1
|
Zhang W, Munyaneza V, Kant S, Wang S, Wang X, Cai H, Wang C, Shi L, Wang S, Xu F, Ding G. Transcription factor AtNAC002 positively regulates Cu toxicity tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136186. [PMID: 39442300 DOI: 10.1016/j.jhazmat.2024.136186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Copper (Cu) is an essential micronutrient for plant growth and development, but environmental Cu pollution has become increasingly severe, adversely affecting both ecosystems and crop productivity. In this study, we identified the AtNAC002 gene as a positive regulator of Cu toxicity in Arabidopsis thaliana. We found that AtNAC002 expression was induced by Cu excess, and the atnac002 mutant was Cu-sensitive, accumulating more Cu than the wild-type. Additionally, atnac002 mutants exhibit reduced activities of antioxidant enzymes (SOD, POD, and CAT), leading to increased levels of reactive oxygen species and malondialdehyde, which decrease Cu resistance. AtNAC002 might play a role in vacuolar and mitochondrial Cu compartmentalization by regulating genes involved in Cu detoxification, specifically COX11 and HCC1. Furthermore, AtNAC002 was implicated in flavone and flavanol biosynthesis, with the atnac002 mutant showing reduced flavonoid content. Our findings suggest that AtNAC002 is integral to the regulation of Cu toxicity tolerance in A. thaliana. This knowledge is critical for advancing our understanding and offers potential molecular breeding targets to enhance plant performance under Cu excess, which is significant for improving global food security and forest restoration.
Collapse
Affiliation(s)
- Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Surya Kant
- School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Sidan Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products/Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, 510640 Guangzhou, China.
| | - Hongmei Cai
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Chuang Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Lei Shi
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Sheliang Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
2
|
Guo L, Li T, Zhang B, Yan K, Meng J, Chang M, Hou L. Family Identification and Functional Study of Copper Transporter Genes in Pleurotus ostreatus. Int J Mol Sci 2024; 25:12154. [PMID: 39596220 PMCID: PMC11594920 DOI: 10.3390/ijms252212154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The copper transport (COPT/Ctr) family plays an important role in maintaining metal homeostasis in organisms, and many species rely on Ctrs to achieve transmembrane transport via copper (Cu) uptake. At present, the Ctr family is widely studied in plants. However, there are few reports on the use of Ctrs in edible mushrooms. In this study, the Pleurotus ostreatus CCMSSC00389 strain was used as the research object, and the addition of exogenous copper ions (Cu2+) increased the temperature tolerance of mycelia, maintained the integrity of cell membranes, and increased mycelial density. In addition, four PoCtr genes were further identified and subjected to bioinformatics analysis. Further research revealed that there were differences in the expression patterns of the PoCtr genes under different temperature stresses. In addition, the biological function of PoCtr4 was further explored by constructing transformed strains. The results showed that OE-PoCtr4 enhanced the tolerance of mycelia to heat stress and H2O2. After applying heat stress (40 °C), OE-PoCtr4 promoted the recovery of mycelia. Under mild stress (32 °C), OE-PoCtr4 promoted mycelial growth, maintained cell membrane integrity, and reduced the degree of cell membrane damage caused by heat stress. It is speculated that OE-PoCtr4 may maintain the integrity of the cell membrane and enhance the heat resistance of mycelia by regulating the homeostasis of Cu2+.
Collapse
Affiliation(s)
- Lifeng Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
| | - Tonglou Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
| | - Baosheng Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
| | - Kexing Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
- Shanxi Research Center for Engineering Technology of Edible Fungi, Jinzhong 030801, China
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (T.L.); (B.Z.); (K.Y.); (J.M.)
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
3
|
Lu Z, Su J, Fan H, Zhang X, Wang H, Guan Z, Fang W, Chen F, Zhang F. Insights into the genetic architecture of the reciprocal interspecific hybrids derived from Chrysanthemum dichrum and C. nankingense. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:75. [PMID: 39507485 PMCID: PMC11534950 DOI: 10.1007/s11032-024-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Chrysanthemums are versatile ornamental plants, and improving leaf and flower traits is an important breeding objective. Distant hybridization is a powerful method for plant breeding and genetic improvement, whereas the genetic basis in interspecific F1 progeny of chrysanthemums needs to be better understood for breeding purposes. In this study, the leaf and floral traits of the 273 reciprocal interspecific F1 hybrids of diploid C. dichrum (YSJ) and C. nankingense (JHN) were analyzed along with their SNP-derived genetic structure to elucidate the influence of differences in genetic background between the parents on the hybrid performance. We then performed a genome-wide association analysis (GWAS) to reveal the investigated traits' genomic loci and candidate genes. Considerable phenotypic variation (8.81% ~ 55.78%) and heterosis with transgressive segregation in both directions were observed in the reciprocal progenies. We observed a higher level of phenotypic variation in JHN × YSJ rather than in YSJ × JHN. Also, a significant reciprocal effect was observed for most examined traits. Based on the SNP data, we separated the hybrid progenies into three groups (I, II, and III), albeit imperfectly dependent on the cross directions, except for some reciprocal hybrids clustering into group II. Group I from YSJ × JHN and Group III from YSJ × JHN differed with contrasting F ST and π ratios, indicating the genetic changes in the reciprocal populations. The outcome of GWAS via the IIIVmrMLM method detected 339 significant quantitative trait nucleotides (QTNs) and 40 suggestive QTNs, and the phenotypic variation explained by a single QTN ranged from 0.26% to 7.42%. Within 100 kb upstream and downstream of the important QTNs, we discovered 49 known genes and 39 new candidate genes for the investigated leaf and floral traits. Our study provides profound insights into the genetic architecture of reciprocal hybrid progenies of chrysanthemum species, facilitating future breeding activities. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01518-0.
Collapse
Affiliation(s)
- Zhaowen Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Honghong Fan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| |
Collapse
|
4
|
Zhang J, Huang WL, Chen WS, Rao RY, Lai NW, Huang ZR, Yang LT, Chen LS. Mechanisms by Which Increased pH Ameliorates Copper Excess in Citrus sinensis Roots: Insight from a Combined Analysis of Physiology, Transcriptome, and Metabolome. PLANTS (BASEL, SWITZERLAND) 2024; 13:3054. [PMID: 39519972 PMCID: PMC11548300 DOI: 10.3390/plants13213054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Limited data are available on copper (Cu)-pH interaction-responsive genes and/or metabolites in plant roots. Citrus sinensis seedlings were treated with 300 μM (Cu toxicity) or 0.5 μM (control) CuCl2 at pH 3.0 or 4.8 for 17 weeks. Thereafter, gene expression and metabolite profiles were obtained using RNA-Seq and widely targeted metabolome, respectively. Additionally, several related physiological parameters were measured in roots. The results indicated that elevating the pH decreased the toxic effects of Cu on the abundances of secondary metabolites and primary metabolites in roots. This difference was related to the following several factors: (a) elevating the pH increased the capacity of Cu-toxic roots to maintain Cu homeostasis by reducing Cu uptake and Cu translocation to young leaves; (b) elevating the pH alleviated Cu toxicity-triggered oxidative damage by decreasing reactive oxygen species (ROS) formation and free fatty acid abundances and increasing the ability to detoxify ROS and maintain cell redox homeostasis in roots; and (c) increasing the pH prevented root senescence and cell wall (CW) metabolism impairments caused by Cu toxicity by lowering Cu levels in roots and root CWs, thus improving root growth. There were some differences and similarities in Cu-pH interaction-responsive genes and metabolites between leaves and roots.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (W.-L.H.); (W.-S.C.); (R.-Y.R.); (N.-W.L.); (Z.-R.H.); (L.-T.Y.)
| |
Collapse
|
5
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
6
|
Palusińska M, Barabasz A, Antosiewicz DM. NtZIP5A/B is involved in the regulation of Zn/Cu/Fe/Mn/Cd homeostasis in tobacco. Metallomics 2024; 16:mfae035. [PMID: 39085042 DOI: 10.1093/mtomcs/mfae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Plants grow in soils with varying concentrations of microelements, often in the presence of toxic metals e.g. Cd. To cope, they developed molecular mechanisms to regulate metal cross-homeostasis. Understanding underlying complex relationships is key to improving crop productivity. Recent research suggests that the Zn and Cd uptake protein NtZIP5A/B [Zinc-regulated, Iron-regulated transporter-like Proteins (ZIPs)] from tobacco (Nicotiana tabacum L. v. Xanthi) is involved in the regulation of a cross-talk between the two metals. Here, we support this conclusion by showing that RNAi-mediated silencing of NtZIP5A/B resulted in a reduction of Zn accumulation and that this effect was significantly enhanced by the presence of Cd. Our data also point to involvement of NtZIP5B in regulating a cross-talk between Cu, Fe, and Mn. Using yeast growth assays, Cu (but not Fe or Mn) was identified as a substrate for NtZIP5B. Furthermore, GUS-based analysis showed that the tissue-specific activity of the NtZIP5B promoter was different in each of the Zn-/Cu-/Fe-/Mn deficiencies applied with/without Cd. The results indicate that NtZIP5B is involved in maintaining multi-metal homeostasis under conditions of Zn, Cu, Fe, and Mn deficiency, and also in the presence of Cd. It was concluded that the protein regulates the delivery of Zn and Cu specifically to targeted different root cells depending on the Zn/Cu/Fe/Mn status. Importantly, in the presence of Cd, the activity of the NtZIP5B promoter is lost in meristematic cells and increased in mature root cortex cells, which can be considered a manifestation of a defense mechanism against its toxic effects.
Collapse
Affiliation(s)
- Małgorzata Palusińska
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Anna Barabasz
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
| | - Danuta Maria Antosiewicz
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
| |
Collapse
|
7
|
Shi K, Liu J, Liang H, Dong H, Zhang J, Wei Y, Zhou L, Wang S, Zhu J, Cao M, Jones CS, Ma D, Wang Z. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:683-699. [PMID: 38358036 DOI: 10.1111/jipb.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.
Collapse
Affiliation(s)
- Kun Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huan Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongbin Dong
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinli Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuanhong Wei
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Le Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaopeng Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiahao Zhu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingshu Cao
- AgResearch Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - Chris S Jones
- International Livestock Research Institute, Nairobi, 00100, Kenya
| | - Dongmei Ma
- School of Ecology and Environment, Ningxia University, Yinchuan, 750021, China
| | - Zan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Bai Y, Shi K, Shan D, Wang C, Yan T, Hu Z, Zheng X, Zhang T, Song H, Li R, Zhao Y, Deng Q, Dai C, Zhou Z, Guo Y, Kong J. The WRKY17-WRKY50 complex modulates anthocyanin biosynthesis to improve drought tolerance in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111965. [PMID: 38142750 DOI: 10.1016/j.plantsci.2023.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Drought stress is increasing worldwide due to global warming, which severely reduces apple (Malus domestica) yield. Clarifying the basis of drought tolerance in apple could accelerate the molecular breeding of drought-tolerant cultivars to maintain apple production. We identified a transcription factor MdWRKY50 by yeast two-hybrid (Y2H) assays as an interactor of the drought-tolerant protein MdWRKY17, and confirmed their interaction by bimolecular fluorescence complementation (BiFC) and pull-down assays. MdWRKY50 was induced by drought and when overexpressed in apple, conferred transgenic apple plants enhanced drought tolerance by directly binding to the promoter of anthocyanin synthetic gene Chalcone synthase (MdCHS) to upregulate its expression for higher anthocyanin. Increased anthocyanin relieves apple plants from oxidative damage under drought stress. MdWRKY50 RNA-interference transgenic apple plants showed opposite phenotypes. The dimerization of MdWRKY50 with mutated MdWRKY17DP mimicking drought-induced phosphorylation by the mitogen-activated protein kinase kinase 2 (MEK2)-MPK6 cascade, compared with MdWRKY17AP and MdWRKY17, further promoted anthocyanin biosynthesis, suggesting dimerization with MdWRKY17 makes MdWRKY50 more powerful in promoting anthocyanin biosynthesis under drought stress. Taken together, we isolated an entire MEK2-MAPK6-MdWRKY17-MdWRKY50-MdCHS pathway for drought tolerance and generated transgenic apple germplasm with enhanced drought tolerance and higher anthocyanin levels.
Collapse
Affiliation(s)
- Yixue Bai
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ruoxue Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixuan Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Deng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Changjian Dai
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Hu Y, Ji J, Cheng H, Luo R, Zhang J, Li W, Wang X, Zhang J, Yao Y. The miR408a-BBP-LAC3/CSD1 module regulates anthocyanin biosynthesis mediated by crosstalk between copper homeostasis and ROS homeostasis during light induction in Malus plants. J Adv Res 2023; 51:27-44. [PMID: 36371057 PMCID: PMC10491975 DOI: 10.1016/j.jare.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION The expression of miR408 is affected by copper (Cu) conditions and positively regulates anthocyanin biosynthesis in Arabidopsis. However, the underlying mechanisms by which miR408 regulates anthocyanin biosynthesis mediated by Cu homeostasis and reactive oxygen species (ROS) homeostasis remain unclear in Malus plants. OBJECTIVES Our study aims to elucidate how miR408a and its target, basic blue protein (BBP) regulate Cu homeostasis and ROS homeostasis, and anthocyanin biosynthesis in Malus plants. METHODS The roles of miR408a and its target BBP in regulating anthocyanin biosynthesis, Cu homeostasis, and ROS homeostasis were mainly identified in Malus plants. RESULTS We found that the BBP protein interacted with the copper-binding proteins LAC3 (laccase) and CSD1 (Cu/Zn SOD superoxide dismutase), indicating a potential crosstalk between Cu homeostasis and ROS homeostasis might be mediated by miR408 to regulate the anthocyanin accumulation. Further studies showed that overexpressing miR408a or suppressing BBP transiently significantly increased the expression of genes related to Cu binding and Cu transport, leading to anthocyanin accumulation under light induction in apple fruit and Malus plantlets. Consistently, opposite results were obtained when repressing miR408a or overexpressing BBP. Moreover, light induction significantly increased the expression of miR408a, CSD1, and LAC3, but significantly reduced the BBP expression, resulting in increased Cu content and anthocyanin accumulation. Furthermore, excessive Cu significantly increased the anthocyanin accumulation, accompanied by reduced expression of miR408a and Cu transport genes, and upregulated expression of Cu binding proteins including BBP, LAC3, and CSD1 to maintain the Cu homeostasis and ROS homeostasis in Malus plantlets. CONCLUSION Our findings provide new insights into the mechanism by which the miR408a-BBP-LAC3/CSD1 module perceives light and Cu signals regulating Cu and ROS homeostasis, ultimately affecting anthocyanin biosynthesis in Malus plants.
Collapse
Affiliation(s)
- Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jiayi Ji
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China; Beijing Forestry University, China
| | - Hao Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Rongli Luo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Wenjing Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Xingsui Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| |
Collapse
|
10
|
Gong XR, Zhang SN, Ye LN, Luo JJ, Zhang C. Cross talk between Cu excess and Fe deficiency in the roots of rice. Gene 2023; 874:147491. [PMID: 37207827 DOI: 10.1016/j.gene.2023.147491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Copper (Cu) and iron (Fe) share similar characteristics and participate as coenzymes in several physiological processes. Both Cu excess and Fe deficiency result in chlorosis, however, the crosstalk between the two is not clear in rice. In this study, we performed transcriptome analysis for Cu excess and Fe deficiency in rice. Some WRKY family members (such as WRKY26) and some bHLH family members (such as late flowering) were selected as novel potential transcription factors involved in the regulation of Cu detoxification and Fe utilization, respectively. These genes were induced under corresponding stress conditions. Many Fe uptake-related genes were induced by Cu excess, while Cu detoxification-related genes were not induced by Fe deficiency. Meanwhile, some genes, such as metallothionein 3a, gibberellin 3beta-dioxygenase 2 and WRKY11, were induced by Cu excess but repressed by Fe deficiency. Concisely, our results highlight the crosstalk between Cu excess and Fe deficiency in rice. Cu excess caused Fe deficiency response, while Fe deficiency did not lead to Cu toxicity response. Metallothionein 3a might be responsible for Cu toxicity-induced chlorosis in rice. The crosstalk between Cu excess and Fe deficiency might be regulated by gibberellic acid.
Collapse
Affiliation(s)
- Xiao-Ran Gong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Shi-Nan Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Li-Na Ye
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Jia-Jun Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Chang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.
| |
Collapse
|
11
|
Wu C, Xiao S, Zuo D, Cheng H, Zhang Y, Wang Q, Lv L, Song G. Genome-wide analysis elucidates the roles of GhHMA genes in different abiotic stresses and fiber development in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:281-301. [PMID: 36442360 DOI: 10.1016/j.plaphy.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The heavy metal-binding domain is involved in heavy metal transporting and plays a significant role in plant detoxification. However, the functions of HMAs are less well known in cotton. In this study, a total of 143 GhHMAs (heavy metal-binding domain) were detected by genome-wide identification in G. hirsutum L. All the GhHMAs were classified into four groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GhHMA genes was highly conserved. 212 paralogous GhHMA gene pairs were identified, and the segmental duplications were the main role to the expansion of GhHMAs. The Ka/Ks values suggested that the GhHMA gene family has undergone purifying selection during the long-term evolutionary process. GhHMA3 and GhHMA75 were located in the plasma membrane, while GhHMA26, GhHMA117 and GhHMA121 were located in the nucleus, respectively. Transcriptomic data and qRT-PCR showed that GhHMA26 exhibited different expression patterns in each tissue and during fiber development or under different abiotic stresses. Overexpressing GhHMA26 significantly promoted the elongation of leaf trichomes and also improved the tolerance to salt stress. Therefore, GhHMA26 may positively regulate fiber elongation and abiotic stress. Yeast two-hybrid assays indicated that GhHMA26 and GhHMA75 participated in multiple biological functions. Our results suggest some genes in the GhHMAs might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GhHMA genes in cotton.
Collapse
Affiliation(s)
- Cuicui Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China
| | - Shuiping Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Cotton Research Institute of Jiangxi Province, Jiujiang, 332105, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
12
|
Xue C, Sun L, Qu B, Gao Y, Liu Z, Guo C, Liu W, Chang W, Tai P. Grafting with an invasive Xanthium strumarium improves tolerance and phytoremediation of native congener X. sibiricum to cadmium/copper/nickel tailings. CHEMOSPHERE 2022; 308:136561. [PMID: 36155022 DOI: 10.1016/j.chemosphere.2022.136561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Invasive plants could play an important role in the restoration of tailings, but their invasiveness limits their practical application. In this study, the phytoremediation potentials and invasive risks of an exotic invasive plant (Xanthium strumarium, LT), a native plant (X. sibiricum, CR), and combinations of inoculations (EG, with CR as the scion and LT as the rootstock; SG, with CR as both the scion and rootstock) were evaluated on Cd/Cu/Ni tailings. LT rootstock has a stronger nutrient and metal transport capacity, compared with CR. EG not only had higher biomass and Cd/Cu/Ni accumulation, but also abundant rhizosphere microbial communities. Hydroponic and common garden experiments showed that the growth and metal enrichment characteristics of EG are not inherited by plant offspring, which reduces the risk of the biological diffusion in the process of using exotic species. Transcriptome analysis shows that a large number of differentially-expressed genes in EG leaves and roots are involved in phenylpropanoid biosynthesis, secondary metabolite generation, and signal transduction. The genes induced in EG leaves, including cyclic nucleotide-gated ion channel, calcium-binding protein, and WRKY transcription factor, were found to be differentially expressed compared to CR. The genes induced in EG roots, included phenylalanine ammonia-lyase, cinnamoyl-CoA reductase, caffeoyl-CoA O-methyltransferase, and beta-glucosidase. We speculate that lignin and glucosinolates play an important role in the metal accumulation and transportation of EG. The results demonstrate that grafting with LT not only improved CR tolerance and accumulation of Cd, Cu, and Ni, but also created a beneficial microbial environment for plants in tailings. More importantly, grafting with LT did not enhance the invasiveness of CR. Our results provide an example of the safe use of invasive plants in the restoration of Cd/Cu/Ni tailings.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China; College of Biological Technology, Shenyang Agricultural University, Shenyang, 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Qu
- College of Biological Technology, Shenyang Agricultural University, Shenyang, 110016, China
| | - Yingmei Gao
- College of Biological Technology, Shenyang Agricultural University, Shenyang, 110016, China
| | - Zhi Liu
- Shenyang Academy of Environmental Sciences, Shenyang, 110016, China
| | - Cheng Guo
- Liaoning Shihua University, Fushun, 113000, China
| | - Wanbin Liu
- Dengta Agricultural and Rural Service Center, China
| | - Wenyue Chang
- Shenyang Academy of Environmental Sciences, Shenyang, 110016, China.
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
13
|
Noor I, Sohail H, Sun J, Nawaz MA, Li G, Hasanuzzaman M, Liu J. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. CHEMOSPHERE 2022; 303:135196. [PMID: 35659937 DOI: 10.1016/j.chemosphere.2022.135196] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 05/27/2023]
Abstract
Heavy metal/metalloids (HMs) are among the primary soil pollutants that limit crop production worldwide. Plants grown in HM contaminated soils exhibit reduced growth and development, resulting in a decrease in crop production. The exposure to HMs induces plant oxidative stress due to the formation of free radicals, which alter plant morphophysiological and biochemical mechanisms at cellular and tissue levels. When exposed to HM toxicity, plants evolve sophisticated physiological and cellular defense strategies, such as sequestration and transportation of metals, to ensure their survival. Plants also have developed efficient strategies by activating signaling pathways, which induce the expression of HM transporters. Plants either avoid the uptake of HMs from the soil or activate the detoxifying mechanism to tolerate HM stress, which involves the production of antioxidants (enzymatic and non-enzymatic) for the scavenging of reactive oxygen species. The metal-binding proteins including phytochelatins and metallothioneins also participate in metal detoxification. Furthermore, phytohormones and their signaling pathways also help to regulate cellular activities to counteract HM stress. The excessive levels of HMs in the soil can contribute to plant morpho-physiological, biochemical, and molecular alterations, which have a detrimental effect on the quality and productivity of crops. To maintain the commercial value of fruits and vegetables, various measures should be considered to remove HMs from the metal-polluted soils. Bioremediation is a promising approach that involves the use of tolerant microorganisms and plants to manage HMs pollution. The understanding of HM toxicity, signaling pathways, and tolerance mechanisms will facilitate the development of new crop varieties that help in improving phytoremediation.
Collapse
Affiliation(s)
- Iqra Noor
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jingxian Sun
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Azher Nawaz
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
14
|
Yang Y, Fang X, Chen M, Wang L, Xia J, Wang Z, Fang J, Tran LSP, Shangguan L. Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119561. [PMID: 35659552 DOI: 10.1016/j.envpol.2022.119561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of 'Shine Muscat' ('SM') grapevine seedlings were treated with CuSO4 solution (10 mM/L), CuSO4 + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
Collapse
Affiliation(s)
- Yuxian Yang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Lingyu Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jiaxin Xia
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| |
Collapse
|
15
|
Wang L, Zhou F, Liu X, Zhang H, Yan T, Sun Y, Shi K, Zheng X, Zhu Y, Shan D, Bai Y, Guo Y, Kong J. ELONGATED HYPOCOTYL 5-mediated suppression of melatonin biosynthesis is alleviated by darkness and promotes cotyledon opening. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4941-4953. [PMID: 35580847 DOI: 10.1093/jxb/erac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) biosynthesis in plants is induced by darkness and high-intensity light; however, the underlying transcriptional mechanisms and upstream signalling pathways are unknown. We identified a dark-induced and highly expressed melatonin synthetase in Arabidopsis thaliana, AtSNAT6, encoding serotonin N-acetyltransferase. We assessed melatonin content and AtSNAT6 expression in mutants lacking key regulators of light/dark signalling. AtCOP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and AtHY5 (ELONGATED HYPOCOTYL 5), which control light/dark transition and photomorphogenesis, promoted and suppressed melatonin biosynthesis, respectively. Using EMSA and ChIP-qPCR analysis, we showed that AtHY5 inhibits AtSNAT6 expression directly. An analysis of melatonin content in snat6 hy5 double mutant and AtHY5+AtSNAT6-overexpressing plants confirmed the regulatory function of AtHY5 and AtSNAT6 in melatonin biosynthesis. Exogenous melatonin further inhibited cotyledon opening in hy5 mutant and AtSNAT6-overexpressing seedlings, but partially reversed the promotion of cotyledon opening in AtHY5-overexpressing seedlings and snat6. Additionally, CRISPR/Cas9-mediated mutation of AtSNAT6 increased cotyledon opening in hy5 mutant, and overexpression of AtSNAT6 decreased cotyledon opening in AtHY5-overexpressing seedlings via changing melatonin biosynthesis, confirming that AtHY5 decreased melatonin-mediated inhibition of cotyledon opening. Our data provide new insights into the regulation of melatonin biosynthesis and its function in cotyledon opening.
Collapse
Affiliation(s)
- Lin Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Fangfang Zhou
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuan Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Wu F, Huang H, Peng M, Lai Y, Ren Q, Zhang J, Huang Z, Yang L, Rensing C, Chen L. Adaptive Responses of Citrus grandis Leaves to Copper Toxicity Revealed by RNA-Seq and Physiology. Int J Mol Sci 2021; 22:ijms222112023. [PMID: 34769452 PMCID: PMC8585100 DOI: 10.3390/ijms222112023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 01/29/2023] Open
Abstract
Copper (Cu)-toxic effects on Citrus grandis growth and Cu uptake, as well as gene expression and physiological parameters in leaves were investigated. Using RNA-Seq, 715 upregulated and 573 downregulated genes were identified in leaves of C. grandis seedlings exposed to Cu-toxicity (LCGSEC). Cu-toxicity altered the expression of 52 genes related to cell wall metabolism, thus impairing cell wall metabolism and lowering leaf growth. Cu-toxicity downregulated the expression of photosynthetic electron transport-related genes, thus reducing CO2 assimilation. Some genes involved in thermal energy dissipation, photorespiration, reactive oxygen species scavenging and cell redox homeostasis and some antioxidants (reduced glutathione, phytochelatins, metallothioneins, l-tryptophan and total phenolics) were upregulated in LCGSEC, but they could not protect LCGSEC from oxidative damage. Several adaptive responses might occur in LCGSEC. LCGSEC displayed both enhanced capacities to maintain homeostasis of Cu via reducing Cu uptake by leaves and preventing release of vacuolar Cu into the cytoplasm, and to improve internal detoxification of Cu by accumulating Cu chelators (lignin, reduced glutathione, phytochelatins, metallothioneins, l-tryptophan and total phenolics). The capacities to maintain both energy homeostasis and Ca homeostasis might be upregulated in LCGSEC. Cu-toxicity increased abscisates (auxins) level, thus stimulating stomatal closure and lowering water loss (enhancing water use efficiency and photosynthesis).
Collapse
|
18
|
Shan D, Wang C, Song H, Bai Y, Zhang H, Hu Z, Wang L, Shi K, Zheng X, Yan T, Sun Y, Zhu Y, Zhang T, Zhou Z, Guo Y, Kong J. The MdMEK2-MdMPK6-MdWRKY17 pathway stabilizes chlorophyll levels by directly regulating MdSUFB in apple under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:814-828. [PMID: 34469599 DOI: 10.1111/tpj.15480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Drought stress severely limits plant growth and production in apple (Malus domestica Borkh.). To breed water-deficit-tolerant apple cultivars that maintain high yields under slight or moderate drought stress, it is important to uncover the mechanisms underlying the transcriptional regulation of chlorophyll metabolism in apple. To explore this mechanism, we generated transgenic 'Gala3' apple plants with overexpression or knockdown of MdWRKY17, which encodes a transcription factor whose expression is significantly induced by water deficit. Under moderate drought stress, we observed significantly higher chlorophyll contents and photosynthesis rates in overexpression transgenic plants than in controls, whereas these were dramatically lower in the knockdown lines. MdWRKY17 directly regulates MdSUFB expression, as demonstrated by in vitro and in vivo experiments. MdSUFB, a key component of the sulfur mobilization (SUF) system that assembles Fe-S clusters, is essential for inhibiting chlorophyll degradation and stabilizing electron transport during photosynthesis, leading to higher chlorophyll levels in transgenic apple plants overexpressing MdWRKY17. The activated MdMEK2-MdMPK6 cascade by water-deficit stress fine-tunes the MdWRKY17-MdSUFB pathway by phosphorylating MdWRKY17 under water-deficit stress. This fine-tuning of the MdWRKY17-MdSUFB regulatory pathway is important for balancing plant survival and yield losses (chlorophyll degradation and reduced photosynthesis) under slight or moderate drought stress. The phosphorylation by MdMEK2-MdMPK6 activates the MdWRKY17-MdSUFB pathway at S66 (identified by LC-MS), as demonstrated by in vitro and in vivo experiments. Our findings reveal that the MdMEK2-MdMPK6-MdWRKY17-MdSUFB pathway stabilizes chlorophyll levels under moderate drought stress, which could facilitate the breeding of apple varieties that maintain high yields under drought stress.
Collapse
Affiliation(s)
- Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Huang HY, Ren QQ, Lai YH, Peng MY, Zhang J, Yang LT, Huang ZR, Chen LS. Metabolomics combined with physiology and transcriptomics reveals how Citrus grandis leaves cope with copper-toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112579. [PMID: 34352583 DOI: 10.1016/j.ecoenv.2021.112579] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Limited data are available on metabolic responses of plants to copper (Cu)-toxicity. Firstly, we investigated Cu-toxic effects on metabolomics, the levels of free amino acids, NH4+-N, NO3--N, total nitrogen, total soluble proteins, total phenolics, lignin, reduced glutathione (GSH) and malondialdehyde, and the activities of nitrogen-assimilatory enzymes in 'Shatian' pummelo (Citrus grandis) leaves. Then, a conjoint analysis of metabolomics, physiology and transcriptomics was performed. Herein, 59 upregulated [30 primary metabolites (PMs) and 29 secondary metabolites (SMs)] and 52 downregulated (31 PMs and 21 SMs) metabolites were identified in Cu-toxic leaves. The toxicity of Cu to leaves was related to the Cu-induced accumulation of NH4+ and decrease of nitrogen assimilation. Metabolomics combined with physiology and transcriptomics revealed some adaptive responses of C. grandis leaves to Cu-toxicity, including (a) enhancing tryptophan metabolism and the levels of some amino acids and derivatives (tryptophan, phenylalanine, 5-hydroxy-l-tryptophan, 5-oxoproline and GSH); (b) increasing the accumulation of carbohydrates and alcohols and upregulating tricarboxylic acid cycle and the levels of some organic acids and derivatives (chlorogenic acid, quinic acid, d-tartaric acid and gallic acid o-hexoside); (c) reducing phospholipid (lysophosphatidylcholine and lysophosphatidylethanolamine) levels, increasing non-phosphate containing lipid [monoacylglycerol ester (acyl 18:2) isomer 1] levels, and inducing low-phosphate-responsive gene expression; and (d) triggering the biosynthesis of some chelators (total phenolics, lignin, l-trytamine, indole, eriodictyol C-hexoside, quercetin 5-O-malonylhexosyl-hexoside, N-caffeoyl agmatine, N'-p-coumaroyl agmatine, hydroxy-methoxycinnamate and protocatechuic acid o-glucoside) and vitamins and derivatives (nicotinic acid-hexoside, B1 and methyl nicotinate). Cu-induced upregulation of many antioxidants could not protect Cu-toxic leaves from oxidative damage. To conclude, our findings corroborated the hypothesis that extensive reprogramming of metabolites was carried out in Cu-toxic C. grandis leaves in order to cope with Cu-toxicity.
Collapse
Affiliation(s)
- Hui-Yu Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian-Qian Ren
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yin-Hua Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Yi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Li Y, Zheng X, Tian Y, Ma C, Yang S, Wang C. Comparative transcriptome analysis of NaCl and KCl stress response in Malus hupehensis Rehd. Provide insight into the regulation involved in Na + and K + homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:101-114. [PMID: 33975146 DOI: 10.1016/j.plaphy.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Apple is among the most widely cultivated perennial fruit crops worldwide. It is sensitive to salt stress, which seriously affects the growth and productivity of apple trees by destroying the homeostasis of Na+ and K+. Previous studies focused on the molecular mechanism underlying NaCl stress. However, signaling transduction under KCl stress has not been thoroughly studied. RESULTS We comprehensively analyzed the salt tolerance of Malus hupehensis Rehd., which is a widely used rootstock in apple orchards, by using RNA-Seq. Roots and leaves were treated with NaCl and KCl. Based on mapping analyses, a total of 762 differentially expressed genes (DEGs) related to NaCl and KCl stress in the roots and leaves were identified. Furthermore, we identified seven hub genes by WGCNA Analysis. The Gene Ontology (GO) terms were enriched in ion transmembrane transporter and oxidoreductase activity under NaCl and KCl stress. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways focused on the plant hormone signal transduction and mitogen-activated protein kinase signaling pathway. We also screened out 28 candidate genes from 762 DEGs and verified their expression by quantitative reverse transcription polymerase chain reaction (qRT-PCR). All of these enriched genes were closely related to NaCl and KCl stress and take part in mediating the Na+ and K+ homeostasis in M. hupehensis. CONCLUSIONS This transcriptome analysis provides a valuable resource for elucidating the signaling pathway of NaCl and KCl stress and is a substantial genetic resource for discovering genes related to the NaCl and KCl stress response.
Collapse
Affiliation(s)
- Yuqi Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Shaolan Yang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China.
| |
Collapse
|