [PMID: 36293004 PMCID: PMC9602793 DOI: 10.3390/ijms232012150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osmanthus fragrans flowers have long been used as raw materials in food, tea, beverage, and perfume industries due to their attractive and strong fragrance. The P450 superfamily proteins have been reported to widely participate in the synthesis of plant floral volatile organic compounds (VOCs). To investigate the potential functions of P450 superfamily proteins in the fragrance synthesis of O. fragrans, we investigated the P450 superfamily genome wide. A total of 276 P450 genes were identified belonging to 40 families. The RNA-seq data suggested that many OfCYP genes were preferentially expressed in the flower or other organs, and some were also induced by multiple abiotic stresses. The expression patterns of seven flower-preferentially expressed OfCYPs during the five different flower aroma content stages were further explored using quantitative real-time PCR, showing that the CYP94C subfamily member OfCYP142 had the highest positive correlation with linalool synthesis gene OfTPS2. The transient expression of OfCYP142 in O. fragrans petals suggested that OfCYP142 can increase the content of linalool, an important VOC of the O. fragrans floral aroma, and a similar result was also obtained in flowers of OfCYP142 transgenic tobacco. Combined with RNA-seq data of the transiently transformed O. fragrans petals, we found that the biosynthesis pathway of secondary metabolites was significantly enriched, and many 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes were also upregulated. This evidence indicated that the OfCYP proteins may play critical roles in the flower development and abiotic response of O. fragrans, and that OfCYP142 can participate in linalool synthesis. This study provides valuable information about the functions of P450 genes and a valuable guide for studying further functions of OfCYPs in promoting fragrance biosynthesis of ornamental plants.
Collapse
|
22
|
Duan Y, Yan J, Zhu Y, Zhang C, Tao X, Ji H, Zhang M, Wang X, Wang L. Limited accumulation of high-frequency somatic mutations in a 1700-year-old Osmanthus fragrans tree. TREE PHYSIOLOGY 2022; 42:2040-2049. [PMID: 35640149 DOI: 10.1093/treephys/tpac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Lifespan varies greatly between and within species. Mutation accumulation is considered an important factor explaining this life-history trait. However, direct assessment of somatic mutations in long-lived species is still rare. In this study, we sequenced a 1700-year-old sweet olive tree and analysed the high-frequency somatic mutations accumulated in its six primary branches. We found the lowest per-year mutation accumulation rate in this oldest tree among those studied via the whole-genome sequencing approach. Investigation of mutation profiles suggests that this low rate of high-frequency mutation was unlikely to result from strong purifying selection. More intriguingly, on a per-branching scale, the high-frequency mutation accumulation rate was similar among the long-lived individuals such as oak, wild peach and sweet olive investigated here. We therefore suggest the possibility that the accumulation of high-frequency somatic mutations in very long-lived trees might have an upper boundary due to both the possible limited number of stem cell divisions and the early segregation of the stem cell lineage.
Collapse
Affiliation(s)
- Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Jiping Yan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Yue Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Cheng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Xiuhua Tao
- Vegetable and Flowers Research Institute, Jiangxi Academy of Agricultural Sciences, 1738 Liantang Middle Blvd, Nanchang 330200, China
| | - Hongli Ji
- Vegetable and Flowers Research Institute, Jiangxi Academy of Agricultural Sciences, 1738 Liantang Middle Blvd, Nanchang 330200, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Qixia District. Nanjing 210023, China
| |
Collapse
|
23
|
Zhao XL, Yang YL, Xia HX, Li Y. Genome-wide analysis of the carotenoid cleavage dioxygenases gene family in Forsythia suspensa: Expression profile and cold and drought stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:998911. [PMID: 36204048 PMCID: PMC9531035 DOI: 10.3389/fpls.2022.998911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/12/2023]
Abstract
Forsythia suspensa is a famous ornamental and medicinal plant in Oleaceae. CCD family is involved in the synthesis of pigments, volatiles, strigolactones, and abscisic acid (ABA) in plants. In this study, the CCD family in F. suspensa was analyzed at the genome level. A total of 16 members of the CCD family were identified, which included 11 members of the carotenoid cleavage dioxygenases (CCD) subfamily and 5 members of the 9-cis epoxycarotenoid dioxygenases (NCED) subfamily. The expression analysis of different tissues demonstrated that three FsCCD1 genes might be involved in the synthesis of pigments and volatiles in flowers and fruits. Three CCD4 genes were effectively expressed in flowers, while only FsCCD4-3 was effectively expressed in fruits. Comparison of CCD4 between Osmanthus fragrans and F. suspensa showed that the structure of FsCCD4-1 is was comparable that of OfCCD4-1 protein, indicating that the protein might be performing, especially in catalyzing the synthesis of β-ionone. However, further comparison of the upstream promoter regions showed that the proteins have major differences in the composition of cis-elements, which might be responsible for differences in β-ionone content. On the other hand, four NCED genes were significantly up-regulated under cold stress while two were up-regulated in drought stress. The data showed that these genes might be involved in the synthesis of ABA. Taken together, our data improves understanding of the CCD family and provides key candidate genes associated with cold and drought stresses in F. suspensa.
Collapse
Affiliation(s)
- Xiao-Liang Zhao
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ya-Lin Yang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - He-Xiao Xia
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yong Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
24
|
Zhang C, Zhang K, Chai Z, Song Y, Wang X, Duan Y, Zhang M. Identification of miRNAs and Target Genes at Key Stages of Sexual Differentiation in Androdioecious Osmanthus fragrans. Int J Mol Sci 2022; 23:ijms231810386. [PMID: 36142310 PMCID: PMC9499476 DOI: 10.3390/ijms231810386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Androdioecy is the crucial transition state in the evolutionary direction of hermaphroditism to dioecy, however, the molecular mechanisms underlying the formation of this sex system remain unclear. While popular in China for its ornamental and cultural value, Osmanthus fragrans has an extremely rare androdioecy breeding system, meaning that there are both male and hermaphroditic plants in a population. To unravel the mechanisms underlying the formation of androdioecy, we performed small RNA sequencing studies on male and hermaphroditic O. fragrans. A total of 334 miRNAs were identified, of which 59 were differentially expressed. Functional categorization revealed that the target genes of differentially expressed miRNAs were mainly involved in the biological processes of reproductive development and the hormone signal transduction pathway. We speculated that the miRNA160, miRNA167, miRNA393 and miRNA396 families may influence the sex differentiation in O. fragrans. Overall, our study is the first exploration of miRNAs in the growth and development process of O. fragrans, and is also the first study of androdioecious plants from the miRNA sequencing perspective. The analysis of miRNAs and target genes that may be involved in the sex differentiation process lay a foundation for the ultimate discovery of the androdioecious molecular mechanism in O. fragrans.
Collapse
|
25
|
Chen D, Yuan X, Zheng X, Fang J, Lin G, Li R, Chen J, He W, Huang Z, Fan W, Liang L, Lin C, Zhu J, Chen Y, Xue T. Multi-omics analyses provide insight into the biosynthesis pathways of fucoxanthin in Isochrysis galbana. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1138-1153. [PMID: 35970320 DOI: 10.1016/j.gpb.2022.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022]
Abstract
Isochrysis galbana is considered an ideal bait for functional foods and nutraceuticals of humans because of its high fucoxanthin (Fx) content. However, multi-omics analysis of the regulation networks for Fx biosynthesis in I. galbana has not been reported. In this study, we report a high-quality genome sequence of I. galbana LG007, which has a 92.73 Mb genome size, with a contig N50 of 6.99 Mb and 14,900 protein-coding genes. Phylogenomic inferences confirmed the monophyly of Haptophyta, with I. galbana sister to Emiliania huxleyi and Chrysochromulina tobinii. Evolutionary analysis revealed an estimated divergence time between I. galbana and E. huxleyi of ∼ 133 million years ago (Mya). Gene family analysis indicated that lipid metabolism-related genes exhibited significant expansion, including IgPLMT, IgOAR1, and IgDEGS1. Metabolome analysis showed that the content of carotenoids in I. galbana cultured under green light for 7 days was higher than that of white light, and β-carotene was the main carotenoid, accounting for 79.09% of the total carotenoids. Comprehensive analysis of multi-omics analysis revealed that β-carotene, antheraxanthin, zeaxanthin, and Fx content was increased by green light induction, which was significantly correlated with the expression of IgMYB98, IgZDS, IgPDS, IgLHCX2, IgZEP, IgLCYb, and IgNSY. These findings contribute to understanding Fx biosynthesis and its regulation, providing a valuable reference for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xue Yuan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - XueHai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jingping Fang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Gang Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Rongmao Li
- Fujian Fishery Resources Monitoring Center, Fuzhou 350003, China
| | - Jiannan Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wenfang Fan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Limin Liang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Chentao Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
26
|
Wang Y, Lu L, Li J, Li H, You Y, Zang S, Zhang Y, Ye J, Lv Z, Zhang Z, Qin Y, Zhang H, Xia F, Li H, Zhang H, Fan P, Shi L, Liang Z, Cui H. A chromosome-level genome of Syringa oblata provides new insights into chromosome formation in Oleaceae and evolutionary history of lilacs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:836-848. [PMID: 35673966 DOI: 10.1111/tpj.15858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Lilacs (Syringa L.), a group of well-known ornamental and aromatic woody plants, have long been used for gardening, essential oils and medicine purposes in East Asia and Europe. The lack of knowledge about the complete genome of Syringa not only hampers effort to better understand its evolutionary history, but also prevents genome-based functional gene mining that can help in the variety improvement and medicine development. Here, a chromosome-level genome of Syringa oblata is presented, which has a size of 1.12 Gb including 53 944 protein coding genes. Synteny analysis revealed that a recent duplication event and parallel evolution of two subgenomes formed the current karyotype. Evolutionary analysis, transcriptomics and metabolic profiling showed that segment and tandem duplications contributed to scent formation in the woody aromatic species. Moreover, phylogenetic analysis indicated that S. oblata shared a common ancestor with Osmanthus fragrans and Olea europaea approximately 27.61 million years ago (Mya). Biogeographic reconstruction based on a resequenced data set of 26 species suggested that Syringa originated in the northern part of East Asia during the Miocene (approximately 14.73 Mya) and that the five Syringa groups initially formed before the Late Miocene (approximately 9.97 Mya). Furthermore, multidirectional dispersals accompanied by gene introgression among Syringa species from Northern China during the Miocene were detected by biogeographic reconstruction. Taken together, the results showed that complex gene introgression, which occurred during speciation history, greatly contributed to Syringa diversity.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Limin Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Huayang Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yichen You
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuying Zang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250300, China
| | - Jianfei Ye
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Zemin Lv
- College of Forestry, Inner Mongolian Agricultural University, Hohhot, 010019, China
| | - Zhaoyu Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250300, China
| | - Yongsheng Qin
- Institute of Gardening, Hohhot, Inner Mongolia, Hohhot, 010030, China
| | - Hongling Zhang
- College of Forestry, Inner Mongolian Agricultural University, Hohhot, 010019, China
| | - Fei Xia
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Huijin Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Peige Fan
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Zhenchang Liang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Hongxia Cui
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| |
Collapse
|
27
|
Fu CC, Xu FY, Qian YC, Koo HL, Duan YF, Weng GM, Fan TP, Chen MX, Zhu FY. Secondary Metabolites of Osmanthus fragrans: Metabolism and Medicinal Value. Front Pharmacol 2022; 13:922204. [PMID: 35924042 PMCID: PMC9340074 DOI: 10.3389/fphar.2022.922204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Osmanthus fragrans (scientific name: Osmanthus fragrans (Thunb.) Lour.) is a species of the Osmanthus genus in the family Oleaceae, and it has a long history of cultivation in China. O. fragrans is edible and is well known for conferring a natural fragrance to desserts. This flowering plant has long been cultivated for ornamental purposes. Most contemporary literature related to O. fragrans focuses on its edible value and new species discovery, but the functional use of O. fragrans is often neglected. O, fragrans has many properties that are beneficial to human health, and its roots, stems, leaves, flowers and fruits have medicinal value. These characteristics are recorded in the classics of traditional Chinese medicine. Studies on the metabolites and medicinal value of O. fragrans published in recent years were used in this study to evaluate the medicinal value of O. fragrans. Using keywords such as metabolites and Osmanthus fragrans, a systematic and nonexhaustive search of articles, papers and books related to the medicinal use of Osmanthus fragrans metabolites was conducted. Fifteen metabolites were identified through this literature search and classified into three categories according to their properties and structure: flavonoids, terpenes and phenolic acids. It was found that the pharmacological activities of these secondary metabolites mainly include antioxidant, anticancer, anti-inflammatory and antibacterial activities and that these metabolites can be used to treat many human diseases, such as cancer, skin diseases, cardiovascular diseases, and neurological diseases. Most of the reports that are currently available and concern the secondary metabolites of Osmanthus fragrans have limitations. Some reports introduce only the general classification of compounds in Osmanthus fragrans, and some reports introduce only a single compound. In contrast, the introduction section of this paper includes both the category and the functional value of each compound. While reviewing the data for this study, the authors found that the specific action sites of these compounds and their mechanisms of action in plants are relatively weak, and in the future, additional research should be conducted to investigate this topic further.
Collapse
Affiliation(s)
- Chen-Chen Fu
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Fa-Ying Xu
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yu-Chen Qian
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hoi-Lun Koo
- RCI Research Institute Limited, Hong Kong, China
| | - Yi-Fan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Geng-Min Weng
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- International Cultivar Registration Center for Osmanthus, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
28
|
Ma B, Wu J, Shi TL, Yang YY, Wang WB, Zheng Y, Su SC, Yao YC, Xue WB, Porth I, El-Kassaby YA, Leng PS, Hu ZH, Mao JF. Lilac (Syringa oblata) genome provides insights into its evolution and molecular mechanism of petal color change. Commun Biol 2022; 5:686. [PMID: 35810211 PMCID: PMC9271065 DOI: 10.1038/s42003-022-03646-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
Color change during flower opening is common; however, little is understood on the biochemical and molecular basis related. Lilac (Syringa oblata), a well-known woody ornamental plant with obvious petal color changes, is an ideal model. Here, we presented chromosome-scale genome assembly for lilac, resolved the flavonoids metabolism, and identified key genes and potential regulatory networks related to petal color change. The genome assembly is 1.05 Gb anchored onto 23 chromosomes, with a BUSCO score of 96.6%. Whole-genome duplication (WGD) event shared within Oleaceae was revealed. Metabolome quantification identified delphinidin-3-O-rutinoside (Dp3Ru) and cyanidin-3-O-rutinoside (Cy3Ru) as the major pigments; gene co-expression networks indicated WRKY an essential regulation factor at the early flowering stage, ERF more important in the color transition period (from violet to light nearly white), while the MBW complex participated in the entire process. Our results provide a foundation for functional study and molecular breeding in lilac.
Collapse
Affiliation(s)
- Bo Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological Environment, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, The Key Laboratory for Silviculture and Conservation of the Ministry of Education, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological Environment, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Tian-Le Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, The Key Laboratory for Silviculture and Conservation of the Ministry of Education, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yun-Yao Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological Environment, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Wen-Bo Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological Environment, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, The Key Laboratory for Silviculture and Conservation of the Ministry of Education, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological Environment, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Shu-Chai Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, The Key Laboratory for Silviculture and Conservation of the Ministry of Education, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yun-Cong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological Environment, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Wen-Bo Xue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ping-Sheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological Environment, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China.
| | - Zeng-Hui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing Laboratory of Urban and Rural Ecological Environment, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China.
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, The Key Laboratory for Silviculture and Conservation of the Ministry of Education, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
29
|
Wang Y, Zhang C, Xu B, Fu J, Du Y, Fang Q, Dong B, Zhao H. Temperature regulation of carotenoid accumulation in the petals of sweet osmanthus via modulating expression of carotenoid biosynthesis and degradation genes. BMC Genomics 2022; 23:418. [PMID: 35659179 PMCID: PMC9166602 DOI: 10.1186/s12864-022-08643-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022] Open
Abstract
Background Temperature is involved in the regulation of carotenoid accumulation in many plants. The floral color of sweet osmanthus (Osmanthus fragrans Lour.) which is mainly contributed by carotenoid content, is affected by temperature in autumn. However, the mechanism remains unknown. Here, to reveal how temperature regulates the floral color of sweet osmanthus, potted sweet osmanthus ‘Jinqiu Gui’ were treated by different temperatures (15 °C, 19 °C or 32 °C). The floral color, carotenoid content, and the expression level of carotenoid-related genes in petals of sweet osmanthus ‘Jinqiu Gui’ under different temperature treatments were investigated. Results Compared to the control (19 °C), high temperature (32 °C) changed the floral color from yellow to yellowish-white with higher lightness (L*) value and lower redness (a*) value, while low temperature (15 °C) turned the floral color from yellow to pale orange with decreased L* value and increased a* value. Total carotenoid content and the content of individual carotenoids (α-carotene, β-carotene, α-cryptoxanthin, β-cryptoxanthin, lutein and zeaxanthin) were inhibited by high temperature, but were enhanced by low temperature. Lower carotenoid accumulation under high temperature was probably attributed to transcriptional down-regulation of the biosynthesis gene OfPSY1, OfZ-ISO1 and OfLCYB1, and up-regulation of degradation genes OfNCED3, OfCCD1-1, OfCCD1-2, and OfCCD4-1. Up-regulation of OfLCYB1, and down-regulation of OfNCED3 and OfCCD4-1 were predicted to be involved in low-temperature-regulated carotenoid accumulation. Luciferase assays showed that the promoter activity of OfLCYB1 was activated by low temperature, and repressed by high temperature. However, the promoter activity of OfCCD4-1 was repressed by low temperature, and activated by high temperature. Conclusions Our study revealed that high temperature suppressed the floral coloration by repressing the expression of carotenoid biosynthesis genes, and activating the expression of carotenoid degradation genes. However, the relative low temperature had opposite effects on floral coloration and carotenoid biosynthesis in sweet osmanthus. These results will help reveal the regulatory mechanism of temperature on carotenoid accumulation in the petals of sweet osmanthus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08643-0.
Collapse
|
30
|
Li Y, Gao R, Zhang J, Wang Y, Kong P, Lu K, Adnan , Liu M, Ao F, Zhao C, Wang L, Gao X. The biochemical and molecular investigation of flower color and scent sheds lights on further genetic modification of ornamental traits in Clivia miniata. HORTICULTURE RESEARCH 2022; 9:uhac114. [PMID: 35929604 PMCID: PMC9343915 DOI: 10.1093/hr/uhac114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/01/2022] [Indexed: 05/13/2023]
Abstract
Clivia miniata is renowned for its evergreen and strap-like leaves, whereas its floral color and scent are lacking diversity. Here, anthocyanin, volatile terpene, and carotenoid metabolisms were integrally investigated in C. miniata flowers. The results showed that pelargonidins and lutein might cooperate to confer orange or yellow color to C. miniata flowers, but only a trace amount of (+)-limonene was detected. The expression levels of CmF3'H and CmDFR appeared to be responsible for the ratio of cyanidin and pelargonidin derivatives in C. miniata, and the low expression of CmF3'H was responsible for the lack of cyanidins in flowers. Moreover, the CmF3'H promoter could not be activated by CmMYBAs, suggesting that it was controlled by novel regulators. Only two CmTPSs were functional, with CmTPS2 responsible for (+)-limonene synthesis, contributing to the monotonous flower volatile terpenes of C. miniata. CmCCD1a and CmCCD1b were able to cleave carotenoids at the 5,6 (5',6'), and 9,10 (9',10') positions to generate volatile apocarotenoids, whereas the substrates found in low-quantities or specific subcellular localizations of CmCCD1s might constrain volatile apocarotenoid release. Consequently, activating F3'H and introducing novel F3'5'H or versatile TPS may be effective ways to modify the floral color and scent, respectively. Alternatively, modifying the carotenoid flux or CCD1 localization might affect floral color and scent simultaneously. Taking these results together, the present study provides a preliminary deciphering of the genetic constraints underlying flower color and scent development, and proposes possible schemes for further genetic modification of ornamental traits in C. miniata and other plants.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Jia Zhang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Peiru Kong
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Keyu Lu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Adnan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Meng Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Feng Ao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Chunli Zhao
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
31
|
Zhu M, Bin J, Ding H, Pan D, Tian Q, Yang X, Wang L, Yue Y. Insights into the trihelix transcription factor responses to salt and other stresses in Osmanthus fragrans. BMC Genomics 2022; 23:334. [PMID: 35488201 PMCID: PMC9055724 DOI: 10.1186/s12864-022-08569-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osmanthus fragrans is an evergreen plant with high ornamental and economic values. However, they are easily injured by salt stress, which severely limits their use in high salinity areas. The trihelix transcription factor (TF) family, as one of the earliest discovered TF families in plants, plays an essential part in responses to different abiotic stresses, and it has potential functions in improving the salt-tolerance capability of O. fragrans. RESULTS In this study, 56 trihelix genes (OfGTs) were first identified in O. fragrans and then divided into five subfamilies in accordance with a phylogenetic tree analysis. The OfGTs were found to be located randomly on the 20 O. fragrans chromosomes, and an analysis of gene replication events indicated that the OfGT gene family underwent strong purification selection during the evolutionary process. The analysis of conserved motifs and gene structures implied that the OfGT members in the same subfamily have similar conserved motifs and gene structures. A promoter cis-elements analysis showed that all the OfGT genes contained multiple abiotic and hormonal stress-related cis-elements. The RNA-seq data suggested that the OfGTs have specific expression patterns in different tissues, and some were induced by salt stress. The qRT-PCR analysis of 12 selected OfGTs confirmed that OfGT1/3/21/33/42/45/46/52 were induced, with OfGT3/42/46 being the most highly expressed. In addition, OfGT42/OfGT46 had a co-expression pattern under salt-stress conditions. OfGT3/42/46 were mainly localized in the nuclei and exhibited no transcriptional activities based on the analysis of the subcellular localization and transcriptional activity assay. Furthermore, the expression levels of most of the selected OfGTs were induced by multiple abiotic and hormonal stresses, and the expression patterns of some OfGTs were also highly correlated with gibberellic acid and methyl jasmonate levels. Remarkably, the transient transformation results showed lower MDA content and increased expression of ROS-related genes NbAPX in transgenic plants, which implying OfGT3/42/46 may improve the salt tolerance of tobacco. CONCLUSIONS The results implied that the OfGT genes were related to abiotic and hormonal stress responses in O. fragrans, and that the OfGT3/42/46 genes in particular might play crucial roles in responses to salt stress. This study made a comprehensive summary of the OfGT gene family, including functions and co-expression patterns in response to salt and other stresses, as well as an evolutionary perspective. Consequently, it lays a foundation for further functional characterizations of these genes.
Collapse
Affiliation(s)
- Meilin Zhu
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jing Bin
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Huifen Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Duo Pan
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qingyin Tian
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
32
|
Han Y, Lu M, Yue S, Li K, Dong M, Liu L, Wang H, Shang F. Comparative methylomics and chromatin accessibility analysis in Osmanthus fragrans uncovers regulation of genic transcription and mechanisms of key floral scent production. HORTICULTURE RESEARCH 2022; 9:uhac096. [PMID: 35795393 PMCID: PMC9250655 DOI: 10.1093/hr/uhac096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 06/12/2023]
Abstract
Linalool and ionone are two important aromatic components in sweet osmanthus petals, and the regulatory mechanisms that produce these two components remain unclear. In this study, we employed whole-genome methylation sequencing and ATAC-seq technology to analyze the genomic DNA methylation status and chromatin accessibility of the sweet osmanthus cultivars 'Zaohuang' and 'Chenghong Dangui'. Results showed that the promoter region of TPS2, a key gene in the linalool synthesis pathway, was less methylated in 'Chenghong Dangui' than in 'Zaohuang'. The chromatin was more accessible in 'Chenghong Dangui' than in 'Zaohuang', which resulted in a much stronger expression of this gene in 'Chenghong Dangui' than in 'Zaohuang'. This eventually led to a high quantity of linalool and its oxides in the petals of 'Chenghong Dangui', but there were lower levels present in the petals of 'Zaohuang'. These results suggest that DNA methylation and chromatin accessibility play major roles in linalool synthesis in sweet osmanthus. The methylation level of the promoter region of CCD4, a key gene for ionone synthesis, was higher in 'Zaohuang' than in 'Chenghong Dangui'. The chromatin accessibility was lower in 'Zaohuang' than in 'Chenghong Dangui', although the expression of this gene was significantly higher in 'Zaohuang' than in 'Chenghong Dangui'. ChIP-seq analysis and a series of experiments showed that the differential expression of CCD4 and CCD1 in the two cultivars may predominantly be the result of regulation by ERF2 and other transcription factors. However, a 183-bp deletion involving the CCD4 promoter region in 'Chenghong Dangui' may be the main reason for the low expression of this gene in its petals. This study provides an important theoretical basis for improving selective breeding of key floral fragrance components in sweet osmanthus.
Collapse
Affiliation(s)
| | - Miaomiao Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shumin Yue
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ke Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meifang Dong
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Luxian Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Hongyun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | | |
Collapse
|
33
|
Yang Y, Miao Y, Zhong S, Fang Q, Wang Y, Dong B, Zhao H. Genome-Wide Identification and Expression Analysis of XTH Gene Family during Flower-Opening Stages in Osmanthus fragrans. PLANTS 2022; 11:plants11081015. [PMID: 35448743 PMCID: PMC9031776 DOI: 10.3390/plants11081015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
Osmanthus fragrans is an aromatic plant which is widely used in landscaping and garden greening in China. However, the process of flower opening is significantly affected by ambient temperature changes. Cell expansion in petals is the primary factor responsible for flower opening. Xyloglucan endoglycolase/hydrolase (XTH) is a cell-wall-loosening protein involved in cell expansion or cell-wall weakening. Through whole-genome analysis, 38 OfXTH genes were identified in O. fragrans which belong to the four main phylogenetic groups. The gene structure, chromosomal location, synteny relationship, and cis-acting elements prediction and expression patterns were analyzed on a genome-wide scale. The expression patterns showed that most OfXTHs were closely associated with the flower-opening period of O. fragrans. At the early flower-opening stage (S1 and S2), transcriptome and qRT-PCR analysis revealed the expression of OfXTH24, 27, 32, 35, and 36 significantly increased under low ambient temperature (19 °C). It is speculated that the five genes might be involved in the regulation of flower opening by responding to ambient temperature changes. Our results provide solid foundation for the functional analysis of OfXTH genes and help to explore the mechanism of flower opening responding to ambient temperature in O. fragrans.
Collapse
Affiliation(s)
- Yang Yang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China; (Y.Y.); (Y.M.); (S.Z.); (Q.F.); (Y.W.)
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yunfeng Miao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China; (Y.Y.); (Y.M.); (S.Z.); (Q.F.); (Y.W.)
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shiwei Zhong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China; (Y.Y.); (Y.M.); (S.Z.); (Q.F.); (Y.W.)
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Qiu Fang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China; (Y.Y.); (Y.M.); (S.Z.); (Q.F.); (Y.W.)
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yiguang Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China; (Y.Y.); (Y.M.); (S.Z.); (Q.F.); (Y.W.)
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Bin Dong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China; (Y.Y.); (Y.M.); (S.Z.); (Q.F.); (Y.W.)
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (B.D.); (H.Z.)
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Hangzhou 311300, China; (Y.Y.); (Y.M.); (S.Z.); (Q.F.); (Y.W.)
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Hangzhou 311300, China
- School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (B.D.); (H.Z.)
| |
Collapse
|
34
|
Wang S, Liang H, Wang H, Li L, Xu Y, Liu Y, Liu M, Wei J, Ma T, Le C, Yang J, He C, Liu J, Zhao J, Zhao Y, Lisby M, Sahu SK, Liu H. The chromosome-scale genomes of Dipterocarpus turbinatus and Hopea hainanensis (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:538-553. [PMID: 34687252 PMCID: PMC8882806 DOI: 10.1111/pbi.13735] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 05/30/2023]
Abstract
Dipterocarpaceae are typical tropical plants (dipterocarp forests) that are famous for their high economic value because of their production of fragrant oleoresins, top-quality timber and usage in traditional Chinese medicine. Currently, the lack of Dipterocarpaceae genomes has been a limiting factor to decipher the fragrant oleoresin biosynthesis and gain evolutionary insights into high-quality wood formation in Dipterocarpaceae. We generated chromosome-level genome assemblies for two representative Dipterocarpaceae species viz. Dipterocarpus turbinatus Gaertn. f. and Hopea hainanensis Merr. et Chun. Our whole-genome duplication (WGD) analysis revealed that Dipterocarpaceae underwent a shared WGD event, which showed significant impacts on increased copy numbers of genes related to the biosynthesis of terpene, BAHD acyltransferases, fatty acid and benzenoid/phenylpropanoid, which probably confer to the formation of their characteristic fragrant oleoresin. Additionally, compared with common soft wood plants, the expansion of gene families was also found to be associated with wood formation, such as in CESA (cellulose synthase), CSLE (cellulose synthase-like protein E), laccase and peroxidase in Dipterocarpaceae genomes, which might also contribute to the formation of harder, stronger and high-density timbers. Finally, an integrative analysis on a combination of genomic, transcriptomic and metabolic data from different tissues provided further insights into the molecular basis of fragrant oleoresins biosynthesis and high-quality wood formation of Dipterocarpaceae. Our study contributes the first two representative genomes for Dipterocarpaceae, which are valuable genetic resources for further researches on the fragrant oleoresins and superior-quality timber, genome-assisted breeding and improvement, and conservation biology of this family.
Collapse
Affiliation(s)
- Sibo Wang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Hongping Liang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongli Wang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Linzhou Li
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Yan Xu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Min Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Jinpu Wei
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Tao Ma
- Key Laboratory of Bio‐resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cheng Le
- BGI‐Yunnan, BGI‐ShenzhenYunnanChina
| | - Jinlong Yang
- BGI‐Yunnan, BGI‐ShenzhenYunnanChina
- College of Forensic ScienceXi'an Jiaotong UniversityXi'anChina
| | | | - Jie Liu
- Forestry Bureau of RuiliYunnan Dehong, RuiliChina
| | | | | | - Michael Lisby
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
35
|
Zhang T, Bao F, Ding A, Yang Y, Cheng T, Wang J, Zhang Q. Comprehensive Analysis of Endogenous Volatile Compounds, Transcriptome, and Enzyme Activity Reveals PmCAD1 Involved in Cinnamyl Alcohol Synthesis in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:820742. [PMID: 35251090 PMCID: PMC8894765 DOI: 10.3389/fpls.2022.820742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Floral scent is an important economic and ornamental trait of Prunus mume. The floral volatiles from most cultivars of P. mume in composition exist significant differences. Cinnamyl alcohol was one of the main floral volatile compounds with distinct abundances in different cultivars, namely, 'Zaohua Lve,' 'Zao Yudie,' 'Fenpi Gongfen,' 'Jiangsha Gongfen,' and 'Fenhong Zhusha.' Based on the determination of endogenous volatiles of full-blooming flowers, vital enzyme activity and transcriptomes were comprehensively analyzed to screen the key potential genes involved in cinnamyl alcohol synthesis. Transcriptome combining with enzyme activity level analysis suggested that the expression levels of three PmCADs were highly correlated with the cinnamyl alcohol dehydrogenase (CAD) enzyme activities in six cultivars. Furthermore, phylogenetic tree and transcriptome analysis suggested that PmCAD1 and PmCAD2 might contribute to the cinnamyl alcohol synthesis. Relative expression analyses and enzyme activity assays showed that PmCAD1 played an important role in cinnamyl alcohol biosynthesis in vitro. Overall, this research lays a theoretical foundation for clarifying comprehensively the molecular biosynthesis mechanism of floral volatiles in P. mume.
Collapse
|
36
|
Mishra B, Ulaszewski B, Meger J, Aury JM, Bodénès C, Lesur-Kupin I, Pfenninger M, Da Silva C, Gupta DK, Guichoux E, Heer K, Lalanne C, Labadie K, Opgenoorth L, Ploch S, Le Provost G, Salse J, Scotti I, Wötzel S, Plomion C, Burczyk J, Thines M. A Chromosome-Level Genome Assembly of the European Beech ( Fagus sylvatica) Reveals Anomalies for Organelle DNA Integration, Repeat Content and Distribution of SNPs. Front Genet 2022; 12:691058. [PMID: 35211148 PMCID: PMC8862710 DOI: 10.3389/fgene.2021.691058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here, we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome-wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.
Collapse
Affiliation(s)
- Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Bartosz Ulaszewski
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Joanna Meger
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Isabelle Lesur-Kupin
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
- HelixVenture, Mérignac, France
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Corinne Da Silva
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Deepak K Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | | | - Katrin Heer
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
- Forest Genetics, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Lars Opgenoorth
- Faculty of Biology, Plant Ecology and Geobotany, Philipps University Marburg, Marburg, Germany
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | | | | | | | - Stefan Wötzel
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | | | - Jaroslaw Burczyk
- Department of Genetics, ul. Chodkiewicza 30, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
37
|
New Insights into the Roles of Osmanthus Fragrans Heat-Shock Transcription Factors in Cold and Other Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sweet osmanthus (Osmanthus fragrans) is an evergreen woody plant that emits a floral aroma and is widely used in the landscape and fragrance industries. However, its application and cultivation regions are limited by cold stress. Heat-shock transcription factor (HSF) family members are widely present in plants and participate in, and regulate, the defense processes of plants under various abiotic stress conditions, but now, the role of this family in the responses of O. fragrans to cold stress is still not clear. Here, 46 OfHSF members were identified in the O. fragrans genome and divided into three subfamilies on the basis of a phylogenetic analysis. The promoter regions of most OfHSFs contained many cis-acting elements involved in multiple hormonal and abiotic stresses. RNA-seq data revealed that most of OfHSF genes were differentially expressed in various tissues, and some OfHSF members were induced by cold stress. The qRT-PCR analysis identified four OfHSFs that were induced by both cold and heat stresses, in which OfHSF11 and OfHSF43 had contrary expression trends under cold stress conditions and their expression patterns both showed recovery tendencies after the cold stress. OfHSF11 and OfHSF43 localized to the nuclei and their expression patterns were also induced under multiple abiotic stresses and hormonal treatments, indicating that they play critical roles in responses to multiple stresses. Furthermore, after a cold treatment, transient expression revealed that the malondialdehyde (MDA) content of OfHSF11-transformed tobacco significantly increased, and the expression levels of cold-response regulatory gene NbDREB3, cold response gene NbLEA5 and ROS detoxification gene NbCAT were significantly inhibited, implying that OfHSF11 is a negative regulator of cold responses in O. fragrans. Our study contributes to the further functional characterization of OfHSFs and will be useful in developing improved cold-tolerant cultivars of O. fragrans.
Collapse
|
38
|
Ai Y, Li Z, Sun WH, Chen J, Zhang D, Ma L, Zhang QH, Chen MK, Zheng QD, Liu JF, Jiang YT, Li BJ, Liu X, Xu XY, Yu X, Zheng Y, Liao XY, Zhou Z, Wang JY, Wang ZW, Xie TX, Ma SH, Zhou J, Ke YJ, Zhou YZ, Lu HC, Liu KW, Yang FX, Zhu GF, Huang L, Peng DH, Chen SP, Lan S, Van de Peer Y, Liu ZJ. The Cymbidium genome reveals the evolution of unique morphological traits. HORTICULTURE RESEARCH 2021; 8:255. [PMID: 34848682 PMCID: PMC8633000 DOI: 10.1038/s41438-021-00683-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 07/30/2021] [Indexed: 05/04/2023]
Abstract
The marvelously diverse Orchidaceae constitutes the largest family of angiosperms. The genus Cymbidium in Orchidaceae is well known for its unique vegetation, floral morphology, and flower scent traits. Here, a chromosome-scale assembly of the genome of Cymbidium ensifolium (Jianlan) is presented. Comparative genomic analysis showed that C. ensifolium has experienced two whole-genome duplication (WGD) events, the most recent of which was shared by all orchids, while the older event was the τ event shared by most monocots. The results of MADS-box genes analysis provided support for establishing a unique gene model of orchid flower development regulation, and flower shape mutations in C. ensifolium were shown to be associated with the abnormal expression of MADS-box genes. The most abundant floral scent components identified included methyl jasmonate, acacia alcohol and linalool, and the genes involved in the floral scent component network of C. ensifolium were determined. Furthermore, the decreased expression of photosynthesis-antennae and photosynthesis metabolic pathway genes in leaves was shown to result in colorful striped leaves, while the increased expression of MADS-box genes in leaves led to perianth-like leaves. Our results provide fundamental insights into orchid evolution and diversification.
Collapse
Affiliation(s)
- Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
| | - Wei-Hong Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing-Hua Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Kun Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing-Dong Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Yu-Ting Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuedie Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin-Yu Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xing-Yu Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie-Yu Wang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Tai-Xiang Xie
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shan-Hu Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Jie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Zhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hsiang-Chia Lu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke-Wei Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine and Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Feng-Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Laiqiang Huang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine and Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- VIB Center for Plant Systems Biology, Gent, Belgium.
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China.
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
39
|
Zeng Z, Chen S, Xu M, Wang M, Chen Z, Wang L, Pang J. Cloning, Expression, and Tobacco Overexpression Analyses of a PISTILLATA/ GLOBOSA-like ( OfGLO1) Gene from Osmanthus fragrans. Genes (Basel) 2021; 12:1748. [PMID: 34828354 PMCID: PMC8623234 DOI: 10.3390/genes12111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
GLOBOSA (GLO), a B-class MADS-box gene, is involved in floral organ determination but has rarely been studied in Osmanthus fragrans, which is a very popular ornamental tree species in China. Here, the full-length cDNA of a homologous GLO1 gene (named OfGLO1) was cloned from a flower bud of O. fragrans using the RACE technique. The OfGLO1 has a 645 bp open reading frame, encoding 214 amino acids. Similar to other PI/GLO proteins, OfGLO1 has two conserved domains, MADS MEF2-like and K-box, and a 16-amino-acid PI motif in the C terminal region. Our phylogeny analysis classified OfGLO1 as a PI-type member of the B-class MADS-box gene family. The qRT-PCR assay showed that the expression of OfGLO1 in O. fragrans was continuously upregulated from the tight bud stage to the full flowering stage but barely expressed in the pistils, sepals, and non-floral organs, such as root, leaf, and stem. The genetic effect of OfGLO1 was assayed by ectopic expression in tobacco plants. Compared with the wild-type, OfGLO1 transformants showed reduced plant size, earlier flowering, shorter stamens, and lower seed setting rates. Furthermore, some stamens were changed into petal-like structures. These findings indicate that OfGLO1 plays an important role in the regulation of flower development. This study improved our understanding of class B gene function in woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiliang Pang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (S.C.); (M.X.); (M.W.); (Z.C.); (L.W.)
| |
Collapse
|
40
|
Cui Q, Huang J, Wu F, Li DZ, Zheng L, Hu G, Hu S, Zhang L. Biochemical and transcriptomic analyses reveal that critical genes involved in pigment biosynthesis influence leaf color changes in a new sweet osmanthus cultivar 'Qiannan Guifei'. PeerJ 2021; 9:e12265. [PMID: 34707941 PMCID: PMC8504463 DOI: 10.7717/peerj.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Osmanthus fragrans (Oleaceae) is one of the most important ornamental plant species in China. Many cultivars with different leaf color phenotypes and good ornamental value have recently been developed. For example, a new cultivar 'Qiannan Guifei', presents a rich variety of leaf colors, which change from red to yellow-green and ultimately to green as leaves develop, making this cultivar valuable for landscaping. However, the biochemical characteristics and molecular mechanisms underlying leaf color changes of these phenotypes have not been elucidated. It has been hypothesized that the biosynthesis of different pigments in O. fragrans might change during leaf coloration. Here, we analyzed transcriptional changes in genes involved in chlorophyll (Chl), flavonoid, and carotenoid metabolic pathways and identified candidate genes responsible for leaf coloration in the new cultivar 'Qiannan Guifei'. METHODS Leaf samples were collected from 'Qiannan Guifei' plants at the red (R), yellow-green (YG) and green (G) leaf stages. We compared the different-colored leaves via leaf pigment concentrations, chloroplast ultrastructure, and transcriptomic data. We further analyzed differentially expressed genes (DEGs) involved in the Chl, flavonoid, and carotenoid metabolic pathways. In addition, we used qRT-PCR to validate expression patterns of the DEGs at the three stages. RESULTS We found that, compared with those at the G stage, chloroplasts at the R and YG stages were less abundant and presented abnormal morphologies. Pigment analyses revealed that the leaves had higher flavonoid and anthocyanin levels at the R stage but lower Chl and carotenoid concentrations. Similarly, Chl and carotenoid concentrations were lower at the YG stage than at the G stage. By using transcriptomic sequencing, we further identified 61 DEGs involved in the three pigment metabolic pathways. Among these DEGs, seven structural genes (OfCHS, OfCHI, OfF3H, OfDFR, OfANS, OfUGT andOf3AT) involved in the flavonoid biosynthesis pathway were expressed at the highest level at the R stage, thereby increasing the biosynthesis of flavonoids, especially anthocyanins. Six putativeOfMYB genes, including three flavonoid-related activators and three repressors, were also highly expressed at the R stage, suggesting that they might coordinately regulate the accumulation of flavonoids, including anthocyanins. Additionally, expressions of the Chl biosynthesis-related genes OfHEMA, OfCHLG and OfCAO and the carotenoid biosynthesis-related genes OfHYB and OfZEP were upregulated from the R stage to the G stage, which increased the accumulation of Chl and carotenoids throughout leaf development. In summary, we screened the candidate genes responsible for the leaf color changes of 'Qiannan Guifei', improved current understanding of the regulatory mechanisms underlying leaf coloration and provided potential targets for future leaf color improvement in O. fragrans.
Collapse
Affiliation(s)
- Qi Cui
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Junhua Huang
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Fan Wu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dong-ze Li
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Liqun Zheng
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Guang Hu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Shaoqing Hu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Lu Zhang
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Xu S, Ding Y, Sun J, Zhang Z, Wu Z, Yang T, Shen F, Xue G. A high-quality genome assembly of Jasminum sambac provides insight into floral trait formation and Oleaceae genome evolution. Mol Ecol Resour 2021; 22:724-739. [PMID: 34460989 DOI: 10.1111/1755-0998.13497] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
As one of the most economically significant Oleaceae family members, Jasminum sambac is renowned for its distinct sweet, heady fragrance. Using Illumina reads, Nanopore long reads, and HiC-sequencing, we efficiently assembled and annotated the J. sambac genome. The high-quality genome assembly consisted of a total of 507 Mb sequence (contig N50 = 17.6 Mb) with 13 pseudomolecules. A total of 21,143 protein-coding genes and 303 Mb repeat sequences were predicted. An ancient whole-genome triplication event at the base of Oleaceae (~66 million years ago [Ma], Late Cretaceous) was identified and this may have contributed to the diversification of the Oleaceae ancestor and its divergence from the Lamiales. Stress-related (e.g., WRKY) and flowering-related (e.g., MADS-box) genes were located in the triplicated regions, suggesting that the polyploidy event might have contributed adaptive potential. Genes related to terpenoid biosynthesis, for example, FTA and TPS, were observed to be duplicated to a great extent in the J. sambac genome, perhaps explaining the strong fragrance of the flowers. Copy number changes in distinct phylogenetic clades of the MADS-box family were observed in J. sambac genome, for example, AGL6- and Mα- were lost and SOC- expanded, features that might underlie the long flowering period of J. sambac. The structural genes implicated in anthocyanin biosynthesis were depleted and this may explain the absence of vivid colours in jasmine. Collectively, assembling the J. sambac genome provides new insights into the genome evolution of the Oleaceae family and provides mechanistic insights into floral properties.
Collapse
Affiliation(s)
- Shixiao Xu
- Tobacco College, Henan Agricultural University, Zhengzhou City, Henan Province, China.,Scientific Observation and Experiment Station of Tobacco Biology & Processing, Ministry of Agriculture, Zhengzhou City, Henan Province, China.,National Tobacco Cultivation & Physiology & Biochemisty Research Centre, Zhengzhou City, Henan Province, China
| | - Yongle Ding
- Tobacco College, Henan Agricultural University, Zhengzhou City, Henan Province, China.,Scientific Observation and Experiment Station of Tobacco Biology & Processing, Ministry of Agriculture, Zhengzhou City, Henan Province, China.,National Tobacco Cultivation & Physiology & Biochemisty Research Centre, Zhengzhou City, Henan Province, China
| | - Juntao Sun
- Tobacco College, Henan Agricultural University, Zhengzhou City, Henan Province, China.,Scientific Observation and Experiment Station of Tobacco Biology & Processing, Ministry of Agriculture, Zhengzhou City, Henan Province, China.,National Tobacco Cultivation & Physiology & Biochemisty Research Centre, Zhengzhou City, Henan Province, China
| | - Zhiqiang Zhang
- Tobacco College, Henan Agricultural University, Zhengzhou City, Henan Province, China.,Scientific Observation and Experiment Station of Tobacco Biology & Processing, Ministry of Agriculture, Zhengzhou City, Henan Province, China.,National Tobacco Cultivation & Physiology & Biochemisty Research Centre, Zhengzhou City, Henan Province, China
| | - Zhaoyun Wu
- Tobacco College, Henan Agricultural University, Zhengzhou City, Henan Province, China.,Scientific Observation and Experiment Station of Tobacco Biology & Processing, Ministry of Agriculture, Zhengzhou City, Henan Province, China.,National Tobacco Cultivation & Physiology & Biochemisty Research Centre, Zhengzhou City, Henan Province, China
| | - Tiezhao Yang
- Tobacco College, Henan Agricultural University, Zhengzhou City, Henan Province, China
| | - Fei Shen
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Gang Xue
- Tobacco College, Henan Agricultural University, Zhengzhou City, Henan Province, China.,Scientific Observation and Experiment Station of Tobacco Biology & Processing, Ministry of Agriculture, Zhengzhou City, Henan Province, China.,National Tobacco Cultivation & Physiology & Biochemisty Research Centre, Zhengzhou City, Henan Province, China
| |
Collapse
|
42
|
Yang C, Ma L, Xiao D, Liu X, Jiang X, Ying Z, Lin Y. Chromosome-scale assembly of the Sparassis latifolia genome obtained using long-read and Hi-C sequencing. G3 (BETHESDA, MD.) 2021; 11:jkab173. [PMID: 34021320 PMCID: PMC8496284 DOI: 10.1093/g3journal/jkab173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022]
Abstract
Sparassis latifolia is a valuable edible mushroom cultivated in China. In 2018, our research group reported an incomplete and low-quality genome of S. latifolia obtained by Illumina HiSeq 2500 sequencing. These limitations in the available genome have constrained genetic and genomic studies in this mushroom resource. Herein, an updated draft genome sequence of S. latifolia was generated by Oxford Nanopore sequencing and the high-through chromosome conformation capture (Hi-C) technique. A total of 8.24 Gb of Oxford Nanopore long reads representing ∼198.08X coverage of the S. latifolia genome were generated. Subsequently, a high-quality genome of 41.41 Mb, with scaffold and contig N50 sizes of 3.31 and 1.51 Mb, respectively, was assembled. Hi-C scaffolding of the genome resulted in 12 pseudochromosomes containing 93.56% of the bases in the assembled genome. Genome annotation further revealed that 17.47% of the genome was composed of repetitive sequences. In addition, 13,103 protein-coding genes were predicted, among which 98.72% were functionally annotated. BUSCO assay results further revealed that there were 92.07% complete BUSCOs. The improved chromosome-scale assembly and genome features described here will aid further molecular elucidation of various traits, breeding of S. latifolia, and evolutionary studies with related taxa.
Collapse
Affiliation(s)
- Chi Yang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Lu Ma
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Donglai Xiao
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoyu Liu
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoling Jiang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Zhenghe Ying
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Yanquan Lin
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| |
Collapse
|
43
|
Chen H, Zeng X, Yang J, Cai X, Shi Y, Zheng R, Wang Z, Liu J, Yi X, Xiao S, Fu Q, Zou J, Wang C. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution. HORTICULTURE RESEARCH 2021; 8:98. [PMID: 33931610 PMCID: PMC8087690 DOI: 10.1038/s41438-021-00531-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 05/28/2023]
Abstract
Osmanthus fragrans is a well-known ornamental plant that has been domesticated in China for 2500 years. More than 160 cultivars have been found during this long period of domestication, and they have subsequently been divided into four cultivar groups, including the Yingui, Jingui, Dangui, and Sijigui groups. These groups provide a set of materials to study genetic evolution and variability. Here, we constructed a reference genome of O. fragrans 'Liuyejingui' in the Jingui group and investigated its floral color traits and domestication history by resequencing a total of 122 samples, including 119 O. fragrans accessions and three other Osmanthus species, at an average sequencing depth of 15×. The population structure analysis showed that these 119 accessions formed an apparent regional cluster. The results of linkage disequilibrium (LD) decay analysis suggested that varieties with orange/red flower color in the Dangui group had undergone more artificial directional selection; these varieties had the highest LD values among the four groups, followed by the Sijigui, Jingui, and Yingui groups. Through a genome-wide association study, we further identified significant quantitative trait loci and genomic regions containing several genes, such as ethylene-responsive transcription factor 2 and Arabidopsis pseudoresponse regulator 2, that are positively associated with petal color. Moreover, we found a frameshift mutation with a 34-bp deletion in the first coding region of the carotenoid cleavage dioxygenase 4 gene. This frameshift mutation existed in at least one site on both alleles in all varieties of the Dangui group. The results from this study shed light on the genetic basis of domestication in woody plants, such as O. fragrans.
Collapse
Affiliation(s)
- Hongguo Chen
- Hubei Engineering Research Center for Fragrant Plants, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, 437100, China
| | - Xiangling Zeng
- Hubei Engineering Research Center for Fragrant Plants, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, 437100, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Yang
- Hubei Engineering Research Center for Fragrant Plants, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, 437100, China
| | - Xuan Cai
- Hubei Engineering Research Center for Fragrant Plants, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, 437100, China
| | - Yumin Shi
- Hubei Engineering Research Center for Fragrant Plants, Hubei University of Science and Technology, Xianning, 437100, China
- Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, 437100, China
| | - Riru Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenqi Wang
- Xianning Vocational Technical College, Xianning, 437100, China
| | - Junyi Liu
- Xianning Forestry Academy of Sciences, Xianning, 437100, China
| | - Xinxin Yi
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, 430070, China
| | - Siwei Xiao
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, 430070, China
| | - Qiang Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Zou
- Hubei Engineering Research Center for Fragrant Plants, Hubei University of Science and Technology, Xianning, 437100, China.
- Xianning Research Academy of Industrial Technology of Osmanthus fragrans, Xianning, 437100, China.
| | - Caiyun Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Zheng T, Li P, Li L, Zhang Q. Research advances in and prospects of ornamental plant genomics. HORTICULTURE RESEARCH 2021; 8:65. [PMID: 33790259 PMCID: PMC8012582 DOI: 10.1038/s41438-021-00499-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
The term 'ornamental plant' refers to all plants with ornamental value, which generally have beautiful flowers or special plant architectures. China is rich in ornamental plant resources and known as the "mother of gardens". Genomics is the science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene regulation, and important biological mechanisms based on detailed genome sequence information. Due to the diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and application prospects.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
45
|
Shi Y, Xia H, Cheng X, Zhang L. Genome-wide miRNA analysis and integrated network for flavonoid biosynthesis in Osmanthus fragrans. BMC Genomics 2021; 22:141. [PMID: 33639855 PMCID: PMC7913170 DOI: 10.1186/s12864-021-07439-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/11/2021] [Indexed: 01/05/2023] Open
Abstract
Background Osmanthus fragrans is an important economical plant containing multiple secondary metabolites including flavonoids and anthocyanins. During the past years, the roles of miRNAs in regulating the biosynthesis of secondary metabolites in plants have been widely investigated. However, few studies on miRNA expression profiles and the potential roles in regulating flavonoid biosynthesis have been reported in O. fragrans. Results In this study, we used high-throughput sequencing technology to analyze the expression profiles of miRNAs in leaf and flower tissues of O. fragrans. As a result, 106 conserved miRNAs distributed in 47 families and 88 novel miRNAs were identified. Further analysis showed there were 133 miRNAs differentially expressed in leaves and flowers. Additionally, the potential target genes of miRNAs as well as the related metabolic pathways were predicted. In the end, flavonoid content was measured in flower and leaf tissues and potential role of miR858 in regulating flavonoid synthesis was illustrated in O. fragrans. Conclusions This study not only provided the genome-wide miRNA profiles in the flower and leaf tissue of O. fragrans, but also investigated the potential regulatory role of miR858a in flavonoid synthesis in O. fragrans. The results specifically indicated the connection of miRNAs to the regulation of secondary metabolite biosynthesis in non-model economical plant. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07439-y.
Collapse
Affiliation(s)
- Yong Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Heng Xia
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoting Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Bioinformatics and Systems Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Department of Bioinformatics and Systems Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
46
|
Cheng QQ, Ouyang Y, Tang ZY, Lao CC, Zhang YY, Cheng CS, Zhou H. Review on the Development and Applications of Medicinal Plant Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:791219. [PMID: 35003182 PMCID: PMC8732986 DOI: 10.3389/fpls.2021.791219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 05/04/2023]
Abstract
With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.
Collapse
Affiliation(s)
- Qi-Qing Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zi-Yu Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chi-Chou Lao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yan-Yu Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine, The Ministry of Education of the People’s Republic of China, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
47
|
Li LF, Cushman SA, He YX, Li Y. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia. HORTICULTURE RESEARCH 2020; 7:130. [PMID: 32821413 PMCID: PMC7395120 DOI: 10.1038/s41438-020-00352-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 05/06/2023]
Abstract
Understanding the genetic basis underlying the local adaptation of nonmodel species is a fundamental goal in evolutionary biology. In this study, we explored the genetic mechanisms of the local adaptation of Forsythia suspensa using genome sequence and population genomics data obtained from specific-locus amplified fragment sequencing. We assembled a high-quality reference genome of weeping forsythia (Scaffold N50 = 7.3 Mb) using ultralong Nanopore reads. Then, genome-wide comparative analysis was performed for 15 natural populations of weeping forsythia across its current distribution range. Our results revealed that candidate genes associated with local adaptation are functionally correlated with solar radiation, temperature and water variables across heterogeneous environmental scenarios. In particular, solar radiation during the period of fruit development and seed drying after ripening, cold, and drought significantly contributed to the adaptive differentiation of F. suspensa. Natural selection exerted by environmental factors contributed substantially to the population genetic structure of F. suspensa. Our results supported the hypothesis that adaptive differentiation should be highly pronounced in the genes involved in signal crosstalk between different environmental variables. Our population genomics study of F. suspensa provides insights into the fundamental genetic mechanisms of the local adaptation of plant species to climatic gradients.
Collapse
Affiliation(s)
- Lin-Feng Li
- Innovation Platform of Molecular Biology, College of Forestry, Henan Agricultural University, Zhengzhou, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Samuel A. Cushman
- U.S. Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Dr., Flagstaff, Arizona USA
| | - Yan-Xia He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong Li
- Innovation Platform of Molecular Biology, College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
48
|
Ding W, Ouyang Q, Li Y, Shi T, Li L, Yang X, Ji K, Wang L, Yue Y. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. TREE PHYSIOLOGY 2020; 40:557-572. [PMID: 31860707 DOI: 10.1093/treephys/tpz129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors, one of the largest transcription factor families, play important roles in regulating the synthesis of secondary metabolites. In sweet osmanthus (Osmanthus fragrans), the monoterpenes have been demonstrated as the most important volatile compounds, and the W-box, which is the cognate binding site of WRKY transcription factors, could be identified in most of the terpene-synthesis-related genes' promoters. However, the role of the WRKY family in terpene synthesis in sweet osmanthus has rarely been examined. In this study, 154 WRKY genes with conserved WRKY domain were identified and classified into three groups. The group II was further divided into five subgroups, and almost all members of IId contained a plant zinc cluster domain. Eight OfWRKYs (OfWRKY7/19/36/38/42/84/95/139) were screened from 20 OfWRKYs for their flower-specific expression patterns in different tissues. Simultaneously, the expression patterns of OfWRKYs and emission patterns of volatile compounds during the flowering process were determined and gas chromatography-mass spectrometry results showed that monoterpenes, such as linalool and ocimene, accounted for the highest proportion, contributing to the floral scent of sweet osmanthus in two cultivars. In addition, correlation analysis revealed the expression patterns of OfWRKYs (OfWRKY7/19/36/139) were each correlated with distinct monoterpenes (linalool, linalool derivatives, ocimene and ocimene derivatives). Subcellular localization analysis showed that p35S::GFP-OfWRKY7/38/95/139 were localized in the nucleus and OfWRKY139 had very strong transactivation activity. Collectively, the results indicated potential roles of OfWRKY139 and OfWRKYs with plant zinc cluster domain in regulating synthesis of aromatic compounds in sweet osmanthus, laying the foundation for use of OfWRKYs to improve the aroma of ornamental plants.
Collapse
Affiliation(s)
- Wenjie Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qixia Ouyang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuli Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tingting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ling Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kongshu Ji
- Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, 210037, PR China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
49
|
Li SF, Wang J, Dong R, Zhu HW, Lan LN, Zhang YL, Li N, Deng CL, Gao WJ. Chromosome-level genome assembly, annotation and evolutionary analysis of the ornamental plant Asparagus setaceus. HORTICULTURE RESEARCH 2020; 7:48. [PMID: 32257234 PMCID: PMC7109074 DOI: 10.1038/s41438-020-0271-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 05/04/2023]
Abstract
Asparagus setaceus is a popular ornamental plant cultivated in tropical and subtropical regions globally. Here, we constructed a chromosome-scale reference genome of A. setaceus to facilitate the investigation of its genome characteristics and evolution. Using a combination of Nanopore long reads, Illumina short reads, 10× Genomics linked reads, and Hi-C data, we generated a high-quality genome assembly of A. setaceus covering 710.15 Mb, accounting for 98.63% of the estimated genome size. A total of 96.85% of the sequences were anchored to ten superscaffolds corresponding to the ten chromosomes. The genome of A. setaceus was predicted to contain 28,410 genes, 25,649 (90.28%) of which were functionally annotated. A total of 65.59% of the genome was occupied by repetitive sequences, among which long terminal repeats were predominant (42.51% of the whole genome). Evolutionary analysis revealed an estimated divergence time of A. setaceus from its close relative A. officinalis of ~9.66 million years ago, and A. setaceus underwent two rounds of whole-genome duplication. In addition, 762 specific gene families, 96 positively selected genes, and 76 resistance (R) genes were detected and functionally predicted in A. setaceus. These findings provide new knowledge about the characteristics and evolution of the A. setaceus genome, and will facilitate comparative genetic and genomic research on the genus Asparagus.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Jin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Hong-Wei Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| |
Collapse
|
50
|
Xue T, Zheng X, Chen D, Liang L, Chen N, Huang Z, Fan W, Chen J, Cen W, Chen S, Zhu J, Chen B, Zhang X, Chen Y. A high-quality genome provides insights into the new taxonomic status and genomic characteristics of Cladopus chinensis (Podostemaceae). HORTICULTURE RESEARCH 2020; 7:46. [PMID: 32257232 PMCID: PMC7109043 DOI: 10.1038/s41438-020-0269-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
The Podostemaceae are ecologically and morphologically unusual aquatic angiosperms that survive only in rivers with pristine hydrology and high water quality and are at a relatively high risk of extinction. The taxonomic status of Podostemaceae has always been controversial. Here, we report the first high-quality genome assembly for Cladopus chinensis of Podostemaceae, obtained by incorporating Hi-C, Illumina and PacBio sequencing. We generated an 827.92 Mb genome with a contig N50 of 1.42 Mb and 27,370 annotated protein-coding genes. The assembled genome size was close to the estimated size, and 659.42 Mb of the assembly was assigned to 29 superscaffolds (scaffold N50 21.22 Mb). A total of 59.20% repetitive sequences were identified, among which long terminal repeats (LTRs) were the most abundant class (28.97% of the genome). Genome evolution analysis suggested that the divergence time of Cladopus chinensis (106 Mya) was earlier than that of Malpighiales (82 Mya) and that this taxon diverged into an independent branch of Podestemales. A recent whole-genome duplication (WGD) event occurred 4.43 million years ago. Comparative genomic analysis revealed that the expansion and contraction of oxidative phosphorylation, photosynthesis and isoflavonoid metabolism genes in Cladopus chinensis are probably related to the genomic characteristics of this growing submerged species. Transcriptome analysis revealed that upregulated genes in the shoot group compared to the root group were enriched in the NAC gene family and transcription factors associated with shoot development and defense responses, including WUSCHEL (WUS), ASYMMETRIC LEAVES (ASL), SHOOT MERISTEMLESS (STM), NAC2, NAC8, NAC29, NAC47, NAC73, NAC83 and NAC102. These findings provide new insights into the genomic diversity of unusual aquatic angiosperms and serve as a valuable reference for the taxonomic status and unusual shoot apical meristem of Podostemaceae.
Collapse
Affiliation(s)
- Ting Xue
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Duo Chen
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Limin Liang
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Nan Chen
- College of Fine Arts, Fujian Normal University, Fuzhou, China
| | - Zhen Huang
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenfang Fan
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiannan Chen
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Wan Cen
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Shuai Chen
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinmao Zhu
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Binghua Chen
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xingtan Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youqiang Chen
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|