1
|
Zheng Q, Huang Y, He X, Zhang MM, Liu ZJ. Genome-Wide Identification and Expression Pattern Analysis of GATA Gene Family in Orchidaceae. Genes (Basel) 2024; 15:915. [PMID: 39062694 PMCID: PMC11276399 DOI: 10.3390/genes15070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The GATA transcription factors play crucial roles in plant growth, development, and responses to environmental stress. Despite extensive studies of GATA genes in many plants, their specific functions and mechanisms in orchids remain unexplored. In our study, a total of 149 GATA genes were identified in the genomes of seven sequenced orchid species (20 PeqGATAs, 23 CgGATAs, 24 CeGATAs, 23 DcaGATAs, 20 DchGATAs, 27 DnoGATAs, and 12 GelGATAs), classified into four subfamilies. Subfamily I typically contains genes with two exons, while subfamily II contains genes with two or three exons. Most members of subfamilies III and IV have seven or eight exons, with longer introns compared to subfamilies I and II. In total, 24 pairs (CgGATAs-DchGATAs), 27 pairs (DchGATAs-DnoGATAs), and 14 pairs (DnoGATAs-GelGATAs) of collinear relationships were identified. Cis-acting elements in GATA promoters were mainly enriched in abscisic acid (ABA) response elements and methyl jasmonate (MeJA) elements. Expression patterns and RT-qPCR analysis revealed that GATAs are involved in the regulation of floral development in orchids. Furthermore, under high-temperature treatment, GL17420 showed an initial increase followed by a decrease, GL18180 and GL17341 exhibited a downregulation followed by upregulation and then a decrease, while GL30286 and GL20810 displayed an initial increase followed by slight inhibition and then another increase, indicating diverse regulatory mechanisms of different GATA genes under heat stress. This study explores the function of GATA genes in orchids, providing a theoretical basis and potential genetic resources for orchid breeding and stress resistance improvement.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
He X, Zhang MM, Huang Y, Yu J, Zhao X, Zheng Q, Liu ZJ, Lan S. Genome-Based Identification of the Dof Gene Family in Three Cymbidium Species and Their Responses to Heat Stress in Cymbidium goeringii. Int J Mol Sci 2024; 25:7662. [PMID: 39062906 PMCID: PMC11277557 DOI: 10.3390/ijms25147662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
As an important genus in Orchidaceae, Cymbidium has rich ecological diversity and significant economic value. DNA binding with one zinc finger (Dof) proteins are pivotal plant-specific transcription factors that play crucial roles in the growth, development, and stress response of plants. Although the Dof genes have been identified and functionally analyzed in numerous plants, exploration in Orchidaceae remains limited. We conducted a thorough analysis of the Dof gene family in Cymbidium goeringii, C. ensifolium, and C. sinensis. In total, 91 Dof genes (27 CgDofs, 34 CeDofs, 30 CsDofs) were identified, and Dof genes were divided into five groups (I-V) based on phylogenetic analysis. All Dof proteins have motif 1 and motif 2 conserved domains and over half of the genes contained introns. Chromosomal localization and collinearity analysis of Dof genes revealed their evolutionary relationships and potential gene duplication events. Analysis of cis-elements in CgDofs, CeDofs, and CsDofs promoters showed that light-responsive cis-elements were the most common, followed by hormone-responsive elements, plant growth-related elements, and abiotic stress response elements. Dof proteins in three Cymbidium species primarily exhibit a random coil structure, while homology modeling exhibited significant similarity. In addition, RT-qPCR analysis showed that the expression levels of nine CgDofs changed greatly under heat stress. CgDof03, CgDof22, CgDof27, CgDof08, and CgDof23 showed varying degrees of upregulation. Most upregulated genes under heat stress belong to group I, indicating that the Dof genes in group I have great potential for high-temperature resistance. In conclusion, our study systematically demonstrated the molecular characteristics of Dof genes in different Cymbidium species, preliminarily revealed the patterns of heat stress, and provided a reference for further exploration of stress breeding in orchids.
Collapse
Affiliation(s)
- Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Jiali Yu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.-M.Z.); (J.Y.); (X.Z.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.)
| |
Collapse
|
3
|
Wang Y, Wang H, Ye C, Wang Z, Ma C, Lin D, Jin X. Progress in systematics and biogeography of Orchidaceae. PLANT DIVERSITY 2024; 46:425-434. [PMID: 39280975 PMCID: PMC11390685 DOI: 10.1016/j.pld.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024]
Abstract
Orchidaceae are one of the largest families of angiosperms in terms of species richness. In the last decade, numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae, leveraging data from plastid, mitochondrial and nuclear sources. These studies have provided new insights into the systematics, diversification and biogeography of Orchidaceae, establishing a robust foundation for future research. Nevertheless, pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks. To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae, we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015, delving into discussions on the underlying reasons for observed topological conflicts. We also provide a novel phylogenetic framework at the subtribal level. Furthermore, we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography, highlighting factors contributing to extensive speciation. Ultimately, we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chao Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhiping Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chongbo Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
4
|
Luo H, Lu Z, Guan J, Yan M, Liu Z, Wan Y, Zhou G. Gene co-expression network analysis in areca floral organ and the potential role of the AcMADS17 and AcMADS23 in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112049. [PMID: 38408509 DOI: 10.1016/j.plantsci.2024.112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Areca catechu L., a monocot belonging to the palm family, is monoecious, with female and male flowers separately distributed on the same inflorescence. To discover the molecular mechanism of flower development in Areca, we sequenced different floral samples to generate tissue-specific transcriptomic profiles. We conducted a comparative analysis of the transcriptomic profiles of apical sections of the inflorescence with male flowers and the basal section of the inflorescence with female flowers. Based on the RNA sequencing dataset, we applied weighted gene co-expression network analysis (WGCNA) to identify sepal, petal, stamen, stigma and other specific modules as well as hub genes involved in specific floral organ development. The syntenic and expression patterns of AcMADS-box genes were analyzed in detail. Furthermore, we analyzed the open chromatin regions and transcription factor PI binding sites in male and female flowers by assay for transposase-accessible chromatin sequencing (ATAC-seq) assay. Heterologous expression revealed the important role of AcMADS17 and AcMADS23 in floral organ development. Our results provide a valuable genomic resource for the functional analysis of floral organ development in Areca.
Collapse
Affiliation(s)
- Haifen Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhongliang Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Junqi Guan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Mengyao Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zheng Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yinglang Wan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Guangzhen Zhou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
5
|
Shen B, Shen A, Liu L, Tan Y, Li S, Tan Z. Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value. BMC PLANT BIOLOGY 2024; 24:255. [PMID: 38594641 PMCID: PMC11003039 DOI: 10.1186/s12870-024-04962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Baoming Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Airong Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Lina Liu
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Yun Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Sainan Li
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Zhuming Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China.
| |
Collapse
|
6
|
Wang L, Zhao X, Zheng R, Huang Y, Zhang C, Zhang MM, Lan S, Liu ZJ. Genome-Wide Identification and Drought Stress Response Pattern of the NF-Y Gene Family in Cymbidium sinense. Int J Mol Sci 2024; 25:3031. [PMID: 38474276 DOI: 10.3390/ijms25053031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Cymbidium sinense, a type of orchid plant, is more drought-resistant and ornamental than other terrestrial orchids. Research has shown that many members of the NUCLEAR FACTOR Y (NF-Y) transcription factor family are responsive to plant growth, development, and abiotic stress. However, the mechanism of the NF-Y gene family's response to abiotic stress in orchids has not yet been reported. In this study, phylogenetic analysis allowed for 27 CsNF-Y genes to be identified (5 CsNF-YAs, 9 CsNF-YBs, and 13 CsNF-YC subunits), and the CsNF-Ys were homologous to those in Arabidopsis and Oryza. Protein structure analysis revealed that different subfamilies contained different motifs, but all of them contained Motif 2. Secondary and tertiary protein structure analysis indicated that the CsNF-YB and CsNF-YC subfamilies had a high content of alpha helix structures. Cis-element analysis showed that elements related to drought stress were mainly concentrated in the CsNF-YB and CsNF-YC subfamilies, with CsNF-YB3 and CsNF-YC12 having the highest content. The results of a transcriptome analysis showed that there was a trend of downregulation of almost all CsNF-Ys in leaves under drought stress, while in roots, most members of the CsNF-YB subfamily showed a trend of upregulation. Additionally, seven genes were selected for real-time reverse transcription quantitative PCR (qRT-PCR) experiments. The results were generally consistent with those of the transcriptome analysis. The regulatory roles of CsNF-YB 1, 2, and 4 were particularly evident in the roots. The findings of our study may make a great contribution to the understanding of the role of CsNF-Ys in stress-related metabolic processes.
Collapse
Affiliation(s)
- Linying Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruiyue Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Li R, Gao X, Wu Y, Wei C, Li MH, Liu DK, Liu ZJ. Identification and Analysis of PEPC Gene Family Reveals Functional Diversification in Orchidaceae and the Regulation of Bacterial-Type PEPC. Int J Mol Sci 2024; 25:2055. [PMID: 38396732 PMCID: PMC10888551 DOI: 10.3390/ijms25042055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating the PEPC gene family in CAM plants. In this study, a total of 33 PEPC genes were identified across 15 orchids. Specifically, one PEPC gene was found in Cymbidium goeringii and Platanthera guangdongensis; two in Apostasia shenzhenica, Dendrobium chrysotoxum, D. huoshanense, Gastrodia elata, G. menghaiensis, Phalaenopsis aphrodite, Ph. equestris, and Pl. zijinensis; three in C. ensifolium, C. sinense, D. catenatum, D. nobile, and Vanilla planifolia. These PEPC genes were categorized into four subgroups, namely PEPC-i, PEPC-ii, and PEPC-iii (PTPC), and PEPC-iv (BTPC), supported by the comprehensive analyses of their physicochemical properties, motif, and gene structures. Remarkably, PEPC-iv contained a heretofore unreported orchid PEPC gene, identified as VpPEPC4. Differences in the number of PEPC homolog genes among these species were attributed to segmental duplication, whole-genome duplication (WGD), or gene loss events. Cis-elements identified in promoter regions were predominantly associated with light responsiveness, and circadian-related elements were observed in each PEPC-i and PEPC-ii gene. The expression levels of recruited BTPC, VpPEPC4, exhibited a lower expression level than other VpPEPCs in the tested tissues. The expression analyses and RT-qPCR results revealed diverse expression patterns in orchid PEPC genes. Duplicated genes exhibited distinct expression patterns, suggesting functional divergence. This study offered a comprehensive analysis to unveil the evolution and function of PEPC genes in Orchidaceae.
Collapse
Affiliation(s)
- Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Xuyong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Yuwei Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Chunyi Wei
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Zheng R, Chen J, Peng Y, Zhu X, Niu M, Chen X, Xie K, Huang R, Zhan S, Su Q, Shen M, Peng D, Ahmad S, Zhao K, Liu ZJ, Zhou Y. General Analysis of Heat Shock Factors in the Cymbidium ensifolium Genome Provided Insights into Their Evolution and Special Roles with Response to Temperature. Int J Mol Sci 2024; 25:1002. [PMID: 38256078 PMCID: PMC10815800 DOI: 10.3390/ijms25021002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Heat shock factors (HSFs) are the key regulators of heat stress responses and play pivotal roles in tissue development and the temperature-induced regulation of secondary metabolites. In order to elucidate the roles of HSFs in Cymbidium ensifolium, we conducted a genome-wide identification of CeHSF genes and predicted their functions based on their structural features and splicing patterns. Our results revealed 22 HSF family members, with each gene containing more than one intron. According to phylogenetic analysis, 59.1% of HSFs were grouped into the A subfamily, while subfamily HSFC contained only two HSFs. And the HSF gene families were differentiated evolutionarily between plant species. Two tandem repeats were found on Chr02, and two segmental duplication pairs were observed on Chr12, Chr17, and Chr19; this provided evidence for whole-genome duplication (WGD) events in C. ensifolium. The core region of the promoter in most CeHSF genes contained cis-acting elements such as AP2/ERF and bHLH, which were associated with plant growth, development, and stress responses. Except for CeHSF11, 14, and 19, each of the remaining CeHSFs contained at least one miRNA binding site. This included binding sites for miR156, miR393, and miR319, which were responsive to temperature and other stresses. The HSF gene family exhibited significant tissue specificity in both vegetative and floral organs of C. ensifolium. CeHSF13 and CeHSF15 showed relatively significant expression in flowers compared to other genes. During flower development, CeHSF15 exhibited markedly elevated expression in the early stages of flower opening, implicating critical regulatory functions in organ development and floral scent-related regulations. During the poikilothermic treatment, CeHSF14 was upregulated over 200-fold after 6 h of heat treatment. CeHSF13 and CeHSF14 showed the highest expression at 6 h of low temperature, while the expression of CeHSF15 and CeHSF21 continuously decreased at a low temperature. The expression patterns of CeHSFs further confirmed their role in responding to temperature stress. Our study may help reveal the important roles of HSFs in plant development and metabolic regulation and show insight for the further molecular design breeding of C. ensifolium.
Collapse
Affiliation(s)
- Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Muqi Niu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Xiuming Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (M.S.); (K.Z.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (M.S.); (K.Z.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| | - Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.Z.); (J.C.); (Y.P.); (X.Z.); (M.N.); (X.C.); (K.X.); (R.H.); (S.Z.); (Q.S.); (D.P.); (S.A.)
| |
Collapse
|
9
|
Lai H, Wang M, Yan L, Feng C, Tian Y, Tian X, Peng D, Lan S, Zhang Y, Ai Y. Genome-Wide Identification of bZIP Transcription Factors in Cymbidium ensifolium and Analysis of Their Expression under Low-Temperature Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:219. [PMID: 38256772 PMCID: PMC10818551 DOI: 10.3390/plants13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The basic leucine zipper (bZIP) transcription factors constitute the most widely distributed and conserved eukaryotic family. They play crucial roles in plant growth, development, and responses to both biotic and abiotic stresses, exerting strong regulatory control over the expression of downstream genes. In this study, a genome-wide characterization of the CebZIP transcription factor family was conducted using bioinformatic analysis. Various aspects, including physicochemical properties, phylogenetics, conserved structural domains, gene structures, chromosomal distribution, gene covariance relationships, promoter cis-acting elements, and gene expression patterns, were thoroughly analyzed. A total of 70 CebZIP genes were identified from the C. ensifolium genome, and they were randomly distributed across 18 chromosomes. The phylogenetic tree clustered them into 11 subfamilies, each exhibiting complex gene structures and conserved motifs arranged in a specific order. Nineteen pairs of duplicated genes were identified among the 70 CebZIP genes, with sixteen pairs affected by purifying selection. Cis-acting elements analysis revealed a plethora of regulatory elements associated with stress response, plant hormones, and plant growth and development. Transcriptome and qRT-PCR results demonstrated that the expression of CebZIP genes was universally up-regulated under low temperature conditions. However, the expression patterns varied among different members. This study provides theoretical references for identifying key bZIP genes in C. ensifolium that confer resistance to low-temperature stress, and lays the groundwork for further research into their broader biological functions.
Collapse
Affiliation(s)
- Huiping Lai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Mengyao Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Lu Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Caiyun Feng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Yang Tian
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Xinyue Tian
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| | - Yanping Zhang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.L.); (M.W.); (L.Y.); (C.F.); (Y.T.); (D.P.); (S.L.)
| |
Collapse
|
10
|
Zhao X, Li Y, Zhang MM, He X, Ahmad S, Lan S, Liu ZJ. Research advances on the gene regulation of floral development and color in orchids. Gene 2023; 888:147751. [PMID: 37657689 DOI: 10.1016/j.gene.2023.147751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Orchidaceae is one of the largest monocotyledon families and contributes significantly to worldwide biodiversity, with value in the fields of landscaping, medicine, and ecology. The diverse phenotypes and vibrant colors of orchid floral organs make them excellent research objects for investigating flower development and pigmentation. In recent years, a number of orchid genomes have been published, laying the molecular foundation for revealing flower development and color presentation. In this article, we review transcription factors, the structural genes responsible for the floral pigment synthesis pathways, the molecular mechanisms of flower morphogenesis, and the potential relationship between flower type and flower color. This study provides a theoretical reference for the research on molecular mechanisms related to flower morphogenesis and color presentation, genetic improvement, and new variety creation in orchids.
Collapse
Affiliation(s)
- Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Yue Y, Zhang X, Wang L, He J, Yang S, Li X, Yu Y, Yu R, Fan Y. Identification and Characterization of Jasmonic Acid Methyltransferase Involved in the Formation of Floral Methyl Jasmonate in Hedychium coronarium. PLANTS (BASEL, SWITZERLAND) 2023; 13:8. [PMID: 38202316 PMCID: PMC10780636 DOI: 10.3390/plants13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Hedychium coronarium is a popular ornamental flower in tropical and subtropical areas due to its elegant appearance and inviting fragrance. Methyl jasmonate (MeJA) is one of the volatile compounds in the blooming flowers of H. coronarium. However, the molecular mechanism underlying floral MeJA formation is still unclear in H. coronarium. In this study, a total of 12 SABATH family genes were identified in the genome of H. coronarium, and their encoded proteins range from 366 to 387 amino acids. Phylogenetic analysis revealed seven clades in the SABATH family and a JMT ortholog clade, including two HcSABATH members. Combined with expression profiling of HcSABATH members, HcJMT1 was identified as the top candidate gene for floral MeJA biosynthesis. In vitro enzyme assays showed that HcJMT1 can catalyze the production of MeJA from jasmonic acid. Gene expression analysis indicated that HcJMT1 exhibited the highest expression in the labella and lateral petals, the major sites of MeJA emission. During flower development, the two MeJA isomers, major isomers in the products of the HcJMT1 protein, were released after anthesis, in which stage HcJMT1 displayed high expression. Our results indicated that HcJMT1 is involved in the formation of floral MeJA in H. coronarium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Zhang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Jieling He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Shengnan Yang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Zhu S, Wang H, Xue Q, Zou H, Liu W, Xue Q, Ding XY. Genome-wide identification and expression analysis of growth-regulating factors in Dendrobium officinale and Dendrobium chrysotoxum. PeerJ 2023; 11:e16644. [PMID: 38111654 PMCID: PMC10726744 DOI: 10.7717/peerj.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background Dendrobium, one of the largest genera in Orchidaceae, is popular not only for its aesthetic appeal but for its significant medicinal value. Growth-regulating factors (GRFs) play an essential role in plant growth and development. However, there is still a lack of information about the evolution and biological function analysis of the GRF gene family among Dendrobiumspecies. Methods Growth-regulating factors from Dendrobium officinale Kimura et Migo and Dendrobium chrysotoxum Lindl. were identified by HMMER and BLAST. Detailed bioinformatics analysis was conducted to explore the evolution and function of GRF gene family in D. officinale and D. chrysotoxum using genomic data, transcriptome data and qRT-PCR technology. Results Here, we evaluated the evolution of the GRF gene family based on the genome sequences of D. officinale and D. chrysotoxum. Inferred from phylogenetic trees, the GRF genes were classified into two clades, and each clade contains three subclades. Sequence comparison analysis revealed relatively conserved gene structures and motifs among members of the same subfamily, indicating a conserved evolution of GRF genes within Dendrobiumspecies. However, considering the distribution of orthologous DoGRFs and DcGRFs, and the differences in the number of GRFs among species, we suggest that the GRF gene family has undergone different evolutionary processes. A total of 361 cis-elements were detected, with 33, 141, and 187 related to plant growth and development, stress, and hormones, respectively. The tissue-specific expression of GRFs showed that DoGRF8 may have a significant function in the stem elongation of D. officinale. Moreover, four genes were up-regulated under Methyl-jasmonic acid/methyl jasmonate (MeJA) treatment, showing that DoGRFs and DcGRFs play a crucial role in stress response. These findings provide valuable information for further investigations into the evolution and function of GRF genes in D. officinale and D. chrysotoxum.
Collapse
Affiliation(s)
- Shuying Zhu
- Huzhou College, School of Life and Health Sciences, Huzhou, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, Jiangsu, China
| | - Hongman Wang
- Nanjing Normal University, College of Life Sciences, Nanjing, Jiangsu, China
| | - Qiqian Xue
- Nanjing Normal University, College of Life Sciences, Nanjing, Jiangsu, China
| | - Huasong Zou
- Huzhou College, School of Life and Health Sciences, Huzhou, Zhejiang, China
| | - Wei Liu
- Nanjing Normal University, College of Life Sciences, Nanjing, Jiangsu, China
| | - Qingyun Xue
- Nanjing Normal University, College of Life Sciences, Nanjing, Jiangsu, China
| | - Xiao-Yu Ding
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, Jiangsu, China
- Nanjing Normal University, College of Life Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Yang F, Guo Y, Li J, Lu C, Wei Y, Gao J, Xie Q, Jin J, Zhu G. Genome-wide association analysis identified molecular markers and candidate genes for flower traits in Chinese orchid ( Cymbidium sinense). HORTICULTURE RESEARCH 2023; 10:uhad206. [PMID: 38046850 PMCID: PMC10689080 DOI: 10.1093/hr/uhad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/07/2023] [Indexed: 12/05/2023]
Abstract
The orchid, the champagne of flowers, brings luxury, elegance, and novelty to nature. Cymbidium sinense is a symbol of gigantic floral variability on account of wavering shapes and sizes of floral organs, although marker-trait association (MTA) has not been studied for its floral traits. We evaluated markers associated with 14 floral traits of C. sinense through a genome-wide association study (GWAS) of 195 accessions. A total of 65 318 522 single-nucleotide polymorphisms (SNPs) and 3 906 176 insertion/deletion (InDel) events were identified through genotyping-by-sequencing. Among these, 4694 potential SNPs and 477 InDels were identified as MTAs at -log10 P > 5. The genes related to these SNPs and InDels were largely associated with floral regulators, hormonal pathways, cell division, and metabolism, playing essential roles in tailoring floral morphology. Moreover, 20 candidate SNPs/InDels linked to 11 genes were verified, 8 of which were situated on exons, one was located in the 5'-UTR and two were positioned in introns. Here, the multitepal trait-related gene RABBIT EARS (RBE) was found to be the most crucial gene. We analyzed the role of CsRBE in the regulation of flower-related genes via efficient transient overexpression in C. sinense protoplasts, and found that the floral homeotic genes CsAP3 and CsPI, as well as organ boundary regulators, including CsCUC and CsTCP genes, were regulated by CsRBE. Thus, we obtained key gene loci for important ornamental traits of orchids using genome-wide association analysis of populations with natural variation. The findings of this study can do a great deal to expedite orchid breeding programs for shape variability.
Collapse
Affiliation(s)
- Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yudi Guo
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Ai Y, Zheng QD, Wang MJ, Xiong LW, Li P, Guo LT, Wang MY, Peng DH, Lan SR, Liu ZJ. Molecular mechanism of different flower color formation of Cymbidium ensifolium. PLANT MOLECULAR BIOLOGY 2023; 113:193-204. [PMID: 37878187 DOI: 10.1007/s11103-023-01382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium, this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium. The experimental results showed that CeF3'H2, CeDFR, CeANS, CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium. The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis. These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium.
Collapse
Affiliation(s)
- Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing-Dong Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng-Jie Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long-Wei Xiong
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Peng Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Ting Guo
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng-Yao Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Li Y, Zhao X, Zhang MM, He X, Huang Y, Ahmad S, Liu ZJ, Lan S. Genome-based identification of the CYP75 gene family in Orchidaceae and its expression patterns in Cymbidium goeringii. FRONTIERS IN PLANT SCIENCE 2023; 14:1243828. [PMID: 37828920 PMCID: PMC10564990 DOI: 10.3389/fpls.2023.1243828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
With a great diversity of species, Orchidaceae stands out as an essential component of plant biodiversity, making it a primary resource for studying angiosperms evolution and genomics. This study focuses on 13 published orchid genomes to identify and analyze the CYP75 gene family belonging to the cytochrome P450 superfamily, which is closely related to flavonoid biosynthetic enzymes and pigment regulation. We found 72 CYP75s in the 13 orchid genomes and further classified them into two classes: CYP75A and CYP75B subfamily, the former synthesizes blue anthocyanins, while the latter is involved in the production of red anthocyanins. Furthermore, the amount of CYP75Bs (53/72) greatly exceeds the amount of CYP75As (19/72) in orchids. Our findings suggest that CYP75B genes have a more important evolutionary role, as red plants are more common in nature than blue plants. We also discovered unique conserved motifs in each subfamily that serve as specific recognition features (motif 19 belong to CYP75A; motif 17 belong to CYP75B). Two diverse-colored varieties of C. goeringii were selected for qRT-PCR experiments. The expression of CgCYP75B1 was significantly higher in the purple-red variant compared to the yellow-green variant, while CgCYP75A1 showed no significant difference. Based on transcriptomic expression analysis, CYP75Bs are more highly expressed than CYP75As in floral organs, especially in colorful petals and lips. These results provide valuable information for future studies on CYP75s in orchids and other angiosperms.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Admini stration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Admini stration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Admini stration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Admini stration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Admini stration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Fan W, He ZS, Zhe M, Feng JQ, Zhang L, Huang Y, Liu F, Huang JL, Ya JD, Zhang SB, Yang JB, Zhu A, Li DZ. High-quality Cymbidium mannii genome and multifaceted regulation of crassulacean acid metabolism in epiphytes. PLANT COMMUNICATIONS 2023; 4:100564. [PMID: 36809882 PMCID: PMC10504564 DOI: 10.1016/j.xplc.2023.100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Epiphytes with crassulacean acid metabolism (CAM) photosynthesis are widespread among vascular plants, and repeated evolution of CAM photosynthesis is a key innovation for micro-ecosystem adaptation. However, we lack a complete understanding of the molecular regulation of CAM photosynthesis in epiphytes. Here, we report a high-quality chromosome-level genome assembly of a CAM epiphyte, Cymbidium mannii (Orchidaceae). The 2.88-Gb orchid genome with a contig N50 of 22.7 Mb and 27 192 annotated genes was organized into 20 pseudochromosomes, 82.8% of which consisted of repetitive elements. Recent expansions of long terminal repeat retrotransposon families have made a major contribution to the evolution of genome size in Cymbidium orchids. We reveal a holistic scenario of molecular regulation of metabolic physiology using high-resolution transcriptomics, proteomics, and metabolomics data collected across a CAM diel cycle. Patterns of rhythmically oscillating metabolites, especially CAM-related products, reveal circadian rhythmicity in metabolite accumulation in epiphytes. Genome-wide analysis of transcript and protein level regulation revealed phase shifts during the multifaceted regulation of circadian metabolism. Notably, we observed diurnal expression of several core CAM genes (especially βCA and PPC) that may be involved in temporal fixation of carbon sources. Our study provides a valuable resource for investigating post-transcription and translation scenarios in C. mannii, an Orchidaceae model for understanding the evolution of innovative traits in epiphytes.
Collapse
Affiliation(s)
- Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zheng-Shan He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mengqing Zhe
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Qiu Feng
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yiwei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Ji-Dong Ya
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
17
|
Lin ZY, Zhu GF, Lu CQ, Gao J, Li J, Xie Q, Wei YL, Jin JP, Wang FL, Yang FX. Functional conservation and divergence of SEPALLATA-like genes in floral development in Cymbidium sinense. FRONTIERS IN PLANT SCIENCE 2023; 14:1209834. [PMID: 37711312 PMCID: PMC10498475 DOI: 10.3389/fpls.2023.1209834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Cymbidium sinense is one of the most important traditional Chinese Orchids due to its unique and highly ornamental floral organs. Although the ABCDE model for flower development is well-established in model plant species, the precise roles of these genes in C. sinense are not yet fully understood. In this study, four SEPALLATA-like genes were isolated and identified from C. sinense. CsSEP1 and CsSEP3 were grouped into the AGL9 clade, while CsSEP2 and CsSEP4 were included in the AGL2/3/4 clade. The expression pattern of CsSEP genes showed that they were significantly accumulated in reproductive tissues and expressed during flower bud development but only mildly detected or even undetected in vegetative organs. Subcellular localization revealed that CsSEP1 and CsSEP4 were localized to the nucleus, while CsSEP2 and CsSEP3 were located at the nuclear membrane. Promoter sequence analysis predicted that CsSEP genes contained a number of hormone response elements (HREs) and MADS-box binding sites. The early flowering phenotype observed in transgenic Arabidopsis plants expressing four CsSEP genes, along with the expression profiles of endogenous genes, such as SOC1, LFY, AG, FT, SEP3 and TCPs, in both transgenic Arabidopsis and C. sinense protoplasts, suggested that the CsSEP genes played a regulatory role in the flowering transition by influencing downstream genes related to flowering. However, only transgenic plants overexpressing CsSEP3 and CsSEP4 caused abnormal phenotypes of floral organs, while CsSEP1 and CsSEP2 had no effect on floral organs. Protein-protein interaction assays indicated that CsSEPs formed a protein complex with B-class CsAP3-2 and CsSOC1 proteins, affecting downstream genes to regulate floral organs and flowering time. Our findings highlighted both the functional conservation and divergence of SEPALLATA-like genes in C. sinense floral development. These results provided a valuable foundation for future studies of the molecular network underlying floral development in C. sinense.
Collapse
Affiliation(s)
- Zeng-Yu Lin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chu-Qiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yong-Lu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian-Peng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng-Lan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng-Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
18
|
Genome-Wide Identification Analysis of the R2R3-MYB Transcription Factor Family in Cymbidium sinense for Insights into Drought Stress Responses. Int J Mol Sci 2023; 24:ijms24043235. [PMID: 36834646 PMCID: PMC9959677 DOI: 10.3390/ijms24043235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cymbidium sinense represents a distinctive Orchidaceae plant that is more tolerant than other terrestrial orchids. Studies have shown that many members of the MYB transcription factor (TF) family, especially the R2R3-MYB subfamily, are responsive to drought stress. This study identified 103 CsMYBs; phylogenetic analysis classified these genes into 22 subgroups with Arabidopsis thaliana. Structural analysis showed that most CsMYB genes contained the same motifs, three exons and two introns, and showed a helix-turn-helix 3D structure in each R repeat. However, the members of subgroup 22 contained only one exon and no intron. Collinear analysis revealed that C. sinense had more orthologous R2R3-MYB genes with wheat than A. thaliana and rice. Ka/Ks ratios indicated that most CsMYB genes were under purifying negative selection pressure. Cis-acting elements analysis revealed that drought-related elements were mainly focused on subgroups 4, 8, 18, 20, 21, and 22, and Mol015419 (S20) contained the most. The transcriptome analysis results showed that expression patterns of most CsMYB genes were upregulated in leaves in response to slight drought stress and downregulated in roots. Among them, members in S8 and S20 significantly responded to drought stress in C. sinense. In addition, S14 and S17 also participated in these responses, and nine genes were selected for the real-time reverse transcription quantitative PCR (RT-qPCR) experiment. The results were roughly consistent with the transcriptome. Our results, thus, provide an important contribution to understanding the role of CsMYBs in stress-related metabolic processes.
Collapse
|
19
|
Li X, Liu L, Sun S, Li Y, Jia L, Ye S, Yu Y, Dossa K, Luan Y. Transcriptome analysis reveals the key pathways and candidate genes involved in salt stress responses in Cymbidium ensifolium leaves. BMC PLANT BIOLOGY 2023; 23:64. [PMID: 36721093 PMCID: PMC9890885 DOI: 10.1186/s12870-023-04050-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cymbidium ensifolium L. is known for its ornamental value and is frequently used in cosmetics. Information about the salt stress response of C. ensifolium is scarce. In this study, we reported the physiological and transcriptomic responses of C. ensifolium leaves under the influence of 100 mM NaCl stress for 48 (T48) and 96 (T96) hours. RESULTS Leaf Na+ content, activities of the antioxidant enzymes i.e., superoxide dismutase, glutathione S-transferase, and ascorbate peroxidase, and malondialdehyde content were increased in salt-stressed leaves of C. ensifolium. Transcriptome analysis revealed that a relatively high number of genes were differentially expressed in CKvsT48 (17,249) compared to CKvsT96 (5,376). Several genes related to salt stress sensing (calcium signaling, stomata closure, cell-wall remodeling, and ROS scavenging), ion balance (Na+ and H+), ion homeostasis (Na+/K+ ratios), and phytohormone signaling (abscisic acid and brassinosteroid) were differentially expressed in CKvsT48, CKvsT96, and T48vsT96. In general, the expression of genes enriched in these pathways was increased in T48 compared to CK while reduced in T96 compared to T48. Transcription factors (TFs) belonging to more than 70 families were differentially expressed; the major families of differentially expressed TFs included bHLH, NAC, MYB, WRKY, MYB-related, and C3H. A Myb-like gene (CenREV3) was further characterized by overexpressing it in Arabidopsis thaliana. CenREV3's expression was decreased with the prolongation of salt stress. As a result, the CenREV3-overexpression lines showed reduced root length, germination %, and survival % suggesting that this TF is a negative regulator of salt stress tolerance. CONCLUSION These results provide the basis for future studies to explore the salt stress response-related pathways in C. ensifolium.
Collapse
Affiliation(s)
- Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 650021, Kunming, China
| | - Lanlan Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224, Kunming, China
| | - Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, 650224, Kunming, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, 650224, Kunming, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, 650224, Kunming, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, 650224, Kunming, China
| | - Yanxuan Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224, Kunming, China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institute, F-34398, Montpellier, France
| | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 650021, Kunming, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, 650224, Kunming, China.
| |
Collapse
|
20
|
Zheng BQ, Li XQ, Wang Y. New Insights into the Mechanism of Spatiotemporal Scent Accumulation in Orchid Flowers. PLANTS (BASEL, SWITZERLAND) 2023; 12:304. [PMID: 36679016 PMCID: PMC9866394 DOI: 10.3390/plants12020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Orchid flowers have a unique structure that consists of three sepals and three petals, with one of the petals forming the labellum (lip) that can be differentiated into the hypochile and epichile. In orchids, the emission of floral scent is specific and spatially complex. Little is understood about the molecular and biochemical mechanisms of the differing scent emissions between the parts of orchid flowers. Here, we investigated this in the Cattleya hybrid KOVA, and our study showed that monoterpenes, including linalool and geraniol, are the main components responsible for the KOVA floral scent. The KOVA flower was scentless to the human nose before it reached full bloom, potentially because the 1-deoxy-d-xylulose 5-phosphate synthases (RcDXSs) and 4-hydroxy-3-methylbut-2-enyl diphosphate synthases (RcHDSs) that biosynthesize monoterpenes were highly expressed in flowers only when it reached full flowering. Additionally, the spatial expression profile of the monoterpene synthases (RcMTPSs), which were highly expressed in the basal region of the lip (hypochile), contributed to the highest monoterpene emissions from this part of the flower. This might have caused the hypochile to be more fragrant than the other parts of the flower. These findings enrich our understanding of the difference in scents between different flower parts in plants and provide information to breed novel orchid cultivars with special floral scents.
Collapse
|
21
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
22
|
Liu DK, Zhang C, Zhao X, Ke S, Li Y, Zhang D, Zheng Q, Li MH, Lan S, Liu ZJ. Genome-wide analysis of the TCP gene family and their expression pattern in Cymbidium goeringii. FRONTIERS IN PLANT SCIENCE 2022; 13:1068969. [PMID: 36570938 PMCID: PMC9772009 DOI: 10.3389/fpls.2022.1068969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
TCP gene family are specific transcription factors for plant, and considered to play an important role in development and growth. However, few related studies investigated the TCP gene trait and how it plays a role in growth and development of Orchidaceae. In this study, we obtained 14 TCP genes (CgTCPs) from the Spring Orchid Cymbidium goeringii genome. The classification results showed that 14 CgTCPs were mainly divided into two clades as follows: four PCF genes (Class I), nine CIN genes and one CYC gene (Class II). The sequence analysis showed that the TCP proteins of C. goeringii contain four conserved regions (basic Helix-Loop-Helix) in the TCP domain. The exon-intron structure varied in the clade according to a comparative investigation of the gene structure, and some genes had no introns. There are fewer CgTCP homologous gene pairs compared with Dendrobium catenatum and Phalaenopsis equestris, suggesting that the TCP genes in C. goeringii suffered more loss events. The majority of the cis-elements revealed to be enriched in the function of light responsiveness, followed by MeJA and ABA responsiveness, demonstrating their functions in regulating by light and phytohormones. The collinearity study revealed that the TCPs in D. catenatum, P. equestris and C. goeringii almost 1:1. The transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) expression profiles showed that the flower-specific expression of the TCP class II genes (CgCIN2, CgCIN5 and CgCIN6) may be related to the regulation of florescence. Altogether, this study provides a comprehensive analysis uncovering the underlying function of TCP genes in Orchidaceae.
Collapse
Affiliation(s)
- Ding-Kun Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuili Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuewei Zhao
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Ke
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinyao Zheng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-He Li
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Chen YY, Li C, Hsiao YY, Ho SY, Zhang ZB, Liao CC, Lee BR, Lin ST, Wu WL, Wang JS, Zhang D, Liu KW, Liu DK, Zhao XW, Li YY, Ke SJ, Zhou Z, Huang MZ, Wu YS, Peng DH, Lan SR, Chen HH, Liu ZJ, Wu WS, Tsai WC. OrchidBase 5.0: updates of the orchid genome knowledgebase. BMC PLANT BIOLOGY 2022; 22:557. [PMID: 36456919 PMCID: PMC9717476 DOI: 10.1186/s12870-022-03955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Containing the largest number of species, the orchid family provides not only materials for studying plant evolution and environmental adaptation, but economically and culturally important ornamental plants for human society. Previously, we collected genome and transcriptome information of Dendrobium catenatum, Phalaenopsis equestris, and Apostasia shenzhenica which belong to two different subfamilies of Orchidaceae, and developed user-friendly tools to explore the orchid genetic sequences in the OrchidBase 4.0. The OrchidBase 4.0 offers the opportunity for plant science community to compare orchid genomes and transcriptomes and retrieve orchid sequences for further study.In the year 2022, two whole-genome sequences of Orchidoideae species, Platanthera zijinensis and Platanthera guangdongensis, were de novo sequenced, assembled and analyzed. In addition, systemic transcriptomes from these two species were also established. Therefore, we included these datasets to develop the new version of OrchidBase 5.0. In addition, three new functions including synteny, gene order, and miRNA information were also developed for orchid genome comparisons and miRNA characterization.OrchidBase 5.0 extended the genetic information to three orchid subfamilies (including five orchid species) and provided new tools for orchid researchers to analyze orchid genomes and transcriptomes. The online resources can be accessed at https://cosbi.ee.ncku.edu.tw/orchidbase5/.
Collapse
Affiliation(s)
- You-Yi Chen
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Chung‐I Li
- Department of Statistics, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
| | - Sau-Yee Ho
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Zhe-Bin Zhang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Chien-Chi Liao
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Bing-Ru Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Shao-Ting Lin
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Wan-Lin Wu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Jeen-Shing Wang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Diyang Zhang
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Ke-Wei Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
| | - Ding-Kun Liu
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Xue-Wei Zhao
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Yuan-Yuan Li
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Shi-Jie Ke
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Zhuang Zhou
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005 China
| | - Ming-Zhong Huang
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Yong-Shu Wu
- Education Botanical Garden of Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Dong-Hui Peng
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Si-Ren Lan
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | - Hong-Hwa Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Zhong-Jian Liu
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization and International Orchid Research Center at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005 China
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701 Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|
24
|
Wang QQ, Li YY, Chen J, Zhu MJ, Liu X, Zhou Z, Zhang D, Liu ZJ, Lan S. Genome-wide identification of YABBY genes in three Cymbidium species and expression patterns in C. ensifolium (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:995734. [PMID: 36507452 PMCID: PMC9729879 DOI: 10.3389/fpls.2022.995734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Members of the YABBY gene family play significant roles in lamina development in cotyledons, floral organs, and other lateral organs. The Orchidaceae family is one of the largest angiosperm groups. Some YABBYs have been reported in Orchidaceae. However, the function of YABBY genes in Cymbidium is currently unknown. In this study, 24 YABBY genes were identified in Cymbidium ensifolium, C. goeringii, and C. sinense. We analyzed the conserved domains and motifs, the phylogenetic relationships, chromosome distribution, collinear correlation, and cis-elements of these three species. We also analyzed expression patterns of C. ensifolium and C. goeringii. Phylogenetic relationships analysis indicated that 24 YABBY genes were clustered in four groups, INO, CRC/DL, YAB2, and YAB3/FIL. For most YABBY genes, the zinc finger domain was located near the N-terminus and the helix-loop-helix domain (YABBY domain) near the C-terminus. Chromosomal location analysis results suggested that only C. goeringii YABBY has tandem repeat genes. Almost all the YABBY genes displayed corresponding one-to-one relationships in the syntenic relationships analysis. Cis-elements analysis indicated that most elements were clustered in light-responsive elements, followed by MeJA-responsive elements. Expression patterns showed that YAB2 genes have high expression in floral organs. RT-qPCR analysis showed high expression of CeYAB3 in lip, petal, and in the gynostemium. CeCRC and CeYAB2.2 were highly expressed in gynostemium. These findings provide valuable information of YABBY genes in Cymbidium species and the function in Orchidaceae.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiating Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Jia Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuedie Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Fu S, Yang Y, Wang P, Ying Z, Xu W, Zhou Z. Comparative transcriptomic analysis of normal and abnormal in vitro flowers in Cymbidium nanulum Y. S. Wu et S. C. Chen identifies differentially expressed genes and candidate genes involved in flower formation. FRONTIERS IN PLANT SCIENCE 2022; 13:1007913. [PMID: 36352857 PMCID: PMC9638074 DOI: 10.3389/fpls.2022.1007913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
It is beneficial for breeding and boosting the flower value of ornamental plants such as orchids, which can take several years of growth before blooming. Over the past few years, in vitro flowering of Cymbidium nanulum Y. S. Wu et S. C. Chen has been successfully induced; nevertheless, the production of many abnormal flowers has considerably limited the efficiency of this technique. We carried out transcriptomic analysis between normal and abnormal in vitro flowers, each with four organs, to investigate key genes and differentially expressed genes (DEGs) and to gain a comprehensive perspective on the formation of abnormal flowers. Thirty-six DEGs significantly enriched in plant hormone signal transduction, and photosynthesis-antenna proteins pathways were identified as key genes. Their broad upregulation and several altered transcription factors (TFs), including 11 MADS-box genes, may contribute to the deformity of in vitro flowers. By the use of weighted geneco-expression network analysis (WGCNA), three hub genes, including one unknown gene, mitochondrial calcium uniporter (MCU) and harpin-induced gene 1/nonrace-specific disease resistance gene 1 (NDR1/HIN1-Like) were identified that might play important roles in floral organ formation. The data presented in our study may serve as a comprehensive resource for understanding the regulatory mechanisms underlying flower and floral organ formation of C. nanulum Y. S. Wu et S. C. Chen in vitro.
Collapse
|
26
|
Li MM, Su QL, Zu JR, Xie L, Wei Q, Guo HR, Chen J, Zeng RZ, Zhang ZS. Triploid cultivars of Cymbidium act as a bridge in the formation of polyploid plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1029915. [PMID: 36684754 PMCID: PMC9853991 DOI: 10.3389/fpls.2022.1029915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 06/17/2023]
Abstract
Triploid is considered a reproductive barrier and also a bridge in the formation of polyploids. However, few reports are available in Cymbidium. In this study, diploid 'Xiaofeng', sexual triploid 'Yuchan' and 'Huanghe' of Cymbidium were used to evaluate hybridization compatibility of the triploids. Results showed that the sexual triploids were fertile whether they were used as male or female parents. 'Yuchan' produced male gametes of 1x, 1x~2x, 2x, 2x~3x, and 3x at frequencies of 8.89%, 77.78%, 6.67%, 3.33%, and 3.33%, respectively; while 'Huanghe' produced 3.33% 1x, 80.00% 1x~2x, 8.89% 2x, 5.56% 2x~3x, and 2.22% 3x male gametes. The cross of 'Xiaofeng' with 'Yuchan' produced progenies with a wide range of ploidy levels, including one diploid, 34 2×~3× aneuploids, 12 triploids, and one tetraploid, indicating that male gametes produced by sexual triploid were fertile and could be transmitted and fused with egg cells. On the other hand, 10 progenies obtained from the cross of 'Yuchan' × 'Xiaofeng' were all aneuploids. The cross of 'Yuchan' with 'Huanghe' produced 40 progenies including three 2×~3× aneuploids, nine 3×~4× aneuploids, 21 tetraploids, six 4×~5× aneuploids, and one pentaploid, suggesting that 2x gametes, instead of the unreduced ones played a more important role in the formation of tetraploids. The survival rates of the hybrids were all above 80.00%, with the tetraploids at 96.67%. Cytological analysis revealed that during meiosis of sexual polyploids, two chromosome sets of the 2n gamete were inclined to enter into the same daughter cell, resulting in the production of 2x gametes. Our results indicate that the triploid cymbidiums are not reproductive barrier but serve as a bridge in the formation of polyploid plants.
Collapse
Affiliation(s)
- Man-Man Li
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qing-Lian Su
- Guangzhou Flower Research Center, Guangzhou, China
| | - Jun-Rui Zu
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Li Xie
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qian Wei
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - He-Rong Guo
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Rui-Zhen Zeng
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhi-Sheng Zhang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Zhang D, Zhao XW, Li YY, Ke SJ, Yin WL, Lan S, Liu ZJ. Advances and prospects of orchid research and industrialization. HORTICULTURE RESEARCH 2022; 9:uhac220. [PMID: 36479582 PMCID: PMC9720451 DOI: 10.1093/hr/uhac220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Orchidaceae is one of the largest, most diverse families in angiosperms with significant ecological and economical values. Orchids have long fascinated scientists by their complex life histories, exquisite floral morphology and pollination syndromes that exhibit exclusive specializations, more than any other plants on Earth. These intrinsic factors together with human influences also make it a keystone group in biodiversity conservation. The advent of sequencing technologies and transgenic techniques represents a quantum leap in orchid research, enabling molecular approaches to be employed to resolve the historically interesting puzzles in orchid basic and applied biology. To date, 16 different orchid genomes covering four subfamilies (Apostasioideae, Vanilloideae, Epidendroideae, and Orchidoideae) have been released. These genome projects have given rise to massive data that greatly empowers the studies pertaining to key innovations and evolutionary mechanisms for the breadth of orchid species. The extensive exploration of transcriptomics, comparative genomics, and recent advances in gene engineering have linked important traits of orchids with a multiplicity of gene families and their regulating networks, providing great potential for genetic enhancement and improvement. In this review, we summarize the progress and achievement in fundamental research and industrialized application of orchids with a particular focus on molecular tools, and make future prospects of orchid molecular breeding and post-genomic research, providing a comprehensive assemblage of state of the art knowledge in orchid research and industrialization.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue-Wei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
28
|
Song C, Wang Y, Manzoor MA, Mao D, Wei P, Cao Y, Zhu F. In-depth analysis of genomes and functional genomics of orchid using cutting-edge high-throughput sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1018029. [PMID: 36212315 PMCID: PMC9539832 DOI: 10.3389/fpls.2022.1018029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
High-throughput sequencing technology has been facilitated the development of new methodologies and approaches for studying the origin and evolution of plant genomes and subgenomes, population domestication, and functional genomics. Orchids have tens of thousands of members in nature. Many of them have promising application potential in the extension and conservation of the ecological chain, the horticultural use of ornamental blossoms, and the utilization of botanical medicines. However, a large-scale gene knockout mutant library and a sophisticated genetic transformation system are still lacking in the improvement of orchid germplasm resources. New gene editing tools, such as the favored CRISPR-Cas9 or some base editors, have not yet been widely applied in orchids. In addition to a large variety of orchid cultivars, the high-precision, high-throughput genome sequencing technology is also required for the mining of trait-related functional genes. Nowadays, the focus of orchid genomics research has been directed to the origin and classification of species, genome evolution and deletion, gene duplication and chromosomal polyploidy, and flower morphogenesis-related regulation. Here, the progressing achieved in orchid molecular biology and genomics over the past few decades have been discussed, including the evolution of genome size and polyploidization. The frequent incorporation of LTR retrotransposons play important role in the expansion and structural variation of the orchid genome. The large-scale gene duplication event of the nuclear genome generated plenty of recently tandem duplicated genes, which drove the evolution and functional divergency of new genes. The evolution and loss of the plastid genome, which mostly affected genes related to photosynthesis and autotrophy, demonstrated that orchids have experienced more separate transitions to heterotrophy than any other terrestrial plant. Moreover, large-scale resequencing provide useful SNP markers for constructing genetic maps, which will facilitate the breeding of novel orchid varieties. The significance of high-throughput sequencing and gene editing technologies in the identification and molecular breeding of the trait-related genes in orchids provides us with a representative trait-improving gene as well as some mechanisms worthy of further investigation. In addition, gene editing has promise for the improvement of orchid genetic transformation and the investigation of gene function. This knowledge may provide a scientific reference and theoretical basis for orchid genome studies.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yan Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | | | - Di Mao
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yunpeng Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
29
|
Jiang L, Lin M, Wang H, Song H, Zhang L, Huang Q, Chen R, Song C, Li G, Cao Y. Haplotype-resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1340-1353. [PMID: 35785503 DOI: 10.1111/tpj.15892] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Bletilla striata, commonly known as baiji, is a species used in traditional Chinese medicine; it is highly regarded for its medicinal applications and therefore has high economic value. Here, we report a high-quality haplotype-resolved genome of B. striata, haplotype A (2.37 Gb, with a scaffold N50 of 146.39 Mb and a contig N50 of 1.65 Mb) and haplotype B (2.43 Gb, with a scaffold N50 of 150.22 Mb and a contig N50 of 1.66 Mb), assembled from high-fidelity (HiFi) reads and chromosome conformation capture (Hi-C) reads. We find evidence that B. striata has undergone two whole-genome duplication (WGD) events: an ancient WGD event shared by most monocots and a recent WGD event unique to all orchids. We also reconstructed the ancestral orchid karyotype (AOK) of 18 ancient chromosomes and the evolutionary trajectories of 16 modern B. striata chromosomes. Comparative genomic analysis suggests that the expanded gene families of B. striata might play important roles in secondary metabolite biosynthesis and environmental adaptation. By combining genomic and transcriptomic data, we identified the 10 core members from nine gene families that were probably involved in B. striata polysaccharide (BSP) biosynthesis. Based on virus-induced gene silencing (VIGS) and yeast two-hybrid experiments, we present an MYB transcription factor (TF), BsMYB2, that can regulate BSP biosynthesis by directly interacting with eight key BSP-related genes: sacA1, HK1, scrK1, scrK2, GPI1, manA1, GMPP1 and UGP2_1. Our study will enhance the understanding of orchid evolution and accelerate the molecular-assisted breeding of B. striata for improving traits of medicinal value.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330224, Jiangxi, China
| | - Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Song
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qingyu Huang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Renrui Chen
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
30
|
Cheng H, Xie X, Ren M, Yang S, Zhao X, Mahna N, Liu Y, Xu Y, Xiang Y, Chai H, Zheng L, Ge H, Jia R. Characterization of Three SEPALLATA-Like MADS-Box Genes Associated With Floral Development in Paphiopedilum henryanum (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:916081. [PMID: 35693163 PMCID: PMC9178235 DOI: 10.3389/fpls.2022.916081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Paphiopedilum (Orchidaceae) is one of the world's most popular orchids that is found in tropical and subtropical forests and has an enormous ornamental value. SEPALLATA-like (SEP-like) MADS-box genes are responsible for floral organ specification. In this study, three SEP-like MADS-box genes, PhSEP1, PhSEP2, and PhSEP3, were identified in Paphiopedilum henryanum. These genes were 732-916 bp, with conserved SEPI and SEPII motifs. Phylogenetic analysis revealed that PhSEP genes were evolutionarily closer to the core eudicot SEP3 lineage, whereas none of them belonged to core eudicot SEP1/2/4 clades. PhSEP genes displayed non-ubiquitous expression, which was detectable across all floral organs at all developmental stages of the flower buds. Furthermore, subcellular localization experiments revealed the localization of PhSEP proteins in the nucleus. Yeast two-hybrid assays revealed no self-activation of PhSEPs. The protein-protein interactions revealed that PhSEPs possibly interact with B-class DEFICIENS-like and E-class MADS-box proteins. Our study suggests that the three SEP-like genes may play key roles in flower development in P. henryanum, which will improve our understanding of the roles of the SEP-like MADS-box gene family and provide crucial insights into the mechanisms underlying floral development in orchids.
Collapse
Affiliation(s)
- Hao Cheng
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xiulan Xie
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Maozhi Ren
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Shuhua Yang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Yi Liu
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Yufeng Xu
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yukai Xiang
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Hua Chai
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Liang Zheng
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Hong Ge
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruidong Jia
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Zhang D, Lan S, Yin WL, Liu ZJ. Genome-Wide Identification and Expression Pattern Analysis of KNOX Gene Family in Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:901089. [PMID: 35712569 PMCID: PMC9197187 DOI: 10.3389/fpls.2022.901089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
The establishment of lateral organs and subsequent plant architecture involves factors intrinsic to the stem apical meristem (SAM) from which they are derived. KNOTTED1-LIKE HOMEOBOX (KNOX) genes are a family of plant-specific homeobox transcription factors that especially act in determining stem cell fate in SAM. Although KNOXs have been studied in many land plants for decades, there is a dearth of knowledge on KNOX's role in Orchidaceae, the largest and most diverse lineage of flowering plants. In this study, a total of 32 putative KNOX genes were identified in the genomes of five orchid species and further designated into two classes (Class I and Class II) based on phylogenetic relationships. Sequence analysis showed that most orchid KNOX proteins retain four conserved domains (KNOX1, KNOX2, ELK, and Homeobox_KN). Comparative analysis of gene structure showed that the exon-intron structure is conserved in the same clade but most orchids exhibited longer intron, which may be a unique feature of Orchidaceae. Cis-elements identified in the promoter region of orchid KNOXs were found mostly enriched in a function of light responsiveness, followed by MeJA and ABA responsiveness, indicative of their roles in modulating light and phytohormones. Collinear analysis unraveled a one-to-one correspondence among KNOXs in orchids, and all KNOX genes experienced strong purifying selection, indicating the conservation of this gene family has been reinforced across the Orchidaceae lineage. Expression profiles based on transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) revealed a stem-specific expression of KNOX Class I genes and a broader expression pattern of Class II genes. Taken together, our results provided a comprehensive analysis to uncover the underlying function of KNOX genes in Orchidaceae.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Wei-Lun Yin,
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhong-Jian Liu,
| |
Collapse
|
32
|
Ai Y, Li Z, Sun WH, Chen J, Zhang D, Ma L, Zhang QH, Chen MK, Zheng QD, Liu JF, Jiang YT, Li BJ, Liu X, Xu XY, Yu X, Zheng Y, Liao XY, Zhou Z, Wang JY, Wang ZW, Xie TX, Ma SH, Zhou J, Ke YJ, Zhou YZ, Lu HC, Liu KW, Yang FX, Zhu GF, Huang L, Peng DH, Chen SP, Lan S, Van de Peer Y, Liu ZJ. Correction: The Cymbidium genome reveals the evolution of unique morphological traits. HORTICULTURE RESEARCH 2021; 8:264. [PMID: 34907207 PMCID: PMC8671566 DOI: 10.1038/s41438-021-00709-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
| | - Wei-Hong Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing-Hua Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Kun Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing-Dong Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Yu-Ting Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuedie Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin-Yu Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xing-Yu Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie-Yu Wang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Tai-Xiang Xie
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shan-Hu Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Jie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Zhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hsiang-Chia Lu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke-Wei Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine and Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Feng-Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Laiqiang Huang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine and Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- VIB Center for Plant Systems Biology, Gent, Belgium.
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China.
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
33
|
Genome-Wide Identification of the MYB Gene Family in Cymbidiumensifolium and Its Expression Analysis in Different Flower Colors. Int J Mol Sci 2021; 22:ijms222413245. [PMID: 34948043 PMCID: PMC8706735 DOI: 10.3390/ijms222413245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022] Open
Abstract
MYB transcription factors of plants play important roles in flavonoid synthesis, aroma regulation, floral organ morphogenesis, and responses to biotic and abiotic stresses. Cymbidium ensifolium is a perennial herbaceous plant belonging to Orchidaceae, with special flower colors and high ornamental value. In this study, a total of 136 CeMYB transcription factors were identified from the genome of C. ensifolium, including 27 1R-MYBs, 102 R2R3-MYBs, 2 3R-MYBs, 2 4R-MYBs, and 3 atypical MYBs. Through phylogenetic analysis in combination with MYB in Arabidopsis thaliana, 20 clusters were obtained, indicating that these CeMYBs may have a variety of biological functions. The 136 CeMYBs were distributed on 18 chromosomes, and the conserved domain analysis showed that they harbored typical amino acid sequence repeats. The motif prediction revealed that multiple conserved elements were mostly located in the N-terminal of CeMYBs, suggesting their functions to be relatively conserved. CeMYBs harbored introns ranging from 0 to 13 and contained a large number of stress- and hormone-responsive cis-acting elements in the promoter regions. The subcellular localization prediction demonstrated that most of CeMYBs were positioned in the nucleus. The analysis of the CeMYBs expression based on transcriptome data showed that CeMYB52, and CeMYB104 of the S6 subfamily may be the key genes leading to flower color variation. The results lay a foundation for the study of MYB transcription factors of C. ensifolium and provide valuable information for further investigations of the potential function of MYB genes in the process of anthocyanin biosynthesis.
Collapse
|