1
|
Meier M, Becker S, Levine E, DuFresne O, Foster K, Moore J, Burnett FN, Hermanns VC, Heath SP, Abdelsaid M, Coucha M. Timing matters in the use of renin-angiotensin system modulators and COVID-related cognitive and cerebrovascular dysfunction. PLoS One 2024; 19:e0304135. [PMID: 39074114 DOI: 10.1371/journal.pone.0304135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/07/2024] [Indexed: 07/31/2024] Open
Abstract
Renin-angiotensin system (RAS) modulators, including Angiotensin receptor blockers (ARB) and angiotensin-converting enzyme inhibitors (ACEI), are effective medications for controlling blood pressure. Cognitive deficits, including lack of concentration, memory loss, and confusion, were reported after COVID-19 infection. ARBs or ACEI increase the expression of angiotensin-converting enzyme-2 (ACE-2), a functional receptor that allows binding of SARS-CoV-2 spike protein for cellular invasion. To date, the association between the use of RAS modulators and the severity of COVID-19 cognitive dysfunction is still controversial. PURPOSE This study addressed the following questions: 1) Does prior treatment with RAS modulator worsen COVID-19-induced cerebrovascular and cognitive dysfunction? 2) Can post-treatment with RAS modulator improve cognitive performance and cerebrovascular function following COVID-19? We hypothesize that pre-treatment exacerbates COVID-19-induced detrimental effects while post-treatment displays protective effects. METHODS Clinical study: Patients diagnosed with COVID-19 between May 2020 and December 2022 were identified through the electronic medical record system. Inclusion criteria comprised a documented medical history of hypertension treated with at least one antihypertensive medication. Subsequently, patients were categorized into two groups: those who had been prescribed ACEIs or ARBs before admission and those who had not received such treatment before admission. Each patient was evaluated on admission for signs of neurologic dysfunction. Pre-clinical study: Humanized ACE-2 transgenic knock-in mice received the SARS-CoV-2 spike protein via jugular vein injection for 2 weeks. One group had received Losartan (10 mg/kg), an ARB, in their drinking water for two weeks before the injection, while the other group began Losartan treatment after the spike protein injection. Cognitive functions, cerebral blood flow, and cerebrovascular density were determined in all experimental groups. Moreover, vascular inflammation and cell death were assessed. RESULTS Signs of neurological dysfunction were observed in 97 out of 177 patients (51%) taking ACEIs/ARBs prior to admission, compared to 32 out of 118 patients (27%) not receiving ACEI or ARBs. In animal studies, spike protein injection increased vascular inflammation, increased endothelial cell apoptosis, and reduced cerebrovascular density. In parallel, spike protein decreased cerebral blood flow and cognitive function. Our results showed that pretreatment with Losartan exacerbated these effects. However, post-treatment with Losartan prevented spike protein-induced vascular and neurological dysfunctions. CONCLUSION Our clinical data showed that the use of RAS modulators before encountering COVID-19 can initially exacerbate vascular and neurological dysfunctions. Similar findings were demonstrated in the in-vivo experiments; however, the protective effects of targeting the RAS become apparent in the animal model when the treatment is initiated after spike protein injection.
Collapse
Affiliation(s)
- Mackenzi Meier
- Department of Pharmacy Practice, School of Pharmacy, South University, Savannah, Georgia, United States of America
| | - Sara Becker
- Department of Pharmacy Practice, School of Pharmacy, South University, Savannah, Georgia, United States of America
| | - Erica Levine
- Department of Pharmacy Practice, School of Pharmacy, South University, Savannah, Georgia, United States of America
| | - Oriana DuFresne
- Department of Pharmacy Practice, School of Pharmacy, South University, Savannah, Georgia, United States of America
| | - Kaleigh Foster
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, Georgia, United States of America
| | - Joshua Moore
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, Georgia, United States of America
| | - Faith N Burnett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, Georgia, United States of America
| | - Veronica C Hermanns
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, Georgia, United States of America
| | - Stan P Heath
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, Georgia, United States of America
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, Georgia, United States of America
| | - Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, Georgia, United States of America
| |
Collapse
|
2
|
Prato M, Tiberti N, Mazzi C, Gobbi F, Piubelli C, Longoni SS. The Renin-Angiotensin System (RAS) in COVID-19 Disease: Where We Are 3 Years after the Beginning of the Pandemic. Microorganisms 2024; 12:583. [PMID: 38543635 PMCID: PMC10975343 DOI: 10.3390/microorganisms12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 11/12/2024] Open
Abstract
The RAS is a hormonal system playing a pivotal role in the control of blood pressure and electrolyte homeostasis, the alteration of which is associated with different pathologies, including acute respiratory distress syndrome (ARDS). As such, it is not surprising that a number of studies have attempted to elucidate the role and balance of the renin-angiotensin system (RAS) in COVID-19. In this review article, we will describe the evidence collected regarding the two main enzymes of the RAS (i.e., ACE and ACE2) and their principal molecular products (i.e., AngII and Ang1-7) in SARS-CoV-2 infection, with the overarching goal of drawing conclusions on their possible role as clinical markers in association with disease severity, progression, and outcome. Moreover, we will bring into the picture new experimental data regarding the systemic activity of ACE and ACE2 as well as the concentration of AngII and Ang1-7 in a cohort of 47 COVID-19 patients hospitalized at the IRCCS Sacro Cuore-Don Calabria Hospital (Negrar, Italy) between March and April 2020. Finally, we will discuss the possibility of considering this systemic pathway as a clinical marker for COVID-19.
Collapse
Affiliation(s)
- Marco Prato
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Federico Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
3
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. Proteolysis and Deficiency of α1-Proteinase Inhibitor in SARS-CoV-2 Infection. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2022; 16:271-291. [PMID: 36407837 PMCID: PMC9668222 DOI: 10.1134/s1990750822040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
The SARS-CoV-2 pandemic had stimulated the emergence of numerous publications on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), especially when it was found that the regions of high mortality corresponded to the regions with deficient α1-PI alleles. By analogy with the data obtained in the last century, when the first cause of the genetic deficiency of α1-antitrypsin leading to elastase activation in pulmonary emphysema was proven, it can be supposed that proteolysis hyperactivation in COVID-19 may be associated with the impaired functions of α1-PI. The purpose of this review was to systematize the scientific data and critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a therapeutic target. This review describes the proteinase-dependent stages of viral infection: the reception and penetration of the virus into a cell and the imbalance of the plasma aldosterone-angiotensin-renin, kinin, and blood clotting systems. The role of ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases in the virus tropism, the activation of proteolytic cascades in blood, and the COVID-19-dependent complications is considered. The scientific reports on α1-PI involvement in the SARS-CoV-2-induced inflammation, the relationship with the severity of infection and comorbidities were analyzed. Particular attention is paid to the acquired α1-PI deficiency in assessing the state of patients with proteolysis overactivation and chronic non-inflammatory diseases, which are accompanied by the risk factors for comorbidity progression and the long-term consequences of COVID-19. Essential data on the search and application of protease inhibitor drugs in the therapy for bronchopulmonary and cardiovascular pathologies were analyzed. The evidence of antiviral, anti-inflammatory, anticoagulant, and anti-apoptotic effects of α1-PI, as well as the prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders, are presented.
Collapse
Affiliation(s)
| | - L. V. Spirina
- Siberian State Medical University, 634050 Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| | - D. A. Dyakov
- Siberian State Medical University, 634050 Tomsk, Russia
| | | |
Collapse
|
4
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. [Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:157-176. [PMID: 35717581 DOI: 10.18097/pbmc20226803157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 pandemia had stimulated the numerous publications emergence on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), primarily when it was found that high mortality in some regions corresponded to the regions with deficient α1-PI alleles. By analogy with the last century's data, when the root cause of the α1-antitrypsin, genetic deficiency leading to the elastase activation in pulmonary emphysema, was proven. It is evident that proteolysis hyperactivation in COVID-19 may be associated with α1-PI impaired functions. The purpose of this review is to systematize scientific data, critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a target in therapy. This review describes the proteinase-dependent stages of a viral infection: the reception and virus penetration into the cell, the plasma aldosterone-angiotensin-renin, kinins, blood clotting systems imbalance. The ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases role in the virus tropism, proteolytic cascades activation in blood, and the COVID-19-dependent complications is presented. The analysis of scientific reports on the α1-PI implementation in the SARS-CoV-2-induced inflammation, the links with the infection severity, and comorbidities were carried out. Particular attention is paid to the acquired α1-PI deficiency in assessing the patients with the proteolysis overactivation and chronic non-inflammatory diseases that are accompanied by the risk factors for the comorbidities progression, and the long-term consequences of COVID-19 initiation. Analyzed data on the search and proteases inhibitory drugs usage in the bronchopulmonary cardiovascular pathologies therapy are essential. It becomes evident the antiviral, anti-inflammatory, anticoagulant, anti-apoptotic effect of α1-PI. The prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders are presented.
Collapse
Affiliation(s)
| | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - D A Dyakov
- Siberian State Medical University, Tomsk, Russia
| | - N V Masunova
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
5
|
Li X, Zhang Y, He L, Si J, Qiu S, He Y, Wei J, Wang Z, Xie L, Li Y, Teng T. Immune response and potential therapeutic strategies for the SARS-CoV-2 associated with the COVID-19 pandemic. Int J Biol Sci 2022; 18:1865-1877. [PMID: 35342348 PMCID: PMC8935217 DOI: 10.7150/ijbs.66369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Following onset of the first recorded case of Coronavirus disease 2019 (COVID-19) in December 2019, more than 269 million cases and over 5.3 million deaths have been confirmed worldwide. COVID-19 is a highly infectious pneumonia, caused by a novel virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, it poses a severe threat to human health across the globe, a trend that is likely to persist in the foreseeable future. This paper reviews SARS-CoV-2 immunity, the latest development of anti-SARS-CoV-2 drugs as well as exploring in detail, immune escape induced by SARS-CoV-2. We expect that the findings will provide a basis for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Xianghui Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Yabo Zhang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Libing He
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Jiangzhe Si
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Shuai Qiu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Yuhua He
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Jiacun Wei
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Zhili Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Longxiang Xie
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China.,✉ Corresponding authors: E-mail: ; Tel.: +86-0371-22892865
| | - Yanzhang Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China.,✉ Corresponding authors: E-mail: ; Tel.: +86-0371-22892865
| | - Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China.,✉ Corresponding authors: E-mail: ; Tel.: +86-0371-22892865
| |
Collapse
|
6
|
Künzel SE, Bürgel T, Künzel SH, Pohlmann D, Zeitz O, Joussen A, Dubrac A. LOW VULNERABILITY OF THE POSTERIOR EYE SEGMENT TO SARS-COV-2 INFECTION: Chorioretinal SARS-CoV-2 Vulnerability. Retina 2022; 42:236-243. [PMID: 35050927 DOI: 10.1097/iae.0000000000003320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Retinal manifestations have been described in COVID-19 patients, but it is unknown whether SARS-CoV-2, the causal agent in COVID-19, can directly infect posterior ocular tissues. Here, we investigate SARS-CoV-2 host factor gene expression levels and their distribution across retinal and choroidal cell types. METHODS Query of single-cell RNA sequencing data from human retina and choroid. RESULTS We find no relevant expression of two key genes involved in SARS-CoV-2 entry, ACE2 and TMPRSS2, in retinal cell types. By contrast, scarce expression levels could be detected in choroidal vascular cells. CONCLUSION Given the current understanding of viral host cell entry, these findings suggest a low vulnerability of the posterior eye segment to SARS-CoV-2 with a potential weak spot in the vasculature, which could play a putative causative role in ocular lesions in COVID-19 patients. This may qualify the vasculature of the human posterior eye segment as an in vivo biomarker for life-threatening vascular occlusions in COVID-19 patients.
Collapse
Affiliation(s)
- Steffen Emil Künzel
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Thore Bürgel
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Dominika Pohlmann
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Oliver Zeitz
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Antonia Joussen
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, Quebec, Canada; and
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
7
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
8
|
An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene 2022; 808:145963. [PMID: 34530086 PMCID: PMC8437745 DOI: 10.1016/j.gene.2021.145963] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023]
Abstract
As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.
Collapse
|
9
|
Louis TJ, Qasem A, Abdelli LS, Naser SA. Extra-Pulmonary Complications in SARS-CoV-2 Infection: A Comprehensive Multi Organ-System Review. Microorganisms 2022; 10:153. [PMID: 35056603 PMCID: PMC8781813 DOI: 10.3390/microorganisms10010153] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is typically presented with acute symptoms affecting upper and lower respiratory systems. As the current pandemic progresses, COVID-19 patients are experiencing a series of nonspecific or atypical extra-pulmonary complications such as systemic inflammation, hypercoagulability state, and dysregulation of the renin-angiotensin-aldosterone system (RAAS). These manifestations often delay testing, diagnosis, and the urge to seek effective treatment. Although the pathophysiology of these complications is not clearly understood, the incidence of COVID-19 increases with age and the presence of pre-existing conditions. This review article outlines the pathophysiology and clinical impact of SARS-CoV-2 infection on extra-pulmonary systems. Understanding the broad spectrum of atypical extra-pulmonary manifestations of COVID-19 should increase disease surveillance, restrict transmission, and most importantly prevent multiple organ-system complications.
Collapse
Affiliation(s)
- Taylor J Louis
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Ahmad Qasem
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Latifa S Abdelli
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Saleh A Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
10
|
Chérifi F, Laraba-Djebari F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein J 2021; 40:799-841. [PMID: 34499333 PMCID: PMC8427918 DOI: 10.1007/s10930-021-10019-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus Disease of 2019 (COVID-19) pandemic. Currently, there is no specific developed drug against COVID-19 and the challenge of developing effective antiviral strategies based on natural agents with different mechanisms of action becomes an urgent need and requires identification of genetic differences among variants. Such data is used to improve therapeutics to combat SARS-CoV-2 variants. Nature is known to offer many biotherapeutics from animal venoms, algae and plant that have been historically used in traditional medicine. Among these bioresources, snake venom displays many bioactivities of interest such as antiviral, antiplatelet, antithrombotic, anti-inflammatory, antimicrobial and antitumoral. COVID-19 is a viral respiratory sickness due to SARS-CoV-2 which induces thrombotic disorders due to cytokine storm, platelet hyperactivation and endothelial dysfunction. This review aims to: (1) present an overview on the infection, the developed thrombo-inflammatory responses and mechanisms of induced thrombosis of COVID-19 compared to other similar pathogenesis; (2) underline the role of natural compounds such as anticoagulant, antiplatelet and thrombolytic agents; (3) investigate the management of coagulopathy related to COVID-19 and provide insight on therapeutic such as venom compounds. We also summarize the updated advances on antiviral proteins and peptides derived from snake venoms that could weaken coagulopathy characterizing COVID-19.
Collapse
Affiliation(s)
- Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
11
|
Chaouat AE, Achdout H, Kol I, Berhani O, Roi G, Vitner EB, Melamed S, Politi B, Zahavy E, Brizic I, Lenac Rovis T, Alfi O, Wolf D, Jonjic S, Israely T, Mandelboim O. SARS-CoV-2 receptor binding domain fusion protein efficiently neutralizes virus infection. PLoS Pathog 2021; 17:e1010175. [PMID: 34929007 PMCID: PMC8722722 DOI: 10.1371/journal.ppat.1010175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/03/2022] [Accepted: 12/03/2021] [Indexed: 01/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.
Collapse
Affiliation(s)
- Abigael Eva Chaouat
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Inbal Kol
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Orit Berhani
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Gil Roi
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Einat B. Vitner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Boaz Politi
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eran Zahavy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ilija Brizic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Or Alfi
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Faculty of Medicine, Jerusalem, Israel
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Wolf
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Faculty of Medicine, Jerusalem, Israel
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
12
|
Al-Gburi S, Beissert S, Günther C. Molecular mechanisms of vasculopathy and coagulopathy in COVID-19. Biol Chem 2021; 402:1505-1518. [PMID: 34657406 DOI: 10.1515/hsz-2021-0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 primarily affects the respiratory system and may lead to severe systemic complications, such as acute respiratory distress syndrome (ARDS), multiple organ failure, cytokine storm, and thromboembolic events. Depending on the immune status of the affected individual early disease control can be reached by a robust type-I-interferon (type-I-IFN) response restricting viral replication. If type-I-IFN upregulation is impaired, patients develop severe COVID-19 that involves profound alveolitis, endothelitis, complement activation, recruitment of immune cells, as well as immunothrombosis. In patients with proper initial disease control there can be a second flare of type-I-IFN release leading to post-COVID manifestation such as chilblain-like lesions that are characterized by thrombosis of small vessels in addition to an inflammatory infiltrate resembling lupus erythematosus (LE). Mechanistically, SARS-CoV-2 invades pneumocytes and endothelial cells by acting on angiotensin-II-converting enzyme 2 (ACE2). It is hypothesized, that viral uptake might downregulate ACE2 bioavailability and enhance angiotensin-II-derived pro-inflammatory and pro-thrombotic state. Since ACE2 is encoded on the X chromosome these conditions might also be influenced by gender-specific regulation. Taken together, SARS-CoV-2 infection affects the vascular compartment leading to variable thrombogenic or inflammatory response depending on the individual immune response status.
Collapse
Affiliation(s)
- Suzan Al-Gburi
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Stefan Beissert
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Claudia Günther
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
13
|
Taoufik Y, de Goër de Herve MG, Corgnac S, Durrbach A, Mami-Chouaib F. When Immunity Kills: The Lessons of SARS-CoV-2 Outbreak. Front Immunol 2021; 12:692598. [PMID: 34630382 PMCID: PMC8497820 DOI: 10.3389/fimmu.2021.692598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
Since its emergence at the end of 2019, SARS-CoV-2 has spread worldwide at a very rapid pace. While most infected individuals have an asymptomatic or mild disease, a minority, mainly the elderly, develop a severe disease that may lead to a fatal acute respiratory distress syndrome (ARDS). ARDS results from a highly inflammatory immunopathology process that includes systemic manifestations and massive alveolar damages that impair gas exchange. The present review summarizes our current knowledge in the rapidly evolving field of SARS-CoV-2 immunopathology, emphasizing the role of specific T cell responses. Indeed, accumulating evidence suggest that while T-cell response directed against SARS-CoV-2 likely plays a crucial role in virus clearance, it may also participate in the immunopathology process that leads to ARDS.
Collapse
Affiliation(s)
- Yassine Taoufik
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Department of Hematology and Immunology, Assistance Publique - Hôpitaux de Paris, Université Paris-Saclay, le Kremlin-Bicêtre, France
| | - Marie-Ghislaine de Goër de Herve
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Department of Hematology and Immunology, Assistance Publique - Hôpitaux de Paris, Université Paris-Saclay, le Kremlin-Bicêtre, France.,Department of Nephrology, Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Stéphanie Corgnac
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Antoine Durrbach
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Department of Nephrology, Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Fathia Mami-Chouaib
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
14
|
Geriak M, Haddad F, Kullar R, Greenwood KL, Habib M, Habib C, Willms D, Sakoulas G. Randomized Prospective Open Label Study Shows No Impact on Clinical Outcome of Adding Losartan to Hospitalized COVID-19 Patients with Mild Hypoxemia. Infect Dis Ther 2021; 10:1323-1330. [PMID: 33977506 PMCID: PMC8112834 DOI: 10.1007/s40121-021-00453-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Despite considerable scientific debate, there have been no prospective clinical studies on the effects of angiotensin II receptor blockers (ARBs) on the course of COVID-19 infection. Losartan is the ARB that was chosen to be tested in this study. METHODS Patients with COVID-19 and mild hypoxia (receipt of ≤ 3 L/min O2 by nasal cannula) admitted to three hospitals were randomized in a 1:1 ratio within 72 h of SARS-CoV-2 nucleic acid testing confirmation to prospectively receive standard of care (SOC) alone or SOC plus losartan 12.5 mg orally every 12 h for 10 days or until hospital discharge, with the option to titrate upward dependent on blood pressure tolerability. Primary composite endpoint was receipt of mechanical ventilation or death before receiving ventilation. Subjects were followed until discharge to home or until an endpoint was met in the hospital. RESULTS Sixteen subjects received an ARB plus SOC and 15 subjects received SOC alone. The median age was 53 years for both groups. Median time from hospital admission to study enrollment was 2 days (range 1-6) for the ARB group and 2 days (range 1-4) for the SOC group. Mean Charlson comorbidity index was 2 for both groups. One subject in each group achieved the composite endpoint. CONCLUSION This small prospective randomized open-label study showed no clinically significant impacts of ARB therapy in mildly hypoxemic patients hospitalized with COVID-19 early in the pandemic. A larger prospective randomized placebo-controlled trial would be needed to confirm these findings or capture less pronounced effects and probably should focus on outpatients earlier in disease course. TRIAL REGISTRATION clinicaltrials.gov; March 27, 2020; NCT04340557.
Collapse
Affiliation(s)
- Matthew Geriak
- Sharp Memorial Hospital, Sharp Memorial Research Pharmacy, 7901 Frost Street, San Diego, CA, 92123, USA.
- Sharp Center for Research, San Diego, CA, USA.
| | | | | | | | | | - Cole Habib
- Sharp Center for Research, San Diego, CA, USA
| | - David Willms
- Sharp Memorial Hospital, Sharp Memorial Research Pharmacy, 7901 Frost Street, San Diego, CA, 92123, USA
- Sharp Chula Vista Hospital, Chula Vista, CA, USA
| | - George Sakoulas
- Sharp Memorial Hospital, Sharp Memorial Research Pharmacy, 7901 Frost Street, San Diego, CA, 92123, USA
- Sharp Rees-Stealy Medical Group, San Diego, CA, USA
- Collaborative To Halt Antibiotic-Resistant Microbes (CHARM), Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
15
|
Sellegounder D, Zafari P, Rajabinejad M, Taghadosi M, Kapahi P. Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. Int Immunopharmacol 2021; 98:107806. [PMID: 34352471 PMCID: PMC8141786 DOI: 10.1016/j.intimp.2021.107806] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the novel virus SARS-CoV-2, is often more severe in older adults. Besides age, other underlying conditions such as obesity, diabetes, high blood pressure, and malignancies, which are also associated with aging, have been considered risk factors for COVID-19 mortality. A rapidly expanding body of evidence has brought up various scenarios for these observations and hyperinflammatory reactions associated with COVID-19 pathogenesis. Advanced glycation end products (AGEs) generated upon glycation of proteins, DNA, or lipids play a crucial role in the pathogenesis of age-related diseases and all of the above-mentioned COVID-19 risk factors. Interestingly, the receptor for AGEs (RAGE) is mainly expressed by type 2 epithelial cells in the alveolar sac, which has a critical role in SARS-CoV-2-associated hyper inflammation and lung injury. Here we discuss our hypothesis that AGEs, through their interaction with RAGE amongst other molecules, modulates COVID-19 pathogenesis and related comorbidities, especially in the elderly.
Collapse
Affiliation(s)
- Durai Sellegounder
- (BuckInstitute for Researchon Aging), (Novato), (CA 94945), (United States)
| | - Parisa Zafari
- (Departmentof Immunology), (School of Medicine), (Mazandaran University of Medical Sciences), (Sari), (Iran)
| | - Misagh Rajabinejad
- (Departmentof Immunology), (School of Medicine), (Mazandaran University of Medical Sciences), (Sari), (Iran); (StudentResearch Committee), (Mazandaran University of Medical Sciences), (Iran)
| | - Mahdi Taghadosi
- (Departmentof Immunology), (School of Medicine), (Kermanshah University of Medical Sciences), (Kermanshah), (Iran).
| | - Pankaj Kapahi
- (BuckInstitute for Researchon Aging), (Novato), (CA 94945), (United States).
| |
Collapse
|
16
|
Abd El Hadi SR, Zien El-Deen EE, Bahaa MM, Sadakah AA, Yassin HA. COVID-19: Vaccine Delivery System, Drug Repurposing and Application of Molecular Modeling Approach. Drug Des Devel Ther 2021; 15:3313-3330. [PMID: 34366663 PMCID: PMC8335551 DOI: 10.2147/dddt.s320320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
The acute respiratory syndrome coronavirus (SARS-CoV-2) has spread across the world, resulting in a pandemic COVID-19 which is a human zoonotic disease that is caused by a novel coronavirus (CoV) strain thought to have originated in wild or captive bats in the initial COVID outbreak region. The global COVID-19 outbreak started in Guangdong Province, China's southernmost province. The global response to the COVID-19 pandemic has been hampered by the sheer number of infected people, many of whom need intensive care before succumbing to the disease. The epidemic is being handled by a combination of disease control by public health interventions and compassionate treatment for those who have been impacted. There is no clear anti-COVID-19 medication available at this time. However, the need to find medications that can turn the tide has led to the development of a number of investigational drugs as potential candidates for improving outcomes, especially in the severely and critically ill. Although many of these adjunctive medications are still being studied in clinical trials, professional organizations have attempted to define the circumstances in which their use is deemed off-label or compassionate. It is important to remind readers that new information about COVID-19's clinical features, treatment options, and outcomes is released on a regular basis. The mainstay of treatment remains optimized supportive care, and the therapeutic effectiveness of the subsequent agents is still being studied.
Collapse
Affiliation(s)
- Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Esmat E Zien El-Deen
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutics Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Abdelfattah A Sadakah
- Oral and Maxillofacial Surgery, Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Oral and Maxillofacial Surgery, Department, Faculty of Dentistry, AlSalam University, Tanta, Egypt
| | - Heba A Yassin
- Pharmaceutics Department. Faculty of Pharmacy, AlSalam University, Tanta, Egypt
| |
Collapse
|
17
|
Basu S, Chakravarty D, Bhattacharyya D, Saha P, Patra HK. Plausible blockers of Spike RBD in SARS-CoV2-molecular design and underlying interaction dynamics from high-level structural descriptors. J Mol Model 2021; 27:191. [PMID: 34057647 PMCID: PMC8165686 DOI: 10.1007/s00894-021-04779-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Abstract COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain (RBDSpike). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key interaction. In this current study, we adopt a protein design approach to predict and propose non-virulent structural mimics of the RBDSpike which can potentially serve as its competitive inhibitors in binding to ACE2. The RBDSpike is an independently foldable protein domain, resilient to conformational changes upon mutations and therefore an attractive target for strategic re-design. Interestingly, in spite of displaying an optimal shape fit between their interacting surfaces (attributed to a consequently high mutual affinity), the RBDSpike–ACE2 interaction appears to have a quasi-stable character due to a poor electrostatic match at their interface. Structural analyses of homologous protein complexes reveal that the ACE2 binding site of RBDSpike has an unusually high degree of solvent-exposed hydrophobic residues, attributed to key evolutionary changes, making it inherently “reaction-prone.” The designed mimics aimed to block the viral entry by occupying the available binding sites on ACE2, are tested to have signatures of stable high-affinity binding with ACE2 (cross-validated by appropriate free energy estimates), overriding the native quasi-stable feature. The results show the apt of directly adapting natural examples in rational protein design, wherein, homology-based threading coupled with strategic “hydrophobic ↔ polar” mutations serve as a potential breakthrough. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00894-021-04779-0.
Collapse
Affiliation(s)
- Sankar Basu
- Department of Microbiology, Asutosh College (affiliated to University of Calcutta), Kolkata, 700026, West Bengal, India.
| | - Devlina Chakravarty
- Department of Chemistry, University of Rutgers-Camden, Camden, 08102, NJ, USA
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, West Bengal, India
| | - Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
18
|
Biswas A, Mandal RS, Chakraborty S, Maiti G. Tapping the immunological imprints to design chimeric SARS-CoV-2 vaccine for elderly population. Int Rev Immunol 2021; 41:448-463. [PMID: 33978550 PMCID: PMC8127164 DOI: 10.1080/08830185.2021.1925267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023]
Abstract
The impact of SARS-CoV-2 and COVID-19 disease susceptibility varies depending on the age and health status of an individual. Currently, there are more than 140 COVID-19 vaccines under development. However, the challenge will be to induce an effective immune response in the elderly population. Analysis of B cell epitopes indicates the minor role of the stalk domain of spike protein in viral neutralization due to low surface accessibility. Nevertheless, the accumulation of mutations in the receptor-binding domain (RBD) might reduce the vaccine efficacy in all age groups. We also propose the concept of chimeric vaccines based on the co-expression of SARS-CoV-2 spike and influenza hemagglutinin (HA) and matrix protein 1 (M1) proteins to generate chimeric virus-like particles (VLP). This review discusses the possible approaches by which influenza-specific memory repertoire developed during the lifetime of the elderly populations can converge to mount an effective immune response against the SARS-CoV-2 spike protein with the possibilities of designing single vaccines for COVID-19 and influenza. HighlightsImmunosenescence aggravates COVID-19 symptoms in elderly individuals.Low immunogenicity of SARS-CoV-2 vaccines in elderly population.Tapping the memory T and B cell repertoire in elderly can enhance vaccine efficiency.Chimeric vaccines can mount effective immune response against COVID-19 in elderly.Chimeric vaccines co-express SARS-CoV-2 spike and influenza HA and M1 proteins.
Collapse
Affiliation(s)
- Asim Biswas
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rahul Subhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suparna Chakraborty
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
19
|
Chong ZZ, Souayah N. SARS-CoV-2 Induced Neurological Manifestations Entangles Cytokine Storm That Implicates For Therapeutic Strategies. Curr Med Chem 2021; 29:2051-2074. [PMID: 33970839 DOI: 10.2174/0929867328666210506161543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
The new coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can present with neurological symptoms and induce neurological complications. The involvement in both the central and peripheral nervous systems in COVID-19 patients has been associated with direct invasion of the virus and the induction of cytokine storm. This review discussed the pathways for the virus invasion into the nervous system and characterized the SARS-CoV-2 induced cytokine storm. In addition, the mechanisms underlying the immune responses and cytokine storm induction after SARS-CoV-2 infection were also discussed. Although some neurological symptoms are mild and disappear after recovery from infection, some severe neurological complications contribute to the mortality of COVID-19 patients. Therefore, the insight into the cause of SARS-CoV-2 induced cytokine storm in context with neurological complications will formulate the novel management of the disease and further identify new therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Zhao-Zhong Chong
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Nizar Souayah
- Department of Neurology, Rutgers New Jersey Medical School, 90 Bergen Street Room Suite 8100, Newark, NJ 07101, United States
| |
Collapse
|
20
|
Jamalkhah M, Asaadi Y, Azangou-Khyavy M, Khanali J, Soleimani M, Kiani J, Arefian E. MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. J Transl Med 2021; 19:164. [PMID: 33888147 PMCID: PMC8061879 DOI: 10.1186/s12967-021-02840-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.
Collapse
Affiliation(s)
- Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Maneira C, Bermejo PM, Pereira GAG, de Mello FDSB. Exploring G protein-coupled receptors and yeast surface display strategies for viral detection in baker's yeast: SARS-CoV-2 as a case study. FEMS Yeast Res 2021; 21:6104486. [PMID: 33469649 PMCID: PMC7928939 DOI: 10.1093/femsyr/foab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Viral infections pose intense burdens to healthcare systems and global economies. The correct diagnosis of viral diseases represents a crucial step towards effective treatments and control. Biosensors have been successfully implemented as accessible and accurate detection tests for some of the most important viruses. While most biosensors are based on physical or chemical interactions of cell-free components, the complexity of living microorganisms holds a poorly explored potential for viral detection in the face of the advances of synthetic biology. Indeed, cell-based biosensors have been praised for their versatility and economic attractiveness, however, yeast platforms for viral disease diagnostics are still limited to indirect antibody recognition. Here we propose a novel strategy for viral detection in Saccharomyces cerevisiae, which combines the transductive properties of G Protein-Coupled Receptors (GPCRs) with the Yeast Surface Display (YSD) of specific enzymes enrolled in the viral recognition process. The GPCR/YSD complex might allow for active virus detection through a modulated signal activated by a GPCR agonist, whose concentration correlates to the viral titer. Additionally, we explore this methodology in a case study for the detection of highly pathogenic coronaviruses that share the same cell receptor upon infection (i.e. the Angiotensin-Converting Enzyme 2, ACE2), as a conceptual example of the potential of the GPCR/YSD strategy for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Carla Maneira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, 13083-862, Campinas, Brazil
| | - Pamela Magalí Bermejo
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, 13083-862, Campinas, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, 13083-862, Campinas, Brazil
| | - Fellipe da Silveira Bezerra de Mello
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato 255, 13083-862, Campinas, Brazil
| |
Collapse
|
22
|
Tsutsui M, Gerayeli F, Sin DD. Pulmonary Rehabilitation in a Post-COVID-19 World: Telerehabilitation as a New Standard in Patients with COPD. Int J Chron Obstruct Pulmon Dis 2021; 16:379-391. [PMID: 33642858 PMCID: PMC7903963 DOI: 10.2147/copd.s263031] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary rehabilitation (PR) is effective in reducing symptoms and improving health status, and exercise tolerance of patients with chronic obstructive pulmonary disease (COPD). The coronavirus disease 19 (COVID-19) pandemic has greatly impacted PR programs and their delivery to patients. Owing to fears of viral transmission and resultant outbreaks of COVID-19, institution-based PR programs have been forced to significantly reduce enrolment or in some cases completely shut down during the pandemic. As a majority of COPD patients are elderly and have multiple co-morbidities including cardiovascular disease and diabetes, they are notably susceptible to severe complications of COVID-19. As such, patients have been advised to stay at home and avoid social contact to the maximum extent possible. This has increased patients’ vulnerability to physical deconditioning, depression, and social isolation. To address this major gap in care, some traditional hospital or clinic-centered PR programs have converted some or all of their learning contents to home-based telerehabilitation during the pandemic. There are, however, some significant barriers to this approach that have impeded its implementation in the community. These include variable access and use of technology (by patients), a lack of standardization of methods and tools for evaluation of the program, and inadequate training and resources for health professionals in optimally delivering telerehabilitation to patients. There is a pressing need for high-quality studies on these modalities of PR to enable the successful implementation of PR at home and via teleconferencing technologies. Here, we highlight the importance of telerehabilitation of patients with COPD in the post-COVID world and discuss various strategies for clinical implementation.
Collapse
Affiliation(s)
- Mai Tsutsui
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Firoozeh Gerayeli
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Islam ABMMK, Khan MAAK, Ahmed R, Hossain MS, Kabir SMT, Islam MS, Siddiki AMAMZ. Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2. J Transl Med 2021; 19:32. [PMID: 33413422 PMCID: PMC7790360 DOI: 10.1186/s12967-020-02695-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although it is becoming evident that individual's immune system has a decisive influence on SARS-CoV-2 disease progression, pathogenesis is largely unknown. In this study, we aimed to profile the host transcriptome of COVID-19 patients from nasopharyngeal samples along with virus genomic features isolated from respective host, and a comparative analyses of differential host responses in various SARS-CoV-2 infection systems. RESULTS Unique and rare missense mutations in 3C-like protease observed in all of our reported isolates. Functional enrichment analyses exhibited that the host induced responses are mediated by innate immunity, interferon, and cytokine stimulation. Surprisingly, induction of apoptosis, phagosome, antigen presentation, hypoxia response was lacking within these patients. Upregulation of immune and cytokine signaling genes such as CCL4, TNFA, IL6, IL1A, CCL2, CXCL2, IFN, and CCR1 were observed in lungs. Lungs lacked the overexpression of ACE2 as suspected, however, high ACE2 but low DPP4 expression was observed in nasopharyngeal cells. Interestingly, directly or indirectly, viral proteins specially non-structural protein mediated overexpression of integrins such as ITGAV, ITGA6, ITGB7, ITGB3, ITGA2B, ITGA5, ITGA6, ITGA9, ITGA4, ITGAE, and ITGA8 in lungs compared to nasopharyngeal samples suggesting the possible way of enhanced invasion. Furthermore, we found comparatively highly expressed transcription factors such as CBP, CEBP, NFAT, ATF3, GATA6, HDAC2, TCF12 which have pivotal roles in lung injury. CONCLUSIONS Even though this study incorporates a limited number of cases, our data will provide valuable insights in developing potential studies to elucidate the differential host responses on the viral pathogenesis in COVID-19, and incorporation of further data will enrich the search of an effective therapeutics.
Collapse
Affiliation(s)
| | | | - Rasel Ahmed
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Md Sabbir Hossain
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Shah Md Tamim Kabir
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - Md Shahidul Islam
- Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh
| | - A M A M Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Khulshi, Chittagong, Bangladesh
| |
Collapse
|
24
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide since its first incidence in Wuhan, China, in December 2019. Although the case fatality rate of COVID-19 appears to be lower than that of SARS and Middle East respiratory syndrome (MERS), the higher transmissibility of SARS-CoV-2 has caused the total fatality to surpass other viral diseases, reaching more than 1 million globally as of October 6, 2020. The rate at which the disease is spreading calls for a therapy that is useful for treating a large population. Multiple intersecting viral and host factor targets involved in the life cycle of the virus are being explored. Because of the frequent mutations, many coronaviruses gain zoonotic potential, which is dependent on the presence of cell receptors and proteases, and therefore the targeting of the viral proteins has some drawbacks, as strain-specific drug resistance can occur. Moreover, the limited number of proteins in a virus makes the number of available targets small. Although SARS-CoV and SARS-CoV-2 share common mechanisms of entry and replication, there are substantial differences in viral proteins such as the spike (S) protein. In contrast, targeting cellular factors may result in a broader range of therapies, reducing the chances of developing drug resistance. In this Review, we discuss the role of primary host factors such as the cell receptor angiotensin-converting enzyme 2 (ACE2), cellular proteases of S protein priming, post-translational modifiers, kinases, inflammatory cells, and their pharmacological intervention in the infection of SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
25
|
Intracranial hemorrhage in coronavirus disease 2019 (COVID-19) patients. Neurol Sci 2020; 42:25-33. [PMID: 33140308 PMCID: PMC7605899 DOI: 10.1007/s10072-020-04870-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Emerging evidence suggests that a subset of coronavirus disease 2019 (COVID-19) patients may present with or develop cerebrovascular disease during the course of hospitalization. Whereas ischemic stroke in COVID-19 patients has been well described, data on intracranial hemorrhage (ICH) in these patients is still limited. We, therefore, conducted a rapid systematic review of current scientific literature to identify and consolidate evidence of ICH in COVID-19 patients. METHODS A systematic search of literature was conducted between November 1, 2019, and August 14, 2020, on PubMed and China National Knowledge Infrastructure (CNKI) to identify eligible studies. RESULTS A total of 23 studies describing ICH in 148 COVID-19 patients were included. The pooled incidence of ICH in COVID-19 patients was 0.7% (95% CI 0.5-0.9), with low levels of inter-study heterogeneity observed (I2 = 33.6%, Cochran's Q = 12.05, p = 0.149). Most of the patients were elderly male patients (65.8%) with comorbidities, the most common being systemic hypertension (54%). Hemorrhage involving multiple cranial compartments was reported in 9.5% of cases. Single compartments were involved in the rest, with intraparenchymal hemorrhage (IPH) being the most common variety (62.6%) and intraventricular hemorrhage (IVH) the least common (1.4%). Half of these patients were on some form of anticoagulation. Overall, the mortality rate in the COVID-19 patients with ICH was about 48.6%. CONCLUSION Although relatively uncommon among COVID-19 patients, ICH is associated with a high mortality rate. Early identification of patients at risk of developing ICH, particularly with comorbid conditions and on anticoagulant therapy, may be important to improve outcomes.
Collapse
|
26
|
Abstract
SARS-CoV-2, the virus responsible for COVID-19, binds to the ACE2 receptors. ACE2 is thought to counterbalance ACE in the renin-angiotensin system. While presently it is advised that patients should continue to use ACE inhibitors or angiotensin receptor blockers, questions still remain as to whether adverse effects are potentiated by the virus. Here, we report a case of a 57-year-old man, unknowingly with COVID-19, who presented to the emergency department with tongue swelling, shortness of breath and difficulty in speaking following 4 months taking benazepril, an ACE inhibitor. Finally, we also describe possible pathways that exist for SARS-CoV-2 to interact with the mechanism behind angioedema.
Collapse
Affiliation(s)
- Ekjot Grewal
- Department of Emergency Medicine, Brookdale University Hospital Medical Center, Brooklyn, New York, USA
| | - Bayu Sutarjono
- Department of Emergency Medicine, Brookdale University Hospital Medical Center, Brooklyn, New York, USA .,Saba University School of Medicine, Devens, Massachusetts, USA
| | - Ibbad Mohammed
- Department of Emergency Medicine, Brookdale University Hospital Medical Center, Brooklyn, New York, USA
| |
Collapse
|