1
|
He J, Van Eck J, Lippman ZB. Blooming balloons: Searching for mechanisms of the inflated calyx. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102595. [PMID: 38943829 DOI: 10.1016/j.pbi.2024.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Studying morphological novelties offers special insights into developmental biology and evolution. The inflated calyx syndrome (ICS) is a largely unrecognized but fascinating feature of flower development, where sepals form balloon-like husks that encapsulate fruits. Despite its independent emergence in many lineages of flowering plants, the genetic and molecular mechanisms of ICS remain unknown. Early studies in the Solanaceae genus Physalis put forth key roles of MADS-box genes in ICS. However, recent work suggests these classical floral identity transcription factors were false leads. With newfound capabilities that allow rapid development of genetic systems through genomics and genome editing, Physalis has re-emerged as the most tractable model species for dissecting ICS. This review revisits current understanding of ICS and highlights how recent advancements enable a reset in the search for genetic and molecular mechanisms using unbiased, systematic approaches.
Collapse
Affiliation(s)
- Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
2
|
Wang X, Guan L, Wang T, Yu L, Wang S, He B, Tang B, Lu J. Comparative Transcriptomics Revealed Physalis floridana Rydb. Influences on the Immune System of the 28-Spotted Ladybird Beetle ( Henosepilachna vigintioctopunctata). PLANTS (BASEL, SWITZERLAND) 2024; 13:2711. [PMID: 39409581 PMCID: PMC11478385 DOI: 10.3390/plants13192711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Physalis floridana Rydb., a member of the Solanaceae family, is renowned for its diverse secondary metabolites, including physalins and withanolides. The 28-spotted ladybird beetle (Henosepilachna vigintioctopunctata) is a notorious pest severely damaging Solanaceous crops. This study demonstrates that P. floridana Rydb. significantly impacts on the development and reproductive suppression of H. vigintioctopunctata. A comparative transcriptome analysis was performed by feeding H. vigintioctopunctata larvae on P. floridana Rydb., Solanum nigrum L., Solanum tuberosum L., and Solanum lycopersicum L. The results reveal that larvae fed on P. floridana Rydb. exhibit numerous differentially expressed genes, which are notably enriched in pathways related to energy metabolism, immunity, and detoxification. These functions and pathways are less enriched in larvae fed by other hosts. Weighted Gene Co-expression Network Analysis (WGCNA) indicates that feeding on P. floridana Rydb. influences the expression of specific genes involved in the Toll and IMD signaling pathways, impacting the immune system of H. vigintioctopunctata larvae. This study provides transcriptomic insights into larval responses to different diets and suggests that the effect of P. floridana Rydb. on the immune system of H. vigintioctopunctata is a key defense mechanism against herbivores.
Collapse
Affiliation(s)
- Xianzhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Liwen Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Tianwen Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Liuhe Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Shuangle Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Biner He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
| | - Jiangjie Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.W.); (L.G.); (T.W.); (L.Y.); (S.W.); (B.H.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Wu L, Liu Q, Gou W, Li J, Cao Q, He C. Deciphering the evolutionary development of the "Chinese lantern" within Solanaceae. PLANTA 2024; 260:98. [PMID: 39292428 DOI: 10.1007/s00425-024-04535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/15/2024] [Indexed: 09/19/2024]
Abstract
MAIN CONCLUSION The key genetic variation underlying the evo-devo of ICS in Solanaceae may be further pinpointed using an integrated strategy of forward and reverse genetics studies under the framework of phylogeny. The calyx of Physalis remains persistent throughout fruit development. Post-flowering, the fruiting calyx is inflated rapidly to encapsulate the berry, giving rise to a "Chinese lantern" structure called inflated calyx syndrome (ICS). It is unclear how this novelty arises. Over the past 2 decades, the role of MADS-box genes in the evolutionary development (evo-devo) of ICS has mainly been investigated within Solanaceae. In this review, we analyze the main achievements, challenges, and new progress. ICS acts as a source for fruit development, provides a microenvironment to protect fruit development, and assists in long-distance fruit dispersal. ICS is a typical post-floral trait, and the onset of its development is triggered by specific developmental signals that coincide with fertilization. These signals can be replaced by exogenous gibberellin and cytokinin application. MPF2-like heterotopic expression and MBP21-like loss have been proposed to be two essential evolutionary events for ICS origin, and manipulating the related MADS-box genes has been shown to affect the ICS size, sepal organ identity, and/or male fertility, but not completely disrupt ICS. Therefore, the core genes or key links in the ICS biosynthesis pathways may have undergone secondary mutations during evolution, or they have not yet been pinpointed. Recently, we have made some encouraging progress in acquiring lantern mutants in Physalis floridana. In addition to technological innovation, we propose an integrated strategy to further analyze the evo-devo mechanisms of ICS in Solanaceae using forward and reverse genetics studies under the framework of phylogeny.
Collapse
Affiliation(s)
- Lanfeng Wu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Qianqian Liu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Wei Gou
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Jun Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Qianhui Cao
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Grzech D, Smit SJ, Alam RM, Boccia M, Nakamura Y, Hong B, Barbole R, Heinicke S, Kunert M, Seibt W, Grabe V, Caputi L, Lichman BR, O'Connor SE, Aharoni A, Sonawane PD. Incorporation of nitrogen in antinutritional Solanum alkaloid biosynthesis. Nat Chem Biol 2024:10.1038/s41589-024-01735-w. [PMID: 39271954 DOI: 10.1038/s41589-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.
Collapse
Affiliation(s)
- Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Ryan M Alam
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
5
|
Pasin F, Uranga M, Charudattan R, Kwon CT. Deploying deep Solanaceae domestication and virus biotechnology knowledge to enhance food system performance and diversity. HORTICULTURE RESEARCH 2024; 11:uhae205. [PMID: 39286357 PMCID: PMC11403206 DOI: 10.1093/hr/uhae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024]
Abstract
Our knowledge of crop domestication, genomics, and of the plant virosphere unevenly represents the taxonomic distribution of the global biodiversity, and, as we show here, is significantly enriched for the Solanaceae. Within the family, potato, tomato, eggplant, pepper, and over 100 lesser-known edible species play important nutrition and cultural roles in global and local food systems. Technologies using engineered viruses are transitioning from proof-of-concept applications in model plants to the precise trait breeding of Solanaceae crops. Leveraging this accumulated knowledge, we highlight the potential of virus-based biotechnologies for fast-track improvement of Solanaceae crop production systems, contributing to enhanced global and local human nutrition and food security.
Collapse
Affiliation(s)
- Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, 3001 Heverlee, Belgium
| | - Raghavan Charudattan
- Plant Pathology Department, University of Florida, 32609 Gainesville, FL, USA
- BioProdex, Inc., 32609 Gainesville, FL, USA
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, 17104 Yongin, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, 17104 Yongin, Republic of Korea
| |
Collapse
|
6
|
Jiang Y, Jin Y, Shan Y, Zhong Q, Wang H, Shen C, Feng S. Advances in Physalis molecular research: applications in authentication, genetic diversity, phylogenetics, functional genes, and omics. FRONTIERS IN PLANT SCIENCE 2024; 15:1407625. [PMID: 38993935 PMCID: PMC11236614 DOI: 10.3389/fpls.2024.1407625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
The plants of the genus Physalis L. have been extensively utilized in traditional and indigenous Chinese medicinal practices for treating a variety of ailments, including dermatitis, malaria, asthma, hepatitis, and liver disorders. The present review aims to achieve a comprehensive and up-to-date investigation of the genus Physalis, a new model crop, to understand plant diversity and fruit development. Several chloroplast DNA-, nuclear ribosomal DNA-, and genomic DNA-based markers, such as psbA-trnH, internal-transcribed spacer (ITS), simple sequence repeat (SSR), random amplified microsatellites (RAMS), sequence-characterized amplified region (SCAR), and single nucleotide polymorphism (SNP), were developed for molecular identification, genetic diversity, and phylogenetic studies of Physalis species. A large number of functional genes involved in inflated calyx syndrome development (AP2-L, MPF2, MPF3, and MAGO), organ growth (AG1, AG2, POS1, and CNR1), and active ingredient metabolism (24ISO, DHCRT, P450-CPL, SR, DUF538, TAS14, and 3β-HSB) were identified contributing to the breeding of novel Physalis varieties. Various omic studies revealed and functionally identified a series of reproductive organ development-related factors, environmental stress-responsive genes, and active component biosynthesis-related enzymes. The chromosome-level genomes of Physalis floridana Rydb., Physalis grisea (Waterf.) M. Martínez, and Physalis pruinosa L. have been recently published providing a valuable resource for genome editing in Physalis crops. Our review summarizes the recent progress in genetic diversity, molecular identification, phylogenetics, functional genes, and the application of omics in the genus Physalis and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Yan Jiang
- Hangzhou Normal University, Hangzhou, China
| | - Yanyun Jin
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yiyi Shan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Quanzhou Zhong
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Shangguo Feng
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Zhang Y, Guo W, Yuan Z, Song Z, Wang Z, Gao J, Fu W, Zhang G. Chromosome-level genome assembly and annotation of the prickly nightshade Solanum rostratum Dunal. Sci Data 2023; 10:341. [PMID: 37264053 DOI: 10.1038/s41597-023-02247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The prickly nightshade Solanum rostratum, an annual malignant weed, is native to North America and has globally invaded 34 countries, causing serious threats to ecosystems, agriculture, animal husbandry, and human health. In this study, we constructed a chromosome-level genome assembly and annotation of S. rostratum. The contig-level genome was initially assembled in 898.42 Mb with a contig N50 of 62.00 Mb from PacBio high-fidelity reads. With Hi-C sequencing data scaffolding, 96.80% of the initially assembled sequences were anchored and orientated onto 12 pseudo-chromosomes, generating a genome of 869.69 Mb with a contig N50 of 72.15 Mb. We identified 649.92 Mb (72.26%) of repetitive sequences and 3,588 non-coding RNAs in the genome. A total of 29,694 protein-coding genes were predicted, with 28,154 (94.81%) functionally annotated genes. We found 99.5% and 91.3% complete embryophyta_odb10 genes in the pseudo-chromosomes genome and predicted gene datasets by BUSCO assessment. The present genomic resource provides essential information for subsequent research on the mechanisms of environmental adaptation of S. rostratum and host shift in Colorado potato beetles.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenchao Guo
- Key Laboratory of Intergraded Management of Harmful Crop Vermin of China Northwestern Oasis, Ministry of Agriculture and Rural Affairs/Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhili Yuan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhonghui Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinhui Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weidong Fu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guoliang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Wu Y, Li D, Hu Y, Li H, Ramstein GP, Zhou S, Zhang X, Bao Z, Zhang Y, Song B, Zhou Y, Zhou Y, Gagnon E, Särkinen T, Knapp S, Zhang C, Städler T, Buckler ES, Huang S. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 2023; 186:2313-2328.e15. [PMID: 37146612 DOI: 10.1016/j.cell.2023.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Hybrid potato breeding will transform the crop from a clonally propagated tetraploid to a seed-reproducing diploid. Historical accumulation of deleterious mutations in potato genomes has hindered the development of elite inbred lines and hybrids. Utilizing a whole-genome phylogeny of 92 Solanaceae and its sister clade species, we employ an evolutionary strategy to identify deleterious mutations. The deep phylogeny reveals the genome-wide landscape of highly constrained sites, comprising ∼2.4% of the genome. Based on a diploid potato diversity panel, we infer 367,499 deleterious variants, of which 50% occur at non-coding and 15% at synonymous sites. Counterintuitively, diploid lines with relatively high homozygous deleterious burden can be better starting material for inbred-line development, despite showing less vigorous growth. Inclusion of inferred deleterious mutations increases genomic-prediction accuracy for yield by 24.7%. Our study generates insights into the genome-wide incidence and properties of deleterious mutations and their far-reaching consequences for breeding.
Collapse
Affiliation(s)
- Yaoyao Wu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Dawei Li
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Hu
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Hongbo Li
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Guillaume P Ramstein
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus 8000, Denmark
| | - Shaoqun Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xinyan Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Zhigui Bao
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Yu Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Baoxing Song
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Yao Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100094, China
| | - Yongfeng Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Edeline Gagnon
- Technische Universität München, TUM School of Life Sciences, Emil-Ramann-Strasse 2, 85354 Freising, Germany
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Chunzhi Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Thomas Städler
- Institute of Integrative Biology and Zurich-Basel Plant Science Center, ETH Zurich, 8092 Zurich, Switzerland
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA; USDA-ARS, Ithaca, NY 14853, USA
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
9
|
Jiao Y, Li X, Huang X, Liu F, Zhang Z, Cao L. The Identification of SQS/ SQE/ OSC Gene Families in Regulating the Biosynthesis of Triterpenes in Potentilla anserina. Molecules 2023; 28:2782. [PMID: 36985754 PMCID: PMC10051230 DOI: 10.3390/molecules28062782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The tuberous roots of Potentilla anserina (Pan) are an edible and medicinal resource in Qinghai-Tibetan Plateau, China. The triterpenoids from tuberous roots have shown promising anti-cancer, hepatoprotective, and anti-inflammatory properties. In this study, we carried out phylogenetic analysis of squalene synthases (SQSs), squalene epoxidases (SQEs), and oxidosqualene cyclases (OSCs) in the pathway of triterpenes. In total, 6, 26, and 20 genes of SQSs, SQEs, and OSCs were retrieved from the genome of Pan, respectively. Moreover, 6 SQSs and 25 SQEs genes expressed in two sub-genomes (A and B) of Pan. SQSs were not expanded after whole-genome duplication (WGD), and the duplicated genes were detected in SQEs. Twenty OSCs were divided into two clades of cycloartenol synthases (CASs) and β-amyrin synthases (β-ASs) by a phylogenetic tree, characterized with gene duplication and evolutionary divergence. We speculated that β-ASs and CASs may participate in triterpenes synthesis. The data presented act as valuable references for future studies on the triterpene synthetic pathway of Pan.
Collapse
Affiliation(s)
- Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Fan Liu
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| |
Collapse
|
10
|
Zhang F, Qiu F, Zeng J, Xu Z, Tang Y, Zhao T, Gou Y, Su F, Wang S, Sun X, Xue Z, Wang W, Yang C, Zeng L, Lan X, Chen M, Zhou J, Liao Z. Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family. Nat Commun 2023; 14:1446. [PMID: 36922496 PMCID: PMC10017790 DOI: 10.1038/s41467-023-37133-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Tropane alkaloids (TAs) are widely distributed in the Solanaceae, while some important medicinal tropane alkaloids (mTAs), such as hyoscyamine and scopolamine, are restricted to certain species/tribes in this family. Little is known about the genomic basis and evolution of TAs biosynthesis and specialization in the Solanaceae. Here, we present chromosome-level genomes of two representative mTAs-producing species: Atropa belladonna and Datura stramonium. Our results reveal that the two species employ a conserved biosynthetic pathway to produce mTAs despite being distantly related within the nightshade family. A conserved gene cluster combined with gene duplication underlies the wide distribution of TAs in this family. We also provide evidence that branching genes leading to mTAs likely have evolved in early ancestral Solanaceae species but have been lost in most of the lineages, with A. belladonna and D. stramonium being exceptions. Furthermore, we identify a cytochrome P450 that modifies hyoscyamine into norhyoscyamine. Our results provide a genomic basis for evolutionary insights into the biosynthesis of TAs in the Solanaceae and will be useful for biotechnological production of mTAs via synthetic biology approaches.
Collapse
Affiliation(s)
- Fangyuan Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Fei Qiu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Zhichao Xu
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Yueli Tang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Tengfei Zhao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Yuqin Gou
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Fei Su
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Shiyi Wang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Xiuli Sun
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Weixing Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Lingjiang Zeng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi, Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Junhui Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhihua Liao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China. .,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Liu H, Li J, Gong P, He C. The origin and evolution of carpels and fruits from an evo-devo perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:283-298. [PMID: 36031801 DOI: 10.1111/jipb.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The flower is an evolutionary innovation in angiosperms that drives the evolution of biodiversity. The carpel is integral to a flower and develops into fruits after fertilization, while the perianth, consisting of the calyx and corolla, is decorative to facilitate pollination and protect the internal organs, including the carpels and stamens. Therefore, the nature of flower origin is carpel and stamen origin, which represents one of the greatest and fundamental unresolved issues in plant evolutionary biology. Here, we briefly summarize the main progress and key genes identified for understanding floral development, focusing on the origin and development of the carpels. Floral ABC models have played pioneering roles in elucidating flower development, but remain insufficient for resolving flower and carpel origin. The genetic basis for carpel origin and subsequent diversification leading to fruit diversity also remains elusive. Based on current research progress and technological advances, simplified floral models and integrative evolutionary-developmental (evo-devo) strategies are proposed for elucidating the genetics of carpel origin and fruit evolution. Stepwise birth of a few master regulatory genes and subsequent functional diversification might play a pivotal role in these evolutionary processes. Among the identified transcription factors, AGAMOUS (AG) and CRABS CLAW (CRC) may be the two core regulatory genes for carpel origin as they determine carpel organ identity, determinacy, and functionality. Therefore, a comparative identification of their protein-protein interactions and downstream target genes between flowering and non-flowering plants from an evo-devo perspective may be primary projects for elucidating carpel origin and development.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Wang X, Teng C, Wei H, Liu S, Xuan H, Peng W, Li Q, Hao H, Lyu Q, Lyu S, Fan Y. Development of a set of novel binary expression vectors for plant gene function analysis and genetic transformation. FRONTIERS IN PLANT SCIENCE 2023; 13:1104905. [PMID: 36714700 PMCID: PMC9877630 DOI: 10.3389/fpls.2022.1104905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
With the advent of multiple omics and Genome-Wide Association Studies (GWAS) technology, genome-scale functional analysis of candidate genes is to be conducted in diverse plant species. Construction of plant binary expression vectors is the prerequisite for gene function analysis. Therefore, it is of significance to develop a set of plant binary expression vectors with highly efficient, inexpensive, and convenient cloning method, and easy-to-use in screening of positive recombinant in Escherichia coli. In this study, we developed a set of plant binary expression vectors, termed pBTR vectors, based on Golden Gate cloning using BsaI restriction site. Foreign DNA fragment of interest (FDI) can be cloned into the destination pBTR by one-step digestion-ligation reaction in a single tube, and even the FDI contains internal BsaI site(s). Markedly, in one digestion-ligation reaction, multiple FDIs (exemplified by cloning four soybean Glyma.02g025400, Glyma.05g201700, Glyma.06g165700, and Glyma.17g095000 genes) can be cloned into the pBTR vector to generate multiple corresponding expression constructs (each expression vector carrying an FDI). In addition, the pBTR vectors carry the visual marker, a brightness monomeric red fluorescent protein mScarlet-I, that can be observed with the unaided eye in screening of positive recombinants without the use of additional reagents/equipment. The reliability of the pBTR vectors was validated in plants by overexpression of AtMyb75/PAP1 in tomato and GUSPlus in soybean roots via Agrobacterium rhizogenes-mediated transformation, promoter activity analysis of AtGCSpro in Arabidopsis via A. tumefaciens-mediated transformation, and protein subcellular localization of the Vitis vinifera VvCEB1opt in tobacco, respectively. These results demonstrated that the pBTR vectors can be used in analysis of gene (over)expression, promoter activity, and protein subcellular localization. These vectors will contribute to speeding up gene function analysis and the process of plant molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shanhua Lyu
- *Correspondence: Shanhua Lyu, ; ; Yinglun Fan,
| | - Yinglun Fan
- *Correspondence: Shanhua Lyu, ; ; Yinglun Fan,
| |
Collapse
|
13
|
He J, Alonge M, Ramakrishnan S, Benoit M, Soyk S, Reem NT, Hendelman A, Van Eck J, Schatz MC, Lippman ZB. Establishing Physalis as a Solanaceae model system enables genetic reevaluation of the inflated calyx syndrome. THE PLANT CELL 2023; 35:351-368. [PMID: 36268892 PMCID: PMC9806562 DOI: 10.1093/plcell/koac305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The highly diverse Solanaceae family contains several widely studied models and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative Physalis pruinosa and use these resources to study natural and engineered variations in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR-Cas9-targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system and establish a paradigm in the search for factors driving ICS.
Collapse
Affiliation(s)
- Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nathan T Reem
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
14
|
Wang L, Liu X, Li Q, Xu N, He C. A lineage-specific arginine in POS1 is required for fruit size control in Physaleae (Solanaceae) via gene co-option. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:183-204. [PMID: 35481627 DOI: 10.1111/tpj.15786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Solanaceae have important economic value mainly due to their edible fruits. Physalis organ size 1/cytokinin response factor 3 (POS1/CRF3), a unique gene in Solanaceae, is involved in fruit size variation in Physalis but not in Solanum. However, the underlying mechanisms remain elusive. Here, we found that POS1/CRF3 was likely created via the fusion of CRF7 and CRF8 duplicates. Multiple genetic manipulations revealed that only POS1 and Capsicum POS1 (CaPOS1) functioned in fruit size control via the positive regulation of cell expansion. Comparative studies in a phylogenetic framework showed the directional enhancement of POS1-like expression in the flowers and fruits of Physaleae and the specific gain of certain interacting proteins associated with cell expansion by POS1 and CaPOS1. A lineage-specific single nucleotide polymorphism (SNP) caused the 68th amino acid histidine in the POS1 orthologs of non-Physaleae (Nicotiana and Solanum) to change to arginine in Physaleae (Physalis and Capsicum). Substituting the arginine in Physaleae POS1-like by histidine completely abolished their function in the fruits and the protein-protein interaction (PPI) with calreticulin-3. Transcriptomic comparison revealed the potential downstream pathways of POS1, including the brassinosteroid biosynthesis pathway. However, POS1-like may have functioned ancestrally in abiotic stress within Solanaceae. Our work demonstrated that heterometric expression and a SNP caused a single amino acid change to establish new PPIs, which contributed to the co-option of POS1 in multiple regulatory pathways to regulate cell expansion and thus fruit size in Physaleae. These results provide new insights into fruit morphological evolution and fruit yield control.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China
| | - Xueyang Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Qiaoru Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Nan Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Hoopes G, Meng X, Hamilton JP, Achakkagari SR, de Alves Freitas Guesdes F, Bolger ME, Coombs JJ, Esselink D, Kaiser NR, Kodde L, Kyriakidou M, Lavrijssen B, van Lieshout N, Shereda R, Tuttle HK, Vaillancourt B, Wood JC, de Boer JM, Bornowski N, Bourke P, Douches D, van Eck HJ, Ellis D, Feldman MJ, Gardner KM, Hopman JCP, Jiang J, De Jong WS, Kuhl JC, Novy RG, Oome S, Sathuvalli V, Tan EH, Ursum RA, Vales MI, Vining K, Visser RGF, Vossen J, Yencho GC, Anglin NL, Bachem CWB, Endelman JB, Shannon LM, Strömvik MV, Tai HH, Usadel B, Buell CR, Finkers R. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. MOLECULAR PLANT 2022; 15:520-536. [PMID: 35026436 DOI: 10.1016/j.molp.2022.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/19/2021] [Accepted: 01/07/2022] [Indexed: 05/11/2023]
Abstract
Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.
Collapse
Affiliation(s)
- Genevieve Hoopes
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sai Reddy Achakkagari
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | | | - Marie E Bolger
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Wilhelm Johnen Str, 52428 Jülich, Germany
| | - Joseph J Coombs
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Danny Esselink
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Natalie R Kaiser
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Bayer Crop Science, Woodland, CA 95695, USA
| | - Linda Kodde
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Maria Kyriakidou
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Brian Lavrijssen
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Natascha van Lieshout
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Rachel Shereda
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Heather K Tuttle
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Joshua C Wood
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Nolan Bornowski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Bourke
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - David Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Herman J van Eck
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Dave Ellis
- International Potato Center, 1895 Avenida La Molina, Lima, Peru
| | | | - Kyle M Gardner
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, Fredericton, NB E3B 4Z7, Canada
| | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Walter S De Jong
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-1901, USA
| | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Richard G Novy
- USDA-ARS, Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, USA
| | - Stan Oome
- HZPC Research B.V., Edisonweg 5, 8501 XG Joure, the Netherlands
| | - Vidyasagar Sathuvalli
- Department of Crop and Soil Science, Oregon State University, Hermiston, OR 97838, USA
| | - Ek Han Tan
- School of Biology and Ecology, University of Maine, 5735 Hitchner Hall Orono, ME 04469, USA
| | - Remco A Ursum
- HZPC Research B.V., Edisonweg 5, 8501 XG Joure, the Netherlands
| | - M Isabel Vales
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Kelly Vining
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Jack Vossen
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
| | - Noelle L Anglin
- International Potato Center, 1895 Avenida La Molina, Lima, Peru; USDA-ARS, Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, USA
| | - Christian W B Bachem
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Jeffrey B Endelman
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, Fredericton, NB E3B 4Z7, Canada
| | - Björn Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Wilhelm Johnen Str, 52428 Jülich, Germany; Institute for Biological Data Science, Heinrich Heine University, Düsseldorf, 40225 Düsseldorf, Germany
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|