1
|
Mangaonkar S, Nath S, Chatterji BP. Microtubule dynamics in cancer metastasis: Harnessing the underappreciated potential for therapeutic interventions. Pharmacol Ther 2024; 263:108726. [PMID: 39349106 DOI: 10.1016/j.pharmthera.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Microtubules, dynamic cytoskeletal structures crucial for cellular processes, have surfaced as promising targets for cancer therapy owing to their pivotal role in cancer progression and metastasis. This review comprehensively explores the multifaceted landscape of microtubule-targeting drugs and their potential to inihibit cancer metastasis. Although the role of Actin cytoskeleton is well known in controlling metastasis, only recently Microtubules are emerging as a potential controller of metastasis. We delve into the processes at the core of antimetastatic impacts of microtubule-targeting agents, both through direct modulation of microtubules and via alternative pathways. Drawing from in vitro and in vivo studies, we analyze the cytotoxic and antimetastatic doses of various compounds, shedding light on their therapeutic potential. Furthermore, we discuss the emerging class of microtubule targeting drugs, and their role in metastasis inhibition, such as microtubules acetylation inhibitory drugs, particularly histone deacetylase inihibitors and antibody-drug conjugates. Histone deacetylase (HDAC) strengthens the microtubule cytoskeleton through acetylation. Recently, HDAC inhibitors have been discovered to have antimetastatic properties. Here, the role of HDAC inhibitors in stopping metastasis is discussed with respect to microtubule cytoskeleton. Surprisingly, novel antibody conjugates of microtubule-targeting agents, which are in clinical trials, were found to be antimetastatic. This review discusses these antibody conjugates in detail. Additionally, we elucidate the intricate crosstalk between microtubules and other cytoskeletal proteins, unveiling novel therapeutic strategies for metastasis suppression. By providing a wide-ranging overview of the complex interplay between microtubules and cancer metastasis, this review contributes to the comprehension of cancer's biological mechanisms and the development of innovative therapeutic interventions to mitigate metastatic progression.
Collapse
Affiliation(s)
- Snehal Mangaonkar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Sangeeta Nath
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India.
| | - Biswa Prasun Chatterji
- Faculty of Science, Assam Downtown University, Guwahati, India; Global Visiitng Professor, Asian University for Women, Chittagong, Bangladesh.
| |
Collapse
|
2
|
Gabel AM, Belleville AE, Thomas JD, Pineda JMB, Bradley RK. APC mutations dysregulate alternative polyadenylation in cancer. Genome Biol 2024; 25:255. [PMID: 39375704 PMCID: PMC11457450 DOI: 10.1186/s13059-024-03406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Alternative polyadenylation (APA) affects most human genes and is recurrently dysregulated in all studied cancers. However, the mechanistic origins of this dysregulation are incompletely understood. RESULTS We describe an unbiased analysis of molecular regulators of poly(A) site selection across The Cancer Genome Atlas and identify that colorectal adenocarcinoma is an outlier relative to all other cancer subtypes. This distinction arises from the frequent presence of loss-of-function APC mutations in colorectal adenocarcinoma, which are strongly associated with long 3' UTR expression relative to tumors lacking APC mutations. APC knockout similarly dysregulates APA in human colon organoids. By mining previously published APC eCLIP data, we show that APC preferentially binds G- and C-rich motifs just upstream of proximal poly(A) sites. Lastly, we find that reduced APC expression is associated with APA dysregulation in tumor types lacking recurrent APC mutations. CONCLUSIONS As APC has been previously identified as an RNA-binding protein that preferentially binds 3' UTRs during mouse neurogenesis, our results suggest that APC promotes proximal poly(A) site use and that APC loss and altered expression contribute to pervasive APA dysregulation in cancers.
Collapse
Affiliation(s)
- Austin M Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrea E Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - James D Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Xu J, Hörner M, Nagel M, Perhat P, Korneck M, Noß M, Hauser S, Schöls L, Admard J, Casadei N, Schüle R. Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586780. [PMID: 38585749 PMCID: PMC10996649 DOI: 10.1101/2024.03.26.586780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.
Collapse
|
4
|
Abdellatef SA, Wang H, Nakanishi J. Microtubules Disruption Alters the Cellular Structures and Mechanics Depending on Underlying Chemical Cues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2312282. [PMID: 39344221 DOI: 10.1002/smll.202312282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The extracellular matrix determines cell morphology and stiffness by manipulating the cytoskeleton. The impacts of extracellular matrix cues, including the mechanical and topographical cues on microtubules and their role in biological behaviors, are previously studied. However, there is a lack of understanding about how microtubules (MTs) are affected by environmental chemical cues, such as extracellular matrix density. Specifically, it is crucial to understand the connection between cellular morphology and mechanics induced by chemical cues and the role of microtubules in these cellular responses. To address this, surfaces with high and low cRGD (cyclic Arginine-Glycine-Aspartic acid) peptide ligand densities are used. The cRGD is diluted with a bioinert ligand to prevent surface native cellular remodeling. The cellular morphology, actin, and microtubules differ on these surfaces. Confocal fluorescence microscopes and atomic force microscopy (AFM) are used to determine the structural and mechanical cellular responses with and without microtubules. Microtubules are vital as an intracellular scaffold in elongated morphology correlated with low cRGD compared to rounded morphology in high cRGD substrates. The contributions of MTs to nucleus morphology and cellular mechanics are based on the underlying cRGD densities. Finally, this study reveals a significant correlation between MTs, actin networks, and vimentin in response to the underlying densities of cRGD.
Collapse
Affiliation(s)
- Shimaa A Abdellatef
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Hongxin Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
5
|
Scaccini L, Battisti A, Convertino D, Puppi D, Gagliardi M, Cecchini M, Tonazzini I. Glycerol-blended chitosan membranes with directional micro-grooves and reduced stiffness improve Schwann cell wound healing. Biomed Mater 2024; 19:065005. [PMID: 39208844 DOI: 10.1088/1748-605x/ad7562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Regenerative medicine is continuously looking for new natural, biocompatible and possibly biodegradable materials, but also mechanically compliant. Chitosan is emerging as a promising FDA-approved biopolymer for tissue engineering, however, its exploitation in regenerative devices is limited by its brittleness and can be further improved, for example by blending it with other materials or by tuning its superficial microstructure. Here, we developed membranes made of chitosan (Chi) and glycerol, by solvent casting, and micro-patterned them with directional geometries having different levels of axial symmetry. These membranes were characterized by light microscopies, atomic force microscopy (AFM), by thermal, mechanical and degradation assays, and also testedin vitroas scaffolds with Schwann cells (SCs). The glycerol-blended Chi membranes are optimized in terms of mechanical properties, and present a physiological-grade Young's modulus (≈0.7 MPa). The directional topographies are effective in directing cell polarization and migration and in particular are highly performant substrates for collective cell migration. Here, we demonstrate that a combination of a soft compliant biomaterial and a topographical micropatterning can improve the integration of these scaffolds with SCs, a fundamental step in the peripheral nerve regeneration process.
Collapse
Affiliation(s)
- L Scaccini
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - A Battisti
- INEST, Istituto Nanoscienze - Consiglio Nazionale delle Ricerche (CNR) , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - D Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - D Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa , Via G. Moruzzi 13, 56124 Pisa, Italy
| | - M Gagliardi
- INEST, Istituto Nanoscienze - Consiglio Nazionale delle Ricerche (CNR) , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - M Cecchini
- INEST, Istituto Nanoscienze - Consiglio Nazionale delle Ricerche (CNR) , Piazza San Silvestro 12, 56127 Pisa, Italy
| | - I Tonazzini
- INEST, Istituto Nanoscienze - Consiglio Nazionale delle Ricerche (CNR) , Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
6
|
Chekulaeva M. Mechanistic insights into the basis of widespread RNA localization. Nat Cell Biol 2024; 26:1037-1046. [PMID: 38956277 DOI: 10.1038/s41556-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The importance of subcellular mRNA localization is well established, but the underlying mechanisms mostly remain an enigma. Early studies suggested that specific mRNA sequences recruit RNA-binding proteins (RBPs) to regulate mRNA localization. However, despite the observation of thousands of localized mRNAs, only a handful of these sequences and RBPs have been identified. This suggests the existence of alternative, and possibly predominant, mechanisms for mRNA localization. Here I re-examine currently described mRNA localization mechanisms and explore alternative models that could account for its widespread occurrence.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
7
|
Moissoglu K, Wang T, Gasparski AN, Stueland M, Paine EL, Jenkins L, Mili S. A KIF1C-CNBP motor-adaptor complex for trafficking mRNAs to cell protrusions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600878. [PMID: 38979199 PMCID: PMC11230373 DOI: 10.1101/2024.06.26.600878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
mRNA localization to subcellular compartments is a widely used mechanism that functionally contributes to numerous processes. mRNA targeting can be achieved upon recognition of RNA cargo by molecular motors. However, our molecular understanding of how this is accomplished is limited, especially in higher organisms. We focus on a pathway that targets mRNAs to peripheral protrusions of mammalian cells and is important for cell migration. Trafficking occurs through active transport on microtubules, mediated by the KIF1C kinesin. Here, we identify the RNA-binding protein CNBP, as a factor required for mRNA localization to protrusions. CNBP binds directly to GA-rich sequences in the 3'UTR of protrusion targeted mRNAs. CNBP also interacts with KIF1C and is required for KIF1C recruitment to mRNAs and for their trafficking on microtubules to the periphery. This work provides a molecular mechanism for KIF1C recruitment to mRNA cargo and reveals a motor-adaptor complex for mRNA transport to cell protrusions.
Collapse
|
8
|
Yang Y, Han K, Huang S, Wang K, Wang Y, Ding S, Zhang L, Zhang M, Xu B, Ma S, Wang Y, Wu S, Wang X. Revelation of adhesive proteins affecting cellular contractility through reference-free traction force microscopy. J Mater Chem B 2024; 12:3249-3261. [PMID: 38466580 DOI: 10.1039/d4tb00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Over the past few decades, the critical role played by cellular contractility associated mechanotransduction in the regulation of cell functions has been revealed. In this case, numerous biomaterials have been chemically or structurally designed to manipulate cell behaviors through the regulation of cellular contractility. In particular, adhesive proteins including fibronectin, poly-L-lysine and collagen type I have been widely applied in various biomaterials to improve cell adhesion. Therefore, clarifying the effects of adhesive proteins on cellular contractility has been valuable for the development of biomaterial design. In this study, reference-free traction force microscopy with a well-organized microdot array was designed and prepared to investigate the relationship between adhesive proteins, cellular contractility, and mechanotransduction. The results showed that fibronectin and collagen type I were able to promote the assembly of focal adhesions and further enhance cellular contraction and YAP activity. In contrast, although poly-L-lysine supported cell spreading and elongation, it was inefficient at inducing cell contractility and activating YAP. Additionally, compared with cellular morphogenesis, cellular contraction was essential for YAP activation.
Collapse
Affiliation(s)
- Yingjun Yang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P. R. China
| | - Kuankuan Han
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Siyuan Huang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Kai Wang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yuchen Wang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Le Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P. R. China
- Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yongtao Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| | - Shengli Wu
- Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
10
|
Knipper K, Lyu SI, Quaas A, Bruns CJ, Schmidt T. Cancer-Associated Fibroblast Heterogeneity and Its Influence on the Extracellular Matrix and the Tumor Microenvironment. Int J Mol Sci 2023; 24:13482. [PMID: 37686288 PMCID: PMC10487587 DOI: 10.3390/ijms241713482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment comprises multiple cell types, like cancer cells, endothelial cells, fibroblasts, and immune cells. In recent years, there have been massive research efforts focusing not only on cancer cells, but also on other cell types of the tumor microenvironment, thereby aiming to expand and determine novel treatment options. Fibroblasts represent a heterogenous cell family consisting of numerous subtypes, which can alter immune cell fractions, facilitate or inhibit tumor growth, build pre-metastatic niches, or stabilize vessels. These effects can be achieved through cell-cell interactions, which form the extracellular matrix, or via the secretion of cytokines or chemokines. The pro- or antitumorigenic fibroblast phenotypes show variability not only among different cancer entities, but also among intraindividual sites, including primary tumors or metastatic lesions. Commonly prescribed for arterial hypertension, the inhibitors of the renin-angiotensin system have recently been described as having an inhibitory effect on fibroblasts. This inhibition leads to modified immune cell fractions and increased tissue stiffness, thereby contributing to overcoming therapy resistance and ultimately inhibiting tumor growth. However, it is important to note that the inhibition of fibroblasts can also have the opposite effect, potentially resulting in increased tumor growth. We aim to summarize the latest state of research regarding fibroblast heterogeneity and its intricate impact on the tumor microenvironment and extracellular matrix. Specifically, we focus on highlighting recent advancements in the comprehension of intraindividual heterogeneity and therapy options within this context.
Collapse
Affiliation(s)
- Karl Knipper
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| | - Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (S.I.L.); (A.Q.)
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (S.I.L.); (A.Q.)
| | - Christiane J. Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| |
Collapse
|
11
|
Gasparski AN, Moissoglu K, Pallikkuth S, Meydan S, Guydosh NR, Mili S. mRNA location and translation rate determine protein targeting to dual destinations. Mol Cell 2023; 83:2726-2738.e9. [PMID: 37506697 PMCID: PMC10530421 DOI: 10.1016/j.molcel.2023.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that mRNA location and translation rate can also determine protein targeting by modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein by promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting by promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a "partner-selection" mechanism that robustly influences protein distribution and function.
Collapse
Affiliation(s)
- Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
13
|
Paukner D, Eichinger JF, Cyron CJ. What are the key mechanical mechanisms governing integrin-mediated cell migration in three-dimensional fiber networks? Biomech Model Mechanobiol 2023:10.1007/s10237-023-01709-2. [PMID: 37318643 PMCID: PMC10366304 DOI: 10.1007/s10237-023-01709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 06/16/2023]
Abstract
Cell migration plays a vital role in numerous processes such as development, wound healing, or cancer. It is well known that numerous complex mechanisms are involved in cell migration. However, so far it remains poorly understood what are the key mechanisms required to produce the main characteristics of this behavior. The reason is a methodological one. In experimental studies, specific factors and mechanisms can be promoted or inhibited. However, while doing so, there can always be others in the background which play key roles but which have simply remained unattended so far. This makes it very difficult to validate any hypothesis about a minimal set of factors and mechanisms required to produce cell migration. To overcome this natural limitation of experimental studies, we developed a computational model where cells and extracellular matrix fibers are represented by discrete mechanical objects on the micrometer scale. In this model, we had exact control of the mechanisms by which cells and matrix fibers interacted with each other. This enabled us to identify the key mechanisms required to produce physiologically realistic cell migration (including advanced phenomena such as durotaxis and a biphasic relation between migration efficiency and matrix stiffness). We found that two main mechanisms are required to this end: a catch-slip bond of individual integrins and cytoskeletal actin-myosin contraction. Notably, more advanced phenomena such as cell polarization or details of mechanosensing were not necessary to qualitatively reproduce the main characteristics of cell migration observed in experiments.
Collapse
Affiliation(s)
- Daniel Paukner
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Eißendorfer Straße 42 (M), 21073, Hamburg, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502, Geesthacht, Schleswig-Holstein, Germany
| | - Jonas F Eichinger
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Eißendorfer Straße 42 (M), 21073, Hamburg, Hamburg, Germany
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstraße 15, Garching b., 85748, München, Bavaria, Germany
| | - Christian J Cyron
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Eißendorfer Straße 42 (M), 21073, Hamburg, Hamburg, Germany.
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502, Geesthacht, Schleswig-Holstein, Germany.
| |
Collapse
|
14
|
Gasparski AN, Moissoglu K, Pallikkuth S, Meydan S, Guydosh NR, Mili S. mRNA Location and Translation Rate Determine Protein Targeting to Dual Destinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538105. [PMID: 37163129 PMCID: PMC10168211 DOI: 10.1101/2023.04.24.538105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that protein targeting can additionally be determined by mRNA location and translation rate, through modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein, through promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting, through promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a 'partner-selection' mechanism that robustly influences protein distribution and function.
Collapse
Affiliation(s)
- Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, 20892, MD, USA
- National Institute of General Medical Sciences, NIH, Bethesda, 20892, MD, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, 20892, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| |
Collapse
|
15
|
Goering R, Arora A, Pockalny MC, Taliaferro JM. RNA localization mechanisms transcend cell morphology. eLife 2023; 12:e80040. [PMID: 36867563 PMCID: PMC9984196 DOI: 10.7554/elife.80040] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023] Open
Abstract
RNA molecules are localized to specific subcellular regions through interactions between RNA regulatory elements and RNA binding proteins (RBPs). Generally, our knowledge of the mechanistic details behind the localization of a given RNA is restricted to a particular cell type. Here, we show that RNA/RBP interactions that regulate RNA localization in one cell type predictably regulate localization in other cell types with vastly different morphologies. To determine transcriptome-wide RNA spatial distributions across the apicobasal axis of human intestinal epithelial cells, we used our recently developed RNA proximity labeling technique, Halo-seq. We found that mRNAs encoding ribosomal proteins (RP mRNAs) were strongly localized to the basal pole of these cells. Using reporter transcripts and single-molecule RNA FISH, we found that pyrimidine-rich motifs in the 5' UTRs of RP mRNAs were sufficient to drive basal RNA localization. Interestingly, the same motifs were also sufficient to drive RNA localization to the neurites of mouse neuronal cells. In both cell types, the regulatory activity of this motif was dependent on it being in the 5' UTR of the transcript, was abolished upon perturbation of the RNA-binding protein LARP1, and was reduced upon inhibition of kinesin-1. To extend these findings, we compared subcellular RNAseq data from neuronal and epithelial cells. We found that the basal compartment of epithelial cells and the projections of neuronal cells were enriched for highly similar sets of RNAs, indicating that broadly similar mechanisms may be transporting RNAs to these morphologically distinct locations. These findings identify the first RNA element known to regulate RNA localization across the apicobasal axis of epithelial cells, establish LARP1 as an RNA localization regulator, and demonstrate that RNA localization mechanisms cut across cell morphologies.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Megan C Pockalny
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
16
|
Stark M, Levin M, Ulitsky I, Assaraf YG. Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion. BMC Biol 2023; 21:13. [PMID: 36721160 PMCID: PMC9889130 DOI: 10.1186/s12915-023-01525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Michal Stark
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - May Levin
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel ,grid.507132.2Present address: May Levin, MeMed Diagnostics Ltd, Tirat Carmel, Israel
| | - Igor Ulitsky
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yehuda G. Assaraf
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
17
|
Moissoglu K, Lockett SJ, Mili S. Visualizing and Quantifying mRNA Localization at the Invasive Front of 3D Cancer Spheroids. Methods Mol Biol 2023; 2608:263-280. [PMID: 36653713 PMCID: PMC10411857 DOI: 10.1007/978-1-0716-2887-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Localization of mRNAs at the front of migrating cells is a widely used mechanism that functionally supports efficient cell movement. It is observed in single cells on two-dimensional surfaces, as well as in multicellular three-dimensional (3D) structures and in tissue in vivo. 3D multicellular cultures can reveal how the topology of the extracellular matrix and cell-cell contacts influence subcellular mRNA distributions. Here we describe a method for mRNA imaging in an inducible system of collective cancer cell invasion. MDA-MB-231 cancer cell spheroids are embedded in Matrigel, induced to invade, and processed to image mRNAs with single-molecule sensitivity. An analysis algorithm is used to quantify and compare mRNA distributions at the front of invasive leader cells. The approach can be easily adapted and applied to analyze RNA distributions in additional settings where cells polarize along a linear axis.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, NIH, Frederick, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
18
|
Martino F, Varadarajan NM, Perestrelo AR, Hejret V, Durikova H, Vukic D, Horvath V, Cavalieri F, Caruso F, Albihlal WS, Gerber AP, O'Connell MA, Vanacova S, Pagliari S, Forte G. The mechanical regulation of RNA binding protein hnRNPC in the failing heart. Sci Transl Med 2022; 14:eabo5715. [PMID: 36417487 DOI: 10.1126/scitranslmed.abo5715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cardiac pathologies are characterized by intense remodeling of the extracellular matrix (ECM) that eventually leads to heart failure. Cardiomyocytes respond to the ensuing biomechanical stress by reexpressing fetal contractile proteins via transcriptional and posttranscriptional processes, such as alternative splicing (AS). Here, we demonstrate that the heterogeneous nuclear ribonucleoprotein C (hnRNPC) is up-regulated and relocates to the sarcomeric Z-disc upon ECM pathological remodeling. We show that this is an active site of localized translation, where the ribonucleoprotein associates with the translation machinery. Alterations in hnRNPC expression, phosphorylation, and localization can be mechanically determined and affect the AS of mRNAs involved in mechanotransduction and cardiovascular diseases, including Hippo pathway effector Yes-associated protein 1. We propose that cardiac ECM remodeling serves as a switch in RNA metabolism by affecting an associated regulatory protein of the spliceosome apparatus. These findings offer new insights on the mechanism of mRNA homeostatic mechanoregulation in pathological conditions.
Collapse
Affiliation(s)
- Fabiana Martino
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Faculty of Medicine, Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.,Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nandan Mysore Varadarajan
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Vaclav Hejret
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Helena Durikova
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Dragana Vukic
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Vladimir Horvath
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Centre for Cardiovascular and Transplant Surgery, CZ-60200 Brno, Czech Republic
| | - Francesca Cavalieri
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy
| | - Frank Caruso
- Centre for Cardiovascular and Transplant Surgery, CZ-60200 Brno, Czech Republic
| | | | - André P Gerber
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stepanka Vanacova
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.,School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
19
|
Zhai J, Li S, Sen S, Vallvé-Juanico J, Irwin JC, Vo KC, Wan J, Du Y, Chen ZJ, Giudice LC. Transcriptomic analysis supports collective endometrial cell migration in the pathogenesis of adenomyosis. Reprod Biomed Online 2022; 45:519-530. [PMID: 35773139 PMCID: PMC9976941 DOI: 10.1016/j.rbmo.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
RESEARCH QUESTION Adenomyosis is a common uterine disorder of uncertain causes. Can transcriptomic analyses of the endometrium and myometrium reveal potential mechanisms underlying adenomyosis pathogenesis? DESIGN Transcriptomic profiles of eutopic endometrium and myometrium from women with and without diffuse adenomyosis and with symptomatic FIGO type 2-5 fibroids in the proliferative phase of the menstrual cycle were assessed using RNA sequencing and bioinformatic analysis. Differentially expressed genes (DEG) and potential pathways were validated by quantitative reverse transcription polymerase chain reaction, immunoblotting and Masson staining, using additional clinical samples. RESULTS Top biological processes in the endometrium of women with versus without adenomyosis, enriched from DEG, comprised inflammation, extracellular matrix (ECM) organization, collagen degradation and hyaluronan synthesis, which are key in cell migration and cell movement. Top biological processes enriched from DEG in the myometrium of women with versus without adenomyosis revealed ECM organization dysfunction, abnormal sensory pain perception and gamma aminobutyric acid (GABA) synaptic transmission. Dysregulation of prolactin signalling was also enriched in eutopic endometrium and in the myometrium of women with adenomyosis. CONCLUSIONS Overall, our results support the invasive endometrium theory in the pathogenesis of adenomyosis, in which inflammation induces ECM remodelling resulting in a track for subsequent endometrial collective cell migration and onset of adenomyosis. Moreover, abnormal myometrial GABA synaptic transmission may contribute to dysmenorrhoea in women with adenomyosis and is a possible target for novel therapeutic development. Prolactin signalling abnormalities may serve as another opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Junyu Zhai
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics Shanghai, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics Shanghai, China
| | - Sushmita Sen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA
| | - Júlia Vallvé-Juanico
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA
| | - Juan C. Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA
| | - Kim Chi Vo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA
| | - Jipeng Wan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan Shandong, China,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics Shanghai, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China,Corresponding author. (L. C. Giudice)
| | - Linda C. Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA,Corresponding author. (L. C. Giudice)
| |
Collapse
|
20
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
21
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
22
|
Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol 2022; 15:34. [PMID: 35331296 PMCID: PMC8943941 DOI: 10.1186/s13045-022-01252-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer microenvironment is critical for tumorigenesis and cancer progression. The extracellular matrix (ECM) interacts with tumor and stromal cells to promote cancer cells proliferation, migration, invasion, angiogenesis and immune evasion. Both ECM itself and ECM stiffening-induced mechanical stimuli may activate cell membrane receptors and mechanosensors such as integrin, Piezo1 and TRPV4, thereby modulating the malignant phenotype of tumor and stromal cells. A better understanding of how ECM stiffness regulates tumor progression will contribute to the development of new therapeutics. The rapidly expanding evidence in this research area suggests that the regulators and effectors of ECM stiffness represent potential therapeutic targets for cancer. This review summarizes recent work on the regulation of ECM stiffness in cancer, the effects of ECM stiffness on tumor progression, cancer immunity and drug resistance. We also discuss the potential targets that may be druggable to intervene ECM stiffness and tumor progression. Based on these advances, future efforts can be made to develop more effective and safe drugs to interrupt ECM stiffness-induced oncogenic signaling, cancer progression and drug resistance.
Collapse
|
23
|
Liu Y, Li B, Wang YJ, Fan Z, Du Y, Li B, Liu YJ, Liu B. In Situ Single-Molecule Imaging of MicroRNAs in Switchable Migrating Cells under Biomimetic Confinement. Anal Chem 2022; 94:4030-4038. [PMID: 35213802 DOI: 10.1021/acs.analchem.1c05223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spatial imaging of RNAs in single cells is extremely charming for deciphering of regulatory mechanisms in multiple migration modes during tumor metastasis. Herein, enzyme-free-mediated cascade amplified nanoprobes were designed for in situ single-molecule imaging of dual-microRNAs (miRNAs) in switchable migrating cells. Differential expression and localization of dual-miRNAs were clearly exhibited in multiple cell lines attributed to enhanced sensitivity via the cascade signal amplification strategy. Significantly, in situ three-dimensional (3D) imaging of dual-miRNAs in transition of cell migration phenotypes was successfully reconstructed in both non-confined and confined microenvironments in vitro, of which differential spatial distribution was observed in a single cell. This is very promising for exploring key roles of spatial RNA distribution in migrating cells at the single-molecule level, which will advance revealing the molecular mechanism and physical principle in 3D cell migration in vivo.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University, Shanghai 200433, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University, Shanghai 200433, China
| | - Ya-Jun Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University, Shanghai 200433, China
| | - Zihui Fan
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University, Shanghai 200433, China
| | - Yang Du
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University, Shanghai 200433, China
| | - Bin Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University, Shanghai 200433, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University, Shanghai 200433, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Abstract
Microtubules are essential cytoskeletal elements found in all eukaryotic cells. The structure and composition of microtubules regulate their function, and the dynamic remodeling of the network by posttranslational modifications and microtubule-associated proteins generates diverse populations of microtubules adapted for various contexts. In the cardiomyocyte, the microtubules must accommodate the unique challenges faced by a highly contractile, rigidly structured, and long-lasting cell. Through their canonical trafficking role and positioning of mRNA, proteins, and organelles, microtubules regulate essential cardiomyocyte functions such as electrical activity, calcium handling, protein translation, and growth. In a more specialized role, posttranslationally modified microtubules form load-bearing structures that regulate myocyte mechanics and mechanotransduction. Modified microtubules proliferate in cardiovascular diseases, creating stabilized resistive elements that impede cardiomyocyte contractility and contribute to contractile dysfunction. In this review, we highlight the most exciting new concepts emerging from recent studies into canonical and noncanonical roles of cardiomyocyte microtubules.
Collapse
Affiliation(s)
- Keita Uchida
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Emily A Scarborough
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
25
|
Moriarty RA, Mili S, Stroka KM. RNA localization in confined cells depends on cellular mechanical activity and contributes to confined migration. iScience 2022; 25:103845. [PMID: 35198898 PMCID: PMC8850802 DOI: 10.1016/j.isci.2022.103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells experience mechanical confining forces during metastasis and, consequently, can alter their migratory mechanisms. Localization of numerous mRNAs to cell protrusions contributes to cell polarization and migration and is controlled by proteins that can bind RNA and/or cytoskeletal elements, such as the adenomatous polyposis coli (APC). Here, we demonstrate that peripheral localization of APC-dependent RNAs in cells within confined microchannels is cell type dependent. This varying phenotype is determined by the levels of a detyrosinated tubulin network. We show that this network is regulated by mechanoactivity and that cells with mechanosensitive ion channels and increased myosin II activity direct peripheral localization of the RAB13 APC-dependent RNA. Through specific mislocalization of the RAB13 RNA, we show that peripheral RNA localization contributes to confined cell migration. Our results indicate that a cell’s mechanical activity determines its ability to peripherally target RNAs and utilize them for movement in confinement. Peripheral localization of APC-dependent RNAs in confinement depends on cell type RNA localization in confined cells is controlled by the mechanoactivity of cells RNA localization phenotype is influenced by the detyrosinated tubulin network Peripheral RNA accumulation functionally contributes to confined cell migration
Collapse
Affiliation(s)
- Rebecca A. Moriarty
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Corresponding author
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA
- Maryland Biophysics Program, University of Maryland College Park, College Park, MD 20742, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland Baltimore, Baltimore, MD 21202, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21202, USA
- Corresponding author
| |
Collapse
|
26
|
Sari B, Isik M, Eylem CC, Kilic C, Okesola BO, Karakaya E, Emregul E, Nemutlu E, Derkus B. Omics Technologies for High-Throughput-Screening of Cell-Biomaterial Interactions. Mol Omics 2022; 18:591-615. [DOI: 10.1039/d2mo00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent research effort in biomaterial development has largely focused on engineering bio-instructive materials to stimulate specific cell signaling. Assessing the biological performance of these materials using time-consuming and trial-and-error traditional...
Collapse
|
27
|
Gasparski AN, Mason DE, Moissoglu K, Mili S. Regulation and outcomes of localized RNA translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1721. [PMID: 35166036 PMCID: PMC9787767 DOI: 10.1002/wrna.1721] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/31/2022]
Abstract
Spatial segregation of mRNAs in the cytoplasm of cells is a well-known biological phenomenon that is widely observed in diverse species spanning different kingdoms of life. In mammalian cells, localization of mRNAs has been documented and studied quite extensively in highly polarized cells, most notably in neurons, where localized mRNAs function to direct protein production at sites that are quite distant from the soma. Recent studies have strikingly revealed that a large proportion of the cellular transcriptome exhibits polarized distributions even in cells that lack an obvious need for long-range transport, such as fibroblasts or epithelial cells. This review focuses on emerging concepts regarding the functional outcomes of mRNA targeting in the cytoplasm of such cells. We also discuss regulatory mechanisms controlling these events, with an emphasis on the role of cell mechanics and the organization of the cytoskeleton. This article is categorized under: Translation > Regulation RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Alexander N. Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Devon E. Mason
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
28
|
Pichon X, Moissoglu K, Coleno E, Wang T, Imbert A, Robert MC, Peter M, Chouaib R, Walter T, Mueller F, Zibara K, Bertrand E, Mili S. The kinesin KIF1C transports APC-dependent mRNAs to cell protrusions. RNA (NEW YORK, N.Y.) 2021; 27:1528-1544. [PMID: 34493599 PMCID: PMC8594469 DOI: 10.1261/rna.078576.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/01/2021] [Indexed: 05/25/2023]
Abstract
RNA localization and local translation are important for numerous cellular functions. In mammals, a class of mRNAs localize to cytoplasmic protrusions in an APC-dependent manner, with roles during cell migration. Here, we investigated this localization mechanism. We found that the KIF1C motor interacts with APC-dependent mRNAs and is required for their localization. Live cell imaging revealed rapid, active transport of single mRNAs over long distances that requires both microtubules and KIF1C. Two-color imaging directly revealed single mRNAs transported by single KIF1C motors, with the 3'UTR being sufficient to trigger KIF1C-dependent RNA transport and localization. Moreover, KIF1C remained associated with peripheral, multimeric RNA clusters and was required for their formation. These results reveal a widespread RNA transport pathway in mammalian cells, in which the KIF1C motor has a dual role in transporting RNAs and clustering them within cytoplasmic protrusions. Interestingly, KIF1C also transports its own mRNA, suggesting a possible feedback loop acting at the level of mRNA transport.
Collapse
Affiliation(s)
- Xavier Pichon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Tianhong Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA
| | - Arthur Imbert
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, France
- Institut Curie, 75248 Paris Cedex, France
- INSERM, U900, 75248 Paris Cedex, France
| | - Marie-Cécile Robert
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Marion Peter
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
| | - Racha Chouaib
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Thomas Walter
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, France
- Institut Curie, 75248 Paris Cedex, France
- INSERM, U900, 75248 Paris Cedex, France
| | - Florian Mueller
- Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, 75015 Paris, France
- C3BI, USR 3756 IP CNRS - Paris, France
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, 34293 Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, 34000 Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, 34396 Montpellier, France
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20814, USA
| |
Collapse
|
29
|
Decreased Serum NCAM Levels Associated with Cognitive Impairment in Vascular Dementia. DISEASE MARKERS 2021; 2021:2792884. [PMID: 34504627 PMCID: PMC8423537 DOI: 10.1155/2021/2792884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Objective Neural cell adhesion molecule (NCAM), a glycoprotein widely distributed in the brain, has recently been shown to regulate neuroplasticity. However, the role of NCAM in vascular dementia (VaD) is still unclear. The purpose of this study is to determine whether NCAM is involved in the course of VaD. Methods Continuous recruitment of VaD patients and control population to join this study. Doctors or nurses are responsible for collecting their clinical characteristics including age, gender, formal education, heart rate, supine systolic blood pressure, supine diastolic blood pressure, fasting glucose, high-density lipoprotein, and low-density lipoprotein. Each participant received the Montreal Cognitive Assessment (MoCA) scale after being enrolled in the group. At the same time, their peripheral blood was collected, and their serum NCAM levels were measured by enzyme-linked immunosorbent assay (ELISA). Results 98 VaD patients and 83 age- and sex-matched controls were enrolled. There was no significant statistical difference between the VaD group and the control group in terms of the comparison of clinical characteristics (p > 0.05). The MoCA score of VaD patients was significantly lower than that of the controls (27.9 ± 1.4 vs. 23.0 ± 2.1 points, p < 0.001). In addition, the circulating NCAM level of VaD patients was also significantly lower than that of controls (21.7 ± 3.8 vs. 17.6 ± 4.2 ng/mL, p < 0.001). The circulating NCAM level of VaD patients was significantly positively correlated with MoCA score (r = 0.285, p = 0.026). After adjusting for clinical characteristics, circulating NCAM levels are still an independent pathogenic factor of VaD (regression coefficient = 0.223, p = 0.034). Conclusions VaD patients have low circulating NCAM levels, which can be used as a potential predictor of VaD.
Collapse
|
30
|
Liu X, Zhu K, Duan X, Wang P, Han Y, Peng W, Huang J. Extracellular matrix stiffness modulates host-bacteria interactions and antibiotic therapy of bacterial internalization. Biomaterials 2021; 277:121098. [PMID: 34478931 DOI: 10.1016/j.biomaterials.2021.121098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Pathogenic bacteria evolve multiple strategies to hijack host cells for intracellular survival and persistent infections. Previous studies have revealed the intricate interactions between bacteria and host cells at genetic, biochemical and even single molecular levels. Mechanical interactions and mechanotransduction exert a crucial impact on the behaviors and functions of pathogenic bacteria and host cells, owing to the ubiquitous mechanical microenvironments like extracellular matrix (ECM) stiffness. Nevertheless, it remains unclear whether and how ECM stiffness modulates bacterial infections and the sequential outcome of antibacterial therapy. Here we show that bacteria tend to adhere to and invade epithelial cells located on the regions with relatively high traction forces. ECM stiffness regulates spatial distributions of bacteria during the invasion through arrangements of F-actin cytoskeletons in host cells. Depolymerization of cytoskeletons in the host cells induced by bacterial infection decreases intracellular accumulation of antibiotics, thus preventing the eradication of invaded bacterial pathogens. These findings not only reveal the key regulatory role of ECM stiffness, but suggest that the coordination of cytoskeletons may provide alternative approaches to improve antibiotic therapy against multidrug resistant bacteria in clinic.
Collapse
Affiliation(s)
- Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenjing Peng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
31
|
Zhang H, Ding C, Li Y, Xing C, Wang S, Yu Z, Chen L, Li P, Dai M. Data mining-based study of collagen type III alpha 1 (COL3A1) prognostic value and immune exploration in pan-cancer. Bioengineered 2021; 12:3634-3646. [PMID: 34252356 PMCID: PMC8806444 DOI: 10.1080/21655979.2021.1949838] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) shows an essential effect during the occurrence and procession of human cancers. Type III collagen is a crucial component of ECM. Collagen Type III Alpha 1(COL3A1) is aberrantly expressed in a variety of cancers. Nevertheless, the role of COL3A1 in pan-cancer stays unidentified. In this study, we explored public databases, including Cancer Genome Atlas (TCGA), GTEx, GEPIA, cBioPortal, Oncommine, TIMER and GENEMANIA databases to identify the differential expression of COL3A1 in human cancer tissues and normal samples, followed by its prognostic value for patient survival. In addition, we explore the association between COL3A1 expression and immune infiltration. Further, we used the GeneMANIA database and Gene Set Enrichment Analysis (GSEA) to investigate Protein–Protein Interaction (PPI) and gene functional enrichment. Results show that COL3A1 expressed higher in tumor samples than in normal samples. Upregulation of COL3A1 is associated with a worse prognosis and a more advanced cancer stage. COL3A1 expression shows significant positive correlations with tumor-infiltrating immune cells (TIICs), including neutrophils, macrophages, CD8 + T cells, CD4 + T cells, dendritic cells, and B cells. Markers of TIICs demonstrated distinct patterns of COL3A1-related immune infiltration. COL3A1 expression was associated with ECM receptor interaction, regulation of actin cytoskeleton and focal adhesion pathways via GSEA analysis. In conclusion, COL3A1 may be a molecular biomarker for prognosis and immune infiltration in pan-cancer. It might act as a potential target for a new insight of human cancers management.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| | - Cheng Ding
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| | - Cheng Xing
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| | - Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| | - Zhangping Yu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| | - Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing China
| |
Collapse
|
32
|
Das S, Vera M, Gandin V, Singer RH, Tutucci E. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 2021; 22:483-504. [PMID: 33837370 PMCID: PMC9346928 DOI: 10.1038/s41580-021-00356-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA.
- Janelia Research Campus of the HHMI, Ashburn, VA, USA.
| | - Evelina Tutucci
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Goering R, Engel KL, Gillen AE, Fong N, Bentley DL, Taliaferro JM. LABRAT reveals association of alternative polyadenylation with transcript localization, RNA binding protein expression, transcription speed, and cancer survival. BMC Genomics 2021; 22:476. [PMID: 34174817 PMCID: PMC8234626 DOI: 10.1186/s12864-021-07781-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The sequence content of the 3' UTRs of many mRNA transcripts is regulated through alternative polyadenylation (APA). The study of this process using RNAseq data, though, has been historically challenging. RESULTS To combat this problem, we developed LABRAT, an APA isoform quantification method. LABRAT takes advantage of newly developed transcriptome quantification techniques to accurately determine relative APA site usage and how it varies across conditions. Using LABRAT, we found consistent relationships between gene-distal APA and subcellular RNA localization in multiple cell types. We also observed connections between transcription speed and APA site choice as well as tumor-specific transcriptome-wide shifts in APA isoform abundance in hundreds of patient-derived tumor samples that were associated with patient prognosis. We investigated the effects of APA on transcript expression and found a weak overall relationship, although many individual genes showed strong correlations between relative APA isoform abundance and overall gene expression. We interrogated the roles of 191 RNA-binding proteins in the regulation of APA isoforms, finding that dozens promote broad, directional shifts in relative APA isoform abundance both in vitro and in patient-derived samples. Finally, we find that APA site shifts in the two classes of APA, tandem UTRs and alternative last exons, are strongly correlated across many contexts, suggesting that they are coregulated. CONCLUSIONS We conclude that LABRAT has the ability to accurately quantify APA isoform ratios from RNAseq data across a variety of sample types. Further, LABRAT is able to derive biologically meaningful insights that connect APA isoform regulation to cellular and molecular phenotypes.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Krysta L Engel
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
34
|
Purification and quantitative proteomic analysis of cell bodies and protrusions. STAR Protoc 2021; 2:100462. [PMID: 33912849 PMCID: PMC8065254 DOI: 10.1016/j.xpro.2021.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Actin-rich protrusions are membrane extensions generated by actin polymerization that drive mesenchymal-like cell migration. Characterization of protrusions proteome is crucial for understanding their function. We present a complete step-by-step protocol based on microporous filter-based fractionation of protrusive cellular domains coupled with sample preparation for quantitative proteomics, mass spectrometric data acquisition, and data analysis. This protocol enables purification, quantification, and analysis of the distribution of proteins present in protrusions and cell bodies. For complete details on the use and execution of this protocol, please refer to Dermit et al. (2020). A protocol for quantitative analysis of protrusion proteomes Cell bodies and protrusions are isolated by transwell fractionation Fractions are analyzed by tandem mass tagging-based shotgun proteomics A step-by-step pipeline is provided for data analysis
Collapse
|
35
|
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021; 220:e202009045. [PMID: 33464299 PMCID: PMC7816648 DOI: 10.1083/jcb.202009045] [Citation(s) in RCA: 711] [Impact Index Per Article: 237.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Subcellular localization of RNAs has gained attention in recent years as a prevalent phenomenon that influences numerous cellular processes. This is also evident for the large and relatively novel class of long noncoding RNAs (lncRNAs). Because lncRNAs are defined as RNA transcripts >200 nucleotides that do not encode protein, they are themselves the functional units, making their subcellular localization critical to their function. The discovery of tens of thousands of lncRNAs and the cumulative evidence involving them in almost every cellular activity render assessment of their subcellular localization essential to fully understanding their biology. In this review, we summarize current knowledge of lncRNA subcellular localization, factors controlling their localization, emerging themes, including the role of lncRNA isoforms and the involvement of lncRNAs in phase separation bodies, and the implications of lncRNA localization on their function and on cellular behavior. We also discuss gaps in the current knowledge as well as opportunities that these provide for novel avenues of investigation.
Collapse
Affiliation(s)
| | | | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
36
|
Badia-Ramentol J, Linares J, Gómez-Llonin A, Calon A. Minimal Residual Disease, Metastasis and Immunity. Biomolecules 2021; 11:130. [PMID: 33498251 PMCID: PMC7909268 DOI: 10.3390/biom11020130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Progression from localized to metastatic disease requires cancer cells spreading to distant organs through the bloodstream. Only a small proportion of these circulating tumor cells (CTCs) survives dissemination due to anoikis, shear forces and elimination by the immune system. However, all metastases originate from CTCs capable of surviving and extravasating into distant tissue to re-initiate a tumor. Metastasis initiation is not always immediate as disseminated tumor cells (DTCs) may enter a non-dividing state of cell dormancy. Cancer dormancy is a reversible condition that can be maintained for many years without being clinically detectable. Subsequently, late disease relapses are thought to be due to cancer cells ultimately escaping from dormant state. Cancer dormancy is usually associated with minimal residual disease (MRD), where DTCs persist after intended curative therapy. Thus, MRD is commonly regarded as an indicator of poor prognosis in all cancers. In this review, we examine the current understanding of MRD and immunity during cancer progression to metastasis and discuss clinical perspectives for oncology.
Collapse
Affiliation(s)
| | | | | | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (J.B.-R.); (J.L.); (A.G.-L.)
| |
Collapse
|
37
|
Jo J, Abdi Nansa S, Kim DH. Molecular Regulators of Cellular Mechanoadaptation at Cell-Material Interfaces. Front Bioeng Biotechnol 2020; 8:608569. [PMID: 33364232 PMCID: PMC7753015 DOI: 10.3389/fbioe.2020.608569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diverse essential cellular behaviors are determined by extracellular physical cues that are detected by highly orchestrated subcellular interactions with the extracellular microenvironment. To maintain the reciprocity of cellular responses and mechanical properties of the extracellular matrix, cells utilize a variety of signaling pathways that transduce biophysical stimuli to biochemical reactions. Recent advances in the micromanipulation of individual cells have shown that cellular responses to distinct physical and chemical features of the material are fundamental determinants of cellular mechanosensation and mechanotransduction. In the process of outside-in signal transduction, transmembrane protein integrins facilitate the formation of focal adhesion protein clusters that are connected to the cytoskeletal architecture and anchor the cell to the substrate. The linkers of nucleoskeleton and cytoskeleton molecular complexes, collectively termed LINC, are critical signal transducers that relay biophysical signals between the extranuclear cytoplasmic region and intranuclear nucleoplasmic region. Mechanical signals that involve cytoskeletal remodeling ultimately propagate into the nuclear envelope comprising the nuclear lamina in assistance with various nuclear membrane proteins, where nuclear mechanics play a key role in the subsequent alteration of gene expression and epigenetic modification. These intracellular mechanical signaling cues adjust cellular behaviors directly associated with mechanohomeostasis. Diverse strategies to modulate cell-material interfaces, including alteration of surface rigidity, confinement of cell adhesive region, and changes in surface topology, have been proposed to identify cellular signal transduction at the cellular and subcellular levels. In this review, we will discuss how a diversity of alterations in the physical properties of materials induce distinct cellular responses such as adhesion, migration, proliferation, differentiation, and chromosomal organization. Furthermore, the pathological relevance of misregulated cellular mechanosensation and mechanotransduction in the progression of devastating human diseases, including cardiovascular diseases, cancer, and aging, will be extensively reviewed. Understanding cellular responses to various extracellular forces is expected to provide new insights into how cellular mechanoadaptation is modulated by manipulating the mechanics of extracellular matrix and the application of these materials in clinical aspects.
Collapse
Affiliation(s)
| | | | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| |
Collapse
|
38
|
Dermit M, Dodel M, Lee FCY, Azman MS, Schwenzer H, Jones JL, Blagden SP, Ule J, Mardakheh FK. Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells. Dev Cell 2020; 55:298-313.e10. [PMID: 33171110 PMCID: PMC7660134 DOI: 10.1016/j.devcel.2020.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Translation of ribosomal protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms that modulate RP-mRNA translation in coordination with other cellular processes are poorly defined. Here, we show that subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to the actin-rich cell protrusions. This localization is mediated by La-related protein 6 (LARP6), an RNA-binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, enhancing RP synthesis, ribosome biogenesis, and the overall protein synthesis in migratory cells. In human breast carcinomas, epithelial-to-mesenchymal transition (EMT) upregulates LARP6 expression to enhance protein synthesis and support invasive growth. Our findings reveal LARP6-mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration and demonstrate a role for this process in cancer progression downstream of EMT.
Collapse
Affiliation(s)
- Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Flora C Y Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Muhammad S Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hagen Schwenzer
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah P Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
39
|
Adhikari PB, Liu X, Kasahara RD. Mechanics of Pollen Tube Elongation: A Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:589712. [PMID: 33193543 PMCID: PMC7606272 DOI: 10.3389/fpls.2020.589712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube (PT) serves as a vehicle that delivers male gametes (sperm cells) to a female gametophyte during double fertilization, which eventually leads to the seed formation. It is one of the fastest elongating structures in plants. Normally, PTs traverse through the extracellular matrix at the transmitting tract after penetrating the stigma. While the endeavor may appear simple, the molecular processes and mechanics of the PT elongation is yet to be fully resolved. Although it is the most studied "tip-growing" structure in plants, several features of the structure (e.g., Membrane dynamics, growth behavior, mechanosensing etc.) are only partially understood. In many aspects, PTs are still considered as a tissue rather than a "unique cell." In this review, we have attempted to discuss mainly on the mechanics behind PT-elongation and briefly on the molecular players involved in the process. Four aspects of PTs are particularly discussed: the PT as a cell, its membrane dynamics, mechanics of its elongation, and the potential mechanosensors involved in its elongation based on relevant findings in both plant and non-plant models.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ryushiro D. Kasahara
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
40
|
Abstract
Specific RNAs are enriched at protrusive regions of migrating cells. This localization is important for cell migration on 2D surfaces. However, in vivo, tumor cells navigate complex 3D environments often in collective groups. Here, we investigated protrusion-enriched RNAs during collective 3D invasion. We show that specific RNAs exhibit a striking accumulation at the front of invasive leader cells. We provide insights into the mechanism underlying RNA accumulation at the invasive front, and we further demonstrate that it is required for efficient 3D invasion of tumor cells. We additionally observe RNA enrichment at invasive sites of in vivo tumors, supporting the physiological relevance of this mechanism and suggesting a targeting opportunity for perturbing cancer cell invasion. Localization of RNAs at protrusive regions of cells is important for single-cell migration on two-dimensional surfaces. Protrusion-enriched RNAs encode factors linked to cancer progression, such as the RAB13 GTPase and the NET1 guanine nucleotide exchange factor, and are regulated by the tumor-suppressor protein APC. However, tumor cells in vivo often do not move as single cells but rather utilize collective modes of invasion and dissemination. Here, we developed an inducible system of three-dimensional (3D) collective invasion to study the behavior and importance of protrusion-enriched RNAs. We find that, strikingly, both the RAB13 and NET1 RNAs are enriched specifically at the invasive front of leader cells in invasive cell strands. This localization requires microtubules and coincides with sites of high laminin concentration. Indeed, laminin association and integrin engagement are required for RNA accumulation at the invasive front. Importantly, perturbing RNA accumulation reduces collective 3D invasion. Examination of in vivo tumors reveals a similar localization of the RAB13 and NET1 RNAs at potential invasive sites, suggesting that this mechanism could provide a targeting opportunity for interfering with collective cancer cell invasion.
Collapse
|
41
|
Moissoglu K, Stueland M, Gasparski AN, Wang T, Jenkins LM, Hastings ML, Mili S. RNA localization and co-translational interactions control RAB13 GTPase function and cell migration. EMBO J 2020; 39:e104958. [PMID: 32946136 PMCID: PMC7604616 DOI: 10.15252/embj.2020104958] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous RNAs exhibit specific distribution patterns in mammalian cells. However, the functional and mechanistic consequences are relatively unknown. Here, we investigate the functional role of RNA localization at cellular protrusions of migrating mesenchymal cells, using as a model the RAB13 RNA, which encodes a GTPase important for vesicle‐mediated membrane trafficking. While RAB13 RNA is enriched at peripheral protrusions, the expressed protein is concentrated perinuclearly. By specifically preventing RAB13 RNA localization, we show that peripheral RAB13 translation is not important for the overall distribution of the RAB13 protein or its ability to associate with membranes, but is required for full activation of the GTPase and for efficient cell migration. RAB13 translation leads to a co‐translational association of nascent RAB13 with the exchange factor RABIF. Our results indicate that RAB13‐RABIF association at the periphery is required for directing RAB13 GTPase activity to promote cell migration. Thus, translation of RAB13 in specific subcellular environments imparts the protein with distinct properties and highlights a means of controlling protein function through local RNA translation.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Stueland
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tianhong Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
42
|
Costa G, Bradbury JJ, Tarannum N, Herbert SP. RAB13 mRNA compartmentalisation spatially orients tissue morphogenesis. EMBO J 2020; 39:e106003. [PMID: 32946121 PMCID: PMC7604621 DOI: 10.15252/embj.2020106003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Polarised targeting of diverse mRNAs to cellular protrusions is a hallmark of cell migration. Although a widespread phenomenon, definitive functions for endogenous targeted mRNAs and their relevance to modulation of in vivo tissue dynamics remain elusive. Here, using single-molecule analysis, gene editing and zebrafish live-cell imaging, we report that mRNA polarisation acts as a molecular compass that orients motile cell polarity and spatially directs tissue movement. Clustering of protrusion-derived RNAseq datasets defined a core 192-nt localisation element underpinning precise mRNA targeting to sites of filopodia formation. Such targeting of the small GTPase RAB13 generated tight spatial coupling of mRNA localisation, translation and protein activity, achieving precise subcellular compartmentalisation of RAB13 protein function to create a polarised domain of filopodia extension. Consequently, genomic excision of this localisation element and perturbation of RAB13 mRNA targeting-but not translation-depolarised filopodia dynamics in motile endothelial cells and induced mispatterning of blood vessels in zebrafish. Hence, mRNA polarisation, not expression, is the primary determinant of the site of RAB13 action, preventing ectopic functionality at inappropriate subcellular loci and orienting tissue morphogenesis.
Collapse
Affiliation(s)
- Guilherme Costa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Joshua J Bradbury
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nawseen Tarannum
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shane P Herbert
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Zhang Y, Huang Z, Dong S, Liu Z, Liu Y, Tang L, Cheng T, Zhou X. Evaluation of Cell's Passability in the ECM Network. Biophys J 2020; 119:1056-1064. [PMID: 32891186 DOI: 10.1016/j.bpj.2020.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022] Open
Abstract
The microstructure of the extracellular matrix (ECM) plays a key role in affecting cell migration, especially nonproteolytic migration. It is difficult, however, to measure some properties of the ECM, such as stiffness and the passability for cell migration. On the basis of a network model of collagen fiber in the ECM, which has been well applied to simulate mechanical behaviors such as the stress-strain relationship, damage, and failure, we proposed a series of methods to study the microstructural properties containing pore size and pore stiffness and to search for the possible migration paths for cells. Finally, with a given criterion, we quantitatively evaluated the passability of the ECM network for cell migration. The fiber network model with a microstructure and the analysis method presented in this study further our understanding of and ability to evaluate the properties of an ECM network.
Collapse
Affiliation(s)
- Yongrou Zhang
- Guangdong Key Laboratory of Modern Control Technology, Guangdong Institute of Intelligent Manufacturing, Guangzhou, Guangdong, China; School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong, China
| | - Zetao Huang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shoubin Dong
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Zejia Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yiping Liu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong, China
| | - Liqun Tang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong, China
| | - Taobo Cheng
- Guangdong Key Laboratory of Modern Control Technology, Guangdong Institute of Intelligent Manufacturing, Guangzhou, Guangdong, China
| | - Xuefeng Zhou
- Guangdong Key Laboratory of Modern Control Technology, Guangdong Institute of Intelligent Manufacturing, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Dissecting the Effect of a 3D Microscaffold on the Transcriptome of Neural Stem Cells with Computational Approaches: A Focus on Mechanotransduction. Int J Mol Sci 2020; 21:ijms21186775. [PMID: 32942778 PMCID: PMC7555048 DOI: 10.3390/ijms21186775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
3D cell cultures are becoming more and more important in the field of regenerative medicine due to their ability to mimic the cellular physiological microenvironment. Among the different types of 3D scaffolds, we focus on the Nichoid, a miniaturized scaffold with a structure inspired by the natural staminal niche. The Nichoid can activate cellular responses simply by subjecting the cells to mechanical stimuli. This kind of influence results in different cellular morphology and organization, but the molecular bases of these changes remain largely unknown. Through RNA-Seq approach on murine neural precursors stem cells expanded inside the Nichoid, we investigated the deregulated genes and pathways showing that the Nichoid causes alteration in genes strongly connected to mechanobiological functions. Moreover, we fully dissected this mechanism highlighting how the changes start at a membrane level, with subsequent alterations in the cytoskeleton, signaling pathways, and metabolism, all leading to a final alteration in gene expression. The results shown here demonstrate that the Nichoid influences the biological and genetic response of stem cells thorough specific alterations of cellular signaling. The characterization of these pathways elucidates the role of mechanical manipulation on stem cells, with possible implications in regenerative medicine applications.
Collapse
|
45
|
Tracking Single Cells Motility on Different Substrates. Methods Protoc 2020; 3:mps3030056. [PMID: 32759734 PMCID: PMC7564475 DOI: 10.3390/mps3030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Abstract
Motility is a key property of a cell, required for several physiological processes, including embryonic development, axon guidance, tissue regeneration, gastrulation, immune response, and cancer metastasis. Therefore, the ability to examine cell motility, especially at a single cell level, is important for understanding various biological processes. Several different assays are currently available to examine cell motility. However, studying cell motility at a single cell level can be costly and/or challenging. Here, we describe a method of tracking random cell motility on different substrates such as glass, tissue-culture polystyrene, and type I collagen hydrogels, which can be modified to generate different collagen network microstructures. In this study we tracked MDA-MB-231 breast cancer cells using The CytoSMARTTM System (Lonza Group, Basel, Switzerland) for live cell imaging and assessed the average cell migration speed using ImageJ and wrMTrck plugin. Our cost-effective and easy-to-use method allows studying cell motility at a single cell level on different substrates with varying degrees of stiffness and varied compositions. This procedure can be successfully performed in a highly accessible manner with a simple setup.
Collapse
|
46
|
Copos C, Mogilner A. A hybrid stochastic-deterministic mechanochemical model of cell polarization. Mol Biol Cell 2020; 31:1637-1649. [PMID: 32459563 PMCID: PMC7521800 DOI: 10.1091/mbc.e19-09-0549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Polarization is a crucial component in cell differentiation, development, and motility, but its details are not yet well understood. At the onset of cell locomotion, cells break symmetry to form well-defined cell fronts and rears. This polarity establishment varies across cell types: in Dictyostelium discoideum cells, it is mediated by biochemical signaling pathways and can function in the absence of a cytoskeleton, while in keratocytes, it is tightly connected to cytoskeletal dynamics and mechanics. Theoretical models that have been developed to understand the onset of polarization have explored either signaling or mechanical pathways, yet few have explored mechanochemical mechanisms. However, many motile cells rely on both signaling modules and actin cytoskeleton to break symmetry and achieve a stable polarized state. We propose a general mechanochemical polarization model based on coupling between a stochastic model for the segregation of signaling molecules and a simplified mechanical model for actin cytoskeleton network competition. We find that local linear coupling between minimally nonlinear signaling and cytoskeletal systems, separately not supporting stable polarization, yields a robustly polarized cell state. The model captures the essence of spontaneous polarization of neutrophils, which has been proposed to emerge due to the competition between frontness and backness pathways.
Collapse
Affiliation(s)
- Calina Copos
- Courant Institute, New York University, New York, NY 10012
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012
- Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
47
|
Wang M, Yang Y, Han L, Han S, Liu N, Xu F, Li F. Effect of three-dimensional ECM stiffness on cancer cell migration through regulating cell volume homeostasis. Biochem Biophys Res Commun 2020; 528:459-465. [PMID: 32505356 DOI: 10.1016/j.bbrc.2020.05.182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) stiffness has direct effect on cancer cells homeostasis (e.g., cell volume), which is critical for regulation of their migration. However, the relationship among ECM stiffness, cell volume and cancer cell migration in three-dimensional (3D) microenvironment remains elusive. In this work, we prepared the collagen-alginate hydrogels with tunable stiffness to study how the 3D ECM stiffness influences cell volume and their migration. We found the cell volume homeostasis and migration speed of the MDA-MB-231 cells are both regulated by 3D ECM stiffness, while cell migration speed shows the same stiffness-dependent trend with cell volume. Deviating the cell volume from its homeostasis state can cause a significant decrease in its migration ability, which can be recovered through recovering the cell volume to its homeostasis state. This work reveals for the first time that 3D ECM stiffness regulates cell migration behavior through regulating cell volume homeostasis, which may provide a novel view in the exploration of the underlying mechanisms of cancer metastasis and cellular mechanotransduction.
Collapse
Affiliation(s)
- Meng Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yaowei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Lichun Han
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Anesthesia, Xi'an Daxing Hospital, Xi'an, 710049, PR China
| | - Shuang Han
- Department of Digestive Diseases, Hong Hui Hospital, Xi'an, 710054, PR China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
48
|
Sending messages in moving cells: mRNA localization and the regulation of cell migration. Essays Biochem 2020; 63:595-606. [PMID: 31324705 DOI: 10.1042/ebc20190009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Cell migration is a fundamental biological process involved in tissue formation and homeostasis. The correct polarization of motile cells is critical to ensure directed movement, and is orchestrated by many intrinsic and extrinsic factors. Of these, the subcellular distribution of mRNAs and the consequent spatial control of translation are key modulators of cell polarity. mRNA transport is dependent on cis-regulatory elements within transcripts, which are recognized by trans-acting proteins that ensure the efficient delivery of certain messages to the leading edge of migrating cells. At their destination, translation of localized mRNAs then participates in regional cellular responses underlying cell motility. In this review, we summarize the key findings that established mRNA targetting as a critical driver of cell migration and how the characterization of polarized mRNAs in motile cells has been expanded from just a few species to hundreds of transcripts. We also describe the molecular control of mRNA trafficking, subsequent mechanisms of local protein synthesis and how these ultimately regulate cell polarity during migration.
Collapse
|
49
|
Moriggi M, Giussani M, Torretta E, Capitanio D, Sandri M, Leone R, De Palma S, Vasso M, Vozzi G, Tagliabue E, Gelfi C. ECM Remodeling in Breast Cancer with Different Grade: Contribution of 2D-DIGE Proteomics. Proteomics 2019; 18:e1800278. [PMID: 30353998 DOI: 10.1002/pmic.201800278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Indexed: 01/05/2023]
Abstract
Tumor extracellular matrix (ECM) plays a pivotal role in outcome of breast cancer (BC) patients. Overexpression of 58 genes, encoding 43 structural ECM proteins, has been identified to determine a specific cluster of BC with accelerated metastatic potential only in the undifferentiated (grade III) phenotype. The scope of this study is to characterize protein repertoire able to predict patient outcome in BC according to ECM gene expression pattern and histological grade. The differential proteomic analysis is based on 2D-differential gel electrophoresis, MALDI-MS, bioinformatics, and immunoblotting. Results suggest a relationship among ECM remodeling, signal mechanotransduction, and metabolic rewiring in BCs characterized by a specific mRNA ECM signature and identified a set of dysregulated proteins characteristic of hormone receptors expression as fibrinogen-β chain, collagen α-1(VI) chain, and α-1B-glycoprotein. Furthermore, in triple negative tumors with ECM signature, the FGG and α5β1/αvβ3 integrins increase whereas detyrosinated α-tubulin and mimecan decrease leading to unorganized integrin presentation involving focal adhesion kinase, activation of Rho GTPases associated to epithelial mesenchymal transition. In hormone receptors negative BCs characterized by a specific ECM gene cluster, the differentially regulated proteins, identified in the present study, can be potentially relevant to predict patient's outcome.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy
| | - Marta Giussani
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy
| | - Marco Sandri
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Roberta Leone
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy
| | - Sara De Palma
- Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), Segrate-Cefalù 20090, Italy
| | - Michele Vasso
- Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), Segrate-Cefalù 20090, Italy
| | - Giovanni Vozzi
- Research Center BE. Piaggio, University of Pisa, Pisa 56122, Italy.,Dipartimento di Ingegneria dell'Informazione (DII), University of Pisa, Pisa 56122, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy
| |
Collapse
|
50
|
Moissoglu K, Yasuda K, Wang T, Chrisafis G, Mili S. Translational regulation of protrusion-localized RNAs involves silencing and clustering after transport. eLife 2019; 8:44752. [PMID: 31290739 PMCID: PMC6639073 DOI: 10.7554/elife.44752] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Localization of RNAs to various subcellular destinations is a widely used mechanism that regulates a large proportion of transcripts in polarized cells. In many cases, such localized transcripts mediate spatial control of gene expression by being translationally silent while in transit and locally activated at their destination. Here, we investigate the translation of RNAs localized at dynamic cellular protrusions of human and mouse, migrating, mesenchymal cells. In contrast to the model described above, we find that protrusion-localized RNAs are not locally activated solely at protrusions, but can be translated with similar efficiency in both internal and peripheral locations. Interestingly, protrusion-localized RNAs are translated at extending protrusions, they become translationally silenced in retracting protrusions and this silencing is accompanied by coalescence of single RNAs into larger heterogeneous RNA clusters. This work describes a distinct mode of translational regulation of localized RNAs, which we propose is used to regulate protein activities during dynamic cellular responses.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Kyota Yasuda
- Laboratory of Cellular and Molecular Biology,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States.,Program of Mathematical and Life Sciences, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| | - Tianhong Wang
- Laboratory of Cellular and Molecular Biology,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - George Chrisafis
- Laboratory of Cellular and Molecular Biology,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|