1
|
Kokilavani S, Selopal GS, Jin L, Kumar P, Barba D, Rosei F. Dual Aliovalent Dopants Cu, Mn Engineered Eco-Friendly QDs for Ultra-Stable Anti-Counterfeiting. Chemistry 2024; 30:e202402026. [PMID: 39106258 DOI: 10.1002/chem.202402026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Doping in semiconductor quantum dots (QDs) using optically active dopants tailors their optical, electronic, and magnetic properties beyond what is achieved by controlling size, shape, and composition. Herein, we synergistically modulated the optical properties of eco-friendly ZnInSe2/ZnSe core/shell QDs by incorporating Cu-doping and Mn-alloying into their core and shell to investigate their use in anti-counterfeiting and information encryption. The engineered "Cu:ZnInSe2/Mn:ZnSe" core/shell QDs exhibit an intense bright orange photoluminescence (PL) emission centered at 606 nm, with better color purity than the undoped and individually doped core/shell QDs. The average PL lifetime is significantly extended to 201 ns, making it relevant for complex encryption and anti-counterfeiting. PL studies reveal that in Cu:ZnInSe2/Mn:ZnSe, the photophysical emission arises from the Cu state via radiative transition from the Mn 4T1 state. Integration of Cu:ZnInSe2/Mn:ZnSe core/shell QDs into poly(methyl methacrylate) (PMMA) serves as versatile smart concealed luminescent inks for both writing and printing patterns. The features of these printed patterns using Cu:ZnInSe2/Mn:ZnSe core/shell QDs persisted after 10 weeks of water-soaking and retained 70 % of PL emission intensity at 170 °C, demonstrating excellent thermal stability. This work provides an efficient approach to enhance both the emission and the stability of eco-friendly QDs via dopant engineering for fluorescence anti-counterfeiting applications.
Collapse
Affiliation(s)
- S Kokilavani
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Lei Jin
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Pawan Kumar
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - David Barba
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
2
|
Liang L, Ye Y, Yang H, Mao Q, Ding Y, Chen F, Liu M, Zhong J. Degree of Crystal Structure Distortion-Induced Tunable LiGaO 2 Long Persistent Luminescence for Optical Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54163-54170. [PMID: 39316631 DOI: 10.1021/acsami.4c11163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Tunable long persistent luminescence (LPL) phosphor materials have great potential for optoelectronic cryptographic applications. However, the mainstream techniques of modulating LPL generally have the characteristics of complex preparation processes, demanding crystal field environments, or expensive dopant ions, which restrict large-scale commercial application. Herein, we develop a simple, high-efficiency, and low-cost strategy to optimize the LPL of LiGaO2(LGO):Cu2+ by changing the sintering time to regulate the degree of crystal structure distortion. The Cu2+ as charge compensation will substantially enhance the emission intensity of LGO by a factor of 11.02 originating from the appropriate ionic size and coordination mode. Besides, the LPL time of LGO:Cu2+ can be extended effectively to 2 h by adjusting the sintering temperature and time (900 °C@24 h). The extension mechanism is that Li and Ga can be substituted for each other more easily and induce crystal structure distortion due to the special crystal structure of LGO, resulting in an optimal trap concentration in LGO:Cu2+. Thus, our findings provide a simple way to modulate long persistent luminescence and further consider their potential impact on optical information encryption.
Collapse
Affiliation(s)
- Liang Liang
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yulong Ye
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Heyi Yang
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qinan Mao
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Ding
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Fang Chen
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Meijiao Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiasong Zhong
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Sang Y, Li H, Sun M, Ren J, Qu X. Persistent Luminescence-Based Nanoreservoir for Benign Photothermal-Reinforced Nanozymatic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49114-49123. [PMID: 39241120 DOI: 10.1021/acsami.4c10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Adjusting the catalytic activity of nanozymes for enhanced oncotherapy has attracted significant interest. However, it remains challenging to engineer regulatory tactics with a minimal impact on normal tissues. By exploiting the advantages of energy storage, photostimulated, and long afterglow luminescence of persistent nanoparticles (PLNPs), a persistent luminescence-based nanoreservoir was produced to improve its catalytic activity for benign oncotherapy. In the study, PLNPs in a nanoreservoir with the ability to store photons served as a self-illuminant to promote its peroxidase-like activity and therapeutic efficacy by persistently motivating its photothermal effect before and after external irradiation ceased. The photostimulated and persistent luminescence of PLNPs and spatiotemporal controllability of exogenous light jointly alleviated adverse effects induced by prolonged irradiation and elevated the catalytic capability of the nanoreservoir. Ultimately, the system fulfilled benign photothermal-intensive nanozymatic therapy. This work provides new insights into boosting the catalytic activity of nanozymes for secure disease treatment.
Collapse
Affiliation(s)
- Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huimin Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
4
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
5
|
Guan S, Chen X, Yu R, Xu W, Wu Z, Doug Suh Y, Liu X, Huang W. Opal-Inspired SiO 2-Mediated Carbon Dot Doping Enables the Synthesis of Monodisperse Multifunctional Afterglow Nanocomposites for Advanced Information Encryption. Angew Chem Int Ed Engl 2024:e202415632. [PMID: 39269260 DOI: 10.1002/anie.202415632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Despite recent advancements in inorganic and organic phosphors, creating monodisperse afterglow nanocomposites (NCs) remains challenging due to the complexities of wet chemistry synthesis. Inspired by nanoinclusions in opal, we introduce a novel SiO2-mediated carbon dot (CD) doping method for fabricating monodisperse, multifunctional afterglow NCs. This method involves growing a SiO2 shell matrix on monodisperse nanoparticles (NPs) and doping CDs into the SiO2 shell under hydrothermal conditions. Our approach preserves the monodispersity of the parent NP@SiO2 NCs while activating a green afterglow in the doped CDs with an impressive lifetime of 1.26 s. Additionally, this method is highly versatile, allowing for various core and dopant combinations to finely tune the afterglow through core-to-CD or CD-to-dye energy transfer. Our findings significantly enhance the potential of SiO2 coatings, transforming them from merely enhancing the biocompatibility of NCs to serving as a versatile matrix for emitters, facilitating afterglow generation and paving the way for new applications.
Collapse
Affiliation(s)
- Shuaimeng Guan
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xue Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Rui Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weidong Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering UNIST, Ulsan, 44919, Republic of South Korea
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
6
|
Jiang LY, Zhou YC, Zhang SF, Shao HC, Liang YC. Time Division Colorful Multiplexing Based on Carbon Nanodots with Modifiable Colors and Lifetimes. NANO LETTERS 2024; 24:8418-8426. [PMID: 38934472 DOI: 10.1021/acs.nanolett.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Optical multiplexing technology plays a crucial role in various fields such as data storage, anti-counterfeiting, and time-resolved biological imaging. Nevertheless, employing single-wavelength phosphorescence for multiplexing often results in spectral overlap among the emission peaks of various channels, which can precipitate crosstalk and misinterpretation in the information-decoding process, thereby compromising the integrity and precision of the encrypted data. This paper proposes a time-divided colorful multiplexing technology based on phosphorescent carbon nanodots with different colors and lifetimes. Using different luminescence colors to symbolize varying information levels helps achieve multitiered information encryption and storage. By modulation of the lifetime and the emission wavelength, intricate information can be encoded, thereby enhancing the intricacy and security of the encryption mechanism. By assigning different data bits to each color, more information can be encoded in the same physical space. This method enables higher-density information storage and fortifies encryption, ensuring the compactness and security of information.
Collapse
Affiliation(s)
- Li-Ying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yu-Chen Zhou
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Si-Fan Zhang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hao-Chun Shao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ya-Chuan Liang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
7
|
Wang Y, Sun G, Su Q, Xie Y, Xing F, Zhang H, Sun L. Optical Upconversion in Mononuclear Lanthanide Co-Crystal Assemblies. Chemistry 2024; 30:e202400911. [PMID: 38651349 DOI: 10.1002/chem.202400911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
In this work, we developed two kinds of co-crystal assemblies systems, consisting of discrete mononuclear Yb3+ and Er3+ and mononuclear Yb3+ and Pr3+, which can achieve Er3+ and Pr3+ upconversion luminescence, respectively, by Yb3+ sensitization under 980 nm excitation. The structure and composition of two co-crystal assemblies were determined by single crystal X-ray diffraction. By investigation of the series of two assemblies, respectively, it is found that the strongest upconversion luminescence is both obtained when the molar ratio of Yb3+ and Ln3+ (Ln=Er or Pr) is 1 : 1. The energy transfer mechanism of Er3+ assemblies is determined as energy transfer upconversion, while that of Pr3+ assemblies is determined as energy transfer upconversion and cooperative sensitization upconversion. This is the first example of Pr3+ upconversion luminescence at the molecular dimension at room temperature, which enriches the research in the field of upconversion luminescence with lanthanide complexes.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Qichen Su
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yao Xie
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Feifei Xing
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Ren L, Zhao Q, Su Y, Zhou M, Su Q. Luminescence enhancement through co-sensitization in lanthanide composites for efficient photocatalysis. NANOSCALE 2024; 16:10474-10482. [PMID: 38757953 DOI: 10.1039/d4nr01412j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lanthanide-doped nanocrystals that convert near-infrared (NIR) irradiation into shorter wavelength emission (ultraviolet-C) offer many exciting opportunities for biomedicine, bioimaging, and environmental catalysis. However, developing lanthanide-doped nanocrystals with high UVC brightness for efficient photocatalysis is a formidable challenge due to the complexity of the multiphoton process. Here, we report a series of heterogeneous core-multishell structures based on a co-sensitization strategy with multi-band enhanced emission profiles under 980 nm excitation. Interestingly, the multiphoton processes involving two to six-photon upconversion are highly promoted via a co-sensitization strategy. More importantly, through growth layers of TiO2 and CdS photocatalysts, these lanthanide nanocomposites with efficient multi-upconverted emission show efficient photocatalytic activity. This study provides a new perspective for mechanistic understanding of multiphoton processes in heterostructures and also offers exciting opportunities for highly efficient photocatalytic applications.
Collapse
Affiliation(s)
- Langtao Ren
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Qing Zhao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Yan Su
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672, Singapore
| | - Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Guo J, Gao Y, Pan M, Li X, Kong F, Wu M, Zhang L, Cheng Z, Zhao R, Ma H. Photorewriting, Time-Resolved Encryption, and Unclonable Anticounterfeiting with Artificial Intelligence Authentication via a Reversible Photoswitchable System. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38682804 DOI: 10.1021/acsami.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In the fields of photolithographic patterning, optical anticounterfeiting, and information encryption, reversible photochromic materials with solid-state fluorescence are emerging as a potential class of systems. A design strategy for reversible photochromic materials has been proposed and synthesized through the introduction of photoactive thiophene groups into the molecular backbone of aryl vinyls, compounds with unique aggregation-induced emission properties, and solid-state reversible photocontrollable fluorescence and color-changing properties. This work develops novel photochromic inks, films, and cellulose hydrogels for enhancing the security of information encryption and anticounterfeiting technologies. They achieve rapid and reversible color change under ultraviolet light irradiation. Dependent upon the rate of color change, higher levels of time-resolved security can be achieved. This feature is important for enhancing the confidentiality of encrypted information and the reliability of security labels. Color-changing cellulose hydrogels, inks, and films consisting of three photochromic fluorescent molecules have quick photoactivity, great photoreversibility and photostability, and good processability, making them ideal for time-delayed anticounterfeiting and smart encryption. Furthermore, specialized algorithms are used to construct convolutional neural networks, and image analysis is performed on these systems, thus solving the current problem of the time-consuming information decryption process. This artificial intelligence method offers new opportunities for enhanced data encryption.
Collapse
Affiliation(s)
- Jiandong Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Yu Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Mengyao Pan
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Xiaobai Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Fanwei Kong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Mingyang Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Lijia Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Zhiyong Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Ruiyan Zhao
- Harbin No.6 High School, Harbin, Heilongjiang 150040, People's Republic of China
| | - Hongwei Ma
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin, Heilongjiang 150040, People's Republic of China
| |
Collapse
|
10
|
Tang Y, Cai Y, Dou K, Chang J, Li W, Wang S, Sun M, Huang B, Liu X, Qiu J, Zhou L, Wu M, Zhang JC. Dynamic multicolor emissions of multimodal phosphors by Mn 2+ trace doping in self-activated CaGa 4O 7. Nat Commun 2024; 15:3209. [PMID: 38615033 PMCID: PMC11016074 DOI: 10.1038/s41467-024-47431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
The manipulation of excitation modes and resultant emission colors in luminescent materials holds pivotal importance for encrypting information in anti-counterfeiting applications. Despite considerable achievements in multimodal and multicolor luminescent materials, existing options generally suffer from static monocolor emission under fixed external stimulation, rendering them vulnerability to replication. Achieving dynamic multimodal luminescence within a single material presents a promising yet challenging solution. Here, we report the development of a phosphor exhibiting dynamic multicolor photoluminescence (PL) and photo-thermo-mechanically responsive multimodal emissions through the incorporation of trace Mn2+ ions into a self-activated CaGa4O7 host. The resulting phosphor offers adjustable emission-color changing rates, controllable via re-excitation intervals and photoexcitation powers. Additionally, it demonstrates temperature-induced color reversal and anti-thermal-quenched emission, alongside reproducible elastic mechanoluminescence (ML) characterized by high mechanical durability. Theoretical calculations elucidate electron transfer pathways dominated by intrinsic interstitial defects and vacancies for dynamic multicolor emission. Mn2+ dopants serve a dual role in stabilizing nearby defects and introducing additional defect levels, enabling flexible multi-responsive luminescence. This developed phosphor facilitates evolutionary color/pattern displays in both temporal and spatial dimensions using readily available tools, offering significant promise for dynamic anticounterfeiting displays and multimode sensing applications.
Collapse
Affiliation(s)
- Yiqian Tang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Yiyu Cai
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Kunpeng Dou
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Jianqing Chang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Wei Li
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Shanshan Wang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Xiaofeng Liu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Jianrong Qiu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Lei Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Mingmei Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jun-Cheng Zhang
- College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Education Ministry of China, and Key Laboratory of Optics and Optoelectronics of Qingdao, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
11
|
Zhu M, Li Z, Li X, Zhang X, Wang Y, Hao H, Li L. Construction of active-inert core-shell structured nanocrystals for broad range multicolor upconversion luminescence. Sci Rep 2024; 14:7099. [PMID: 38531885 DOI: 10.1038/s41598-024-57523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Rare earth doped up-conversion luminescent nano-materials exhibit abundant emission colors under suitable excitation condition. In this work, NaYF4:Er/Ho@NaYF4 and NaYbF4:Tm@NaYF4 nanoparticles were synthesized by co-precipitation method. The pure red emission can be realized by the designed NaYF4:Er/Ho@NaYF4 nanocrystals and the R/Gs reach 23.3 and 25 under excitations of 980 and 1550 nm lasers, respectively. The R/G declines as the power increasing with the emission color changing from red to yellow, which is due to the quick saturation of the energy levels, radiating red emissions. Meanwhile, the emission intensity of NaYbF4:Tm@NaYF4 nanocrystals increases by 58.3 folds after encasing the inert shell NaYF4 and the CIE color coordinate reaches (0.1646, 0.0602) under 980 nm laser excitation. Furthermore, broad range multicolor from blue to red and yellow up-conversion emissions is achieved by mixing NaYF4:Er/Ho@NaYF4 and NaYbF4:Tm@NaYF4 nanocrystals, which could be applied to colorful displaying, security anti-counterfeiting and information coding.
Collapse
Affiliation(s)
- Mengyao Zhu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zi Bo, 255000, People's Republic of China
| | - Zhenhua Li
- Department of Physics, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xuecheng Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zi Bo, 255000, People's Republic of China
| | - Xueru Zhang
- Department of Physics, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yuxiao Wang
- Department of Physics, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Haoyue Hao
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zi Bo, 255000, People's Republic of China.
| | - Liang Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zi Bo, 255000, People's Republic of China.
| |
Collapse
|
12
|
Yan L, Huang J, An Z, Zhang Q, Zhou B. Spatiotemporal control of photochromic upconversion through interfacial energy transfer. Nat Commun 2024; 15:1923. [PMID: 38429262 PMCID: PMC10907698 DOI: 10.1038/s41467-024-46228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Dynamic control of multi-photon upconversion with rich and tunable emission colors is stimulating extensive interest in both fundamental research and frontier applications of lanthanide based materials. However, manipulating photochromic upconversion towards color-switchable emissions of a single lanthanide emitter is still challenging. Here, we report a conceptual model to realize the spatiotemporal control of upconversion dynamics and photochromic evolution of Er3+ through interfacial energy transfer (IET) in a core-shell nanostructure. The design of Yb sublattice sensitization interlayer, instead of regular Yb3+ doping, is able to raise the absorption capability of excitation energy and enhance the upconversion. We find that a nanoscale spatial manipulation of interfacial interactions between Er and Yb sublattices can further contribute to upconversion. Moreover, the red/green color-switchable upconversion of Er3+ is achieved through using the temporal modulation ways of non-steady-state excitation and time-gating technique. Our results allow for versatile designs and dynamic management of emission colors from luminescent materials and provide more chances for their frontier photonic applications such as optical anti-counterfeiting and speed monitoring.
Collapse
Affiliation(s)
- Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Zhengce An
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Qinyuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, and Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
13
|
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier. ACS NANO 2024; 18:1820-1845. [PMID: 38193927 PMCID: PMC10811692 DOI: 10.1021/acsnano.3c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.
Collapse
Affiliation(s)
- Shuai Zha
- Hubei
University of Chinese Medicine, School of
Laboratory Medicine, 16
Huangjia Lake West Road, Wuhan 430065, China
- Hubei
Shizhen Laboratory, Wuhan 430061, China
| | - Haitao Liu
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Hengde Li
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Haolan Li
- Dalian
University of Technology School of Chemical
Engineering, Lingshui
Street, Ganjingzi District, Dalian 116024, China
| | - Ka-Leung Wong
- The
Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology, Building Y815, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Angelo Homayoun All
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Men F, Hu T, Jiang Z, Yang H, Gao Y, Zeng Q. The Creation of Multimode Luminescent Phosphor through an Oxygen Vacancy Center for High-Level Anticounterfeiting. Inorg Chem 2024; 63:668-676. [PMID: 38113464 DOI: 10.1021/acs.inorgchem.3c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Integrating multimode optical properties into a single material simultaneously is promising for improving the security level of fluorescent anticounterfeiting. However, there has been a lack of affirmative principles and unambiguous mechanisms that guide the design of such material. Herein, we achieve color-tunable photoluminescence, long-lived persistent emission, thermally stimulated luminescence, and reversible photochromism in a Tb3+-activated Mg4Ga8Ge2O20 phosphor by employing the F-like color center as an energy reservoir. It is experimentally revealed that the role of oxygen vacancies in the lattice of Mg4Ga8Ge2O20 is assumed as the main trap for the photogenerated electronic carriers, which is the origin of metastable F-like color centers. The formed color centers with the estimated depths of 0.48-0.95 eV could suppress the recombination of electron-hole pairs, thus giving rise to good photochromism and persistent emission properties, while under various modes of stimulation such as thermal attack or photo radiation, a quick recombination of electron holes happens, accounting for the bright thermally stimulated luminescence and the accompanied color bleaching. Finally, we fabricate a flexible phosphor/polymer composite by encapsulating the developed phosphor into a polydimethylsiloxane matrix, and conceptual demonstration of the composite for the high-security fluorescent anticounterfeiting technology, by virtue of multimode optical phenomena as authentication signals.
Collapse
Affiliation(s)
- Fanchao Men
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
| | - Tao Hu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
| | - Zelong Jiang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
| | - Hong Yang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
| | - Yan Gao
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province , P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China
| |
Collapse
|
15
|
Dai D, Zhang Y, Yang S, Kong W, Yang J, Zhang J. Recent Advances in Functional Materials for Optical Data Storage. Molecules 2024; 29:254. [PMID: 38202837 PMCID: PMC10780730 DOI: 10.3390/molecules29010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
In the current data age, the fundamental research related to optical applications has been rapidly developed. Countless new-born materials equipped with distinct optical properties have been widely explored, exhibiting tremendous values in practical applications. The optical data storage technique is one of the most significant topics of the optical applications, which is considered as the prominent solution for conquering the challenge of the explosive increase in mass data, to achieve the long-life, low-energy, and super high-capacity data storage. On this basis, our review outlines the representative reports for mainly introducing the functional systems based on the newly established materials applied in the optical storage field. According to the material categories, the representative functional systems are divided into rare-earth doped nanoparticles, graphene, and diarylethene. In terms of the difference of structural features and delicate properties among the three materials, the application in optical storage is comprehensively illustrated in the review. Meanwhile, the potential opportunities and critical challenges of optical storage are also discussed in detail.
Collapse
Affiliation(s)
- Dihua Dai
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Yong Zhang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Siwen Yang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Weicheng Kong
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Jie Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jijun Zhang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| |
Collapse
|
16
|
Han Y, Zhang X, Huang L. Novel Aspects about "Lifetime" in Upconversion Luminescence. Chemistry 2023; 29:e202302633. [PMID: 37697454 DOI: 10.1002/chem.202302633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Recent progress on the temporal response (TR) of lanthanide-doped upconversion luminescence (UCL) has enriched the means of UCL regulation, promoted advanced designs for customized applications such as biological diagnosis, high-capacity optical coding, and dynamic optical anti-counterfeiting, and pushed us to reacquaint the dynamic responses of sensitizer/activator ions in UCL systems. In particular, the lifetime of UCL should be revisited after discovery of novel experimental phenomena and luminescence mechanisms, i. e., it should be understood as the collective TR (in the decay edge) of all the involved ions rather than the reciprocal of the radiative rate of an individual ion. In this Concept, we retraced the latest understanding of the dynamics in UCL with special attention to the relationship between excitation and emission, means of TR regulation, and discussed existing challenges. It is expected to provide some fundamental insights to deepened understanding, further regulation, and frontier applications of TR features of UCL.
Collapse
Affiliation(s)
- Yingdong Han
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
- Institute of Environment and Sustainable Development, Civil Aviation University of China, Tianjin, 300300, China
| | - Xingxing Zhang
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Ling Huang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
17
|
Zhao C, Meng Z, Guo Z, Wang Z, Cao J, Zhu J, Ma C, Zhang M, Liu W. Achieving excitation wavelength-power-dependent colorful luminescence via multiplexing of dual lanthanides in fluorine oxide particles for multilevel anticounterfeiting. Dalton Trans 2023; 52:14132-14141. [PMID: 37747221 DOI: 10.1039/d3dt01715j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The optical characteristics of multimode luminescent materials like multimode luminescence (photoluminescence, afterglow, thermoluminescence) and a multi-excitation source (light, thermal, mechanical force) play crucial roles in optical data storage and readout, document security and anticounterfeiting. A higher level of advanced anticounterfeiting may rely on multimode anticounterfeiting materials that can realize multicolor luminescence. Here, a highly integrated multimode and multicolor Y7O6F9:Er3+,Eu3+ material is developed through multiplexing of dual lanthanides in fluorine oxide particles. In photoluminescence and photoluminescence/up-conversion luminescence modes, the material Y7O6F9:Er3+,Eu3+ has the characteristic of excitation wavelength and power dependence. In the photoluminescence mode, under excitation at 254 nm and 365 nm, Y7O6F9:Er3+ and Y7O6F9:Eu3+ showed bright red and green emissions, respectively. In the photoluminescence/up-conversion mode, under the increased excitation power from 0.2 to 2.0 W cm-2, the color of luminescence emission can be finely tuned from red to orange, yellow and green. Taking this unique excitation wavelength-power-dependent luminescence property into account, a multilevel anticounterfeiting device with the Lily pattern was designed. The device readily integrates the advantages of the excitation wavelength-dependent photoluminescence emissions and excitation power-dependent photoluminescence emissions in one overall device. These findings offer unique insight for designing highly integrated multimode, multicolor luminescence materials and advanced anticounterfeiting technology toward a wide variety of applications, particularly multilevel anticounterfeiting devices.
Collapse
Affiliation(s)
- Chenyang Zhao
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
| | - Zikai Meng
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
| | - Zhen Guo
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
| | - Zhenbin Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, 810016, China
| | - Jiajia Cao
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
| | - Jihua Zhu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, 810016, China
| | - Cunhua Ma
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, 810016, China
| | - Mingjin Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, 810016, China
| | - Weisheng Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, 810016, China
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
18
|
Wu B, Wang A, Fu J, Zhang Y, Yang C, Gong Y, Jiang C, Long M, Zhou G, Yue S, Ma W, Liu X. Uncovering the mechanisms of efficient upconversion in two-dimensional perovskites with anti-Stokes shift up to 220 meV. SCIENCE ADVANCES 2023; 9:eadi9347. [PMID: 37774031 PMCID: PMC10541006 DOI: 10.1126/sciadv.adi9347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Phonon-assisted photon upconversion holds great potential for numerous applications, e.g., optical refrigeration. However, traditional semiconductors face energy gain limitations due to thermal energy, typically achieving only ~25 milli-electron volts at room temperature. Here, we demonstrate that quasi-two-dimensional perovskites, with a soft hybrid organic-inorganic lattice, can efficiently upconvert photons with an anti-Stokes shift exceeding 200 milli-electron volts. By using microscopic transient absorption measurements and density functional theory calculations, we explicate that the giant energy gain stems from strong lattice fluctuation leading to a picosecond timescale transient band energy renormalization with a large energy variation of around ±180 milli-electron volts at room temperature. The motion of organic molecules drives the deformation of inorganic framework, providing energy and local states necessary for efficient upconversion within a time constant of around 1 ps. These results establish a deep understanding of perovskite-based photon upconversion and offer previously unknown insights into the development of various upconversion applications.
Collapse
Affiliation(s)
- Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Aocheng Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Fu
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, P.R. China
| | - Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Cheng Yang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
| | - Yiyang Gong
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingzhu Long
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P.R. China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Ma
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, P.R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
19
|
Calado CMS, Gálico DA, Murugesu M. Composition Control in Molecular Cluster-Aggregates: A Toolbox for Optical Output Tunability via Energy Transfer Pathways. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44137-44146. [PMID: 37695985 DOI: 10.1021/acsami.3c10648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Composition control is a powerful tool for obtaining high-performance lanthanide (Ln) luminescent materials with adjustable optical outputs. This strategy is well-established for hierarchically structured nanoparticles, but it is rarely applied to molecular compounds due to the limited number of metal centers within a single unit. In this work, we present a series of molecular cluster-aggregates (MCAs) with an icosanuclear core {Ln2Eu2Tb16} (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, and Yb) in which we explore composition control, akin to nanoparticles, to modulate the optical output. More specifically, we target to understand how the presence of a third LnIII doping ion would impact the well-known TbIII → EuIII energy transfer and the ratiometric optical thermometry performance based on the TbIII/EuIII pair. Photophysical properties at room and at varying temperatures were investigated. Based on experimental data and well-established intrinsic features, such as spin-orbit coupling strength and LnIII 4f energy levels' structure, we discuss the possible luminescent processes present in each MCA and provide insight into qualitative trends that can be rationally correlated throughout the series.
Collapse
Affiliation(s)
- Claudia M S Calado
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
20
|
Zhang J, Liu Y, Njel C, Ronneberger S, Tarakina NV, Loeffler FF. An all-in-one nanoprinting approach for the synthesis of a nanofilm library for unclonable anti-counterfeiting applications. NATURE NANOTECHNOLOGY 2023; 18:1027-1035. [PMID: 37277535 PMCID: PMC10501905 DOI: 10.1038/s41565-023-01405-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/13/2023] [Indexed: 06/07/2023]
Abstract
In addition to causing trillion-dollar economic losses every year, counterfeiting threatens human health, social equity and national security. Current materials for anti-counterfeiting labelling typically contain toxic inorganic quantum dots and the techniques to produce unclonable patterns require tedious fabrication or complex readout methods. Here we present a nanoprinting-assisted flash synthesis approach that generates fluorescent nanofilms with physical unclonable function micropatterns in milliseconds. This all-in-one approach yields quenching-resistant carbon dots in solid films, directly from simple monosaccharides. Moreover, we establish a nanofilm library comprising 1,920 experiments, offering conditions for various optical properties and microstructures. We produce 100 individual physical unclonable function patterns exhibiting near-ideal bit uniformity (0.492 ± 0.018), high uniqueness (0.498 ± 0.021) and excellent reliability (>93%). These unclonable patterns can be quickly and independently read out by fluorescence and topography scanning, greatly improving their security. An open-source deep-learning model guarantees precise authentication, even if patterns are challenged with different resolutions or devices.
Collapse
Affiliation(s)
- Junfang Zhang
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Yuxin Liu
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christian Njel
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sebastian Ronneberger
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
21
|
Laube C, Temme R, Prager A, Griebel J, Knolle W, Abel B. Fluorescence Lifetime Control of Nitrogen Vacancy Centers in Nanodiamonds for Long-Term Information Storage. ACS NANO 2023; 17:15401-15410. [PMID: 37440601 DOI: 10.1021/acsnano.3c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Today's huge amount of data generation and transfer induced an urgent requirement for long-term data storage. Here, we demonstrate and discuss a concept for long-term storage using NV centers inside nanodiamonds. The approach is based upon the radiation-induced generation of additional vacancies (so-called GR1 states), which quench the initial NV centers, resulting in a reduced overall fluorescence lifetime of the NV center. Using the tailored fluorescence lifetime of the NV center to code the information, we demonstrate a "beyond binary" data storage density per bit. We also demonstrate that this process is reversible by heating the sample or the spot of information. This proof of principle shows that our technique may be a promising alternative data storage technology, especially in terms of long-term storage, due to the high stability of the involved color centers. In addition to the proof-of-principle demonstration using macroscopic samples, we suggest and discuss the usage of focused electron beams to write information in nanodiamond materials, to read it out with focused low-intensity light, and to erase it on the macro-, micro-, or nanoscale.
Collapse
Affiliation(s)
- Christian Laube
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Chemical Technology, University Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Robert Temme
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Chemical Technology, University Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Andrea Prager
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Jan Griebel
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Wolfgang Knolle
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Chemical Technology, University Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Sheng Y, Zhang Y, Xing F, Liu C, Di Y, Yang X, Wei S, Zhang X, Liu Y, Gan Z. Co-multiplexing spectral and temporal dimensions based on luminescent materials. OPTICS EXPRESS 2023; 31:24667-24677. [PMID: 37475287 DOI: 10.1364/oe.495972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Optical multiplexing is a pivotal technique for augmenting the capacity of optical data storage (ODS) and increasing the security of anti-counterfeiting. However, due to the dearth of appropriate storage media, optical multiplexing is generally restricted to a single dimension, thus curtailing the encoding capacity. Herein, the co-multiplexing spectral and temporal dimensions are proposed for optical encoding based on photoluminescence (PL) and persistent-luminescence (PersL) at four different wavelengths. Each emission color comprises four luminescence modes. The further multiplexing of four wavelengths leads to the maximum encoding capacity of 8 bits at each pixel. The wavelength difference between adjacent peaks is larger than 50 nm. The well-separated emission wavelengths significantly lower the requirements for high-resolution spectrometers. Moreover, the information is unable to be decoded until both PL and PersL spectra are collected, suggesting a substantial improvement in information security and the security level of anti-counterfeiting.
Collapse
|
23
|
Gálico DA, Santos Calado CM, Murugesu M. Lanthanide molecular cluster-aggregates as the next generation of optical materials. Chem Sci 2023; 14:5827-5841. [PMID: 37293634 PMCID: PMC10246660 DOI: 10.1039/d3sc01088k] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
In this perspective, we provide an overview of the recent achievements in luminescent lanthanide-based molecular cluster-aggregates (MCAs) and illustrate why MCAs can be seen as the next generation of highly efficient optical materials. MCAs are high nuclearity compounds composed of rigid multinuclear metal cores encapsulated by organic ligands. The combination of high nuclearity and molecular structure makes MCAs an ideal class of compounds that can unify the properties of traditional nanoparticles and small molecules. By bridging the gap between both domains, MCAs intrinsically retain unique features with tremendous impacts on their optical properties. Although homometallic luminescent MCAs have been extensively studied since the late 1990s, it was only recently that heterometallic luminescent MCAs were pioneered as tunable luminescent materials. These heterometallic systems have shown tremendous impacts in areas such as anti-counterfeiting materials, luminescent thermometry, and molecular upconversion, thus representing a new generation of lanthanide-based optical materials.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
24
|
Kedawat G, Srivastava S, Gupta BK. A Strategic Approach to Design Multi-Functional RGB Luminescent Security Pigment Based Golden Ink with Myriad Security Features to Curb Counterfeiting of Passport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206397. [PMID: 36905246 DOI: 10.1002/smll.202206397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Indexed: 06/08/2023]
Abstract
Authentication and verification of the most important government issued identity proof, i.e. passport has become more complex and challenging in the last few decades due to various innovations in ways of counterfeiting by fraudsters. Here, the aim is to provide more secured ink without altering its golden appearance in visible light. In this panorama, a novel advanced multi-functional luminescent security pigment (MLSP) based golden ink (MLSI) is developed that provides an optical authentication and information encryption features to protect the legitimacy of the passport. The advanced MLSP is derived from the ratiometric combination of different luminescent materials to form a single pigment which emits red (620 nm), green (523 nm) and blue (474 nm), when irradiated via 254, 365 and 980 nm NIR wavelengths, respectively. It also includes magnetic nanoparticles to generate magnetic character recognition feature. The MLSI has been fabricated to examine its printing feasibility and stability over different substrates using the conventional screen-printing technique against harsh chemicals and under different atmospheric conditions. Hence, these advantageous multi-level security features with golden appearance in visible light is a new breakthrough toward curbing the counterfeiting of passport as well as bank cheques, government documents, pharmaceuticals, military equipment, and many more.
Collapse
Affiliation(s)
- Garima Kedawat
- Photonic Materials Metrology Sub Division, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India
| | - Shubhda Srivastava
- Photonic Materials Metrology Sub Division, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India
| | - Bipin Kumar Gupta
- Photonic Materials Metrology Sub Division, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
25
|
Silva AMB, Rodrigues DS, Antonio PL, Junot DO, Caldas LVE, Souza DN. Investigation of dosimetric properties of CaSO 4:Mn phosphor prepared using slow evaporation route. Appl Radiat Isot 2023; 199:110874. [PMID: 37285758 DOI: 10.1016/j.apradiso.2023.110874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
The objective of this work was to investigate the luminescent properties of CaSO4:Mn synthesized by slow evaporation route. The crystalline structure, morphology, thermal and optical properties of the phosphors were characterized by X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM), photoluminescence (PL) and thermogravimetric analysis (TGA). Moreover, using thermoluminescence (TL) and optically stimulated luminescence (OSL) techniques, the dosimetric properties of the phosphors, such as emission spectra, glow curve reproducibility, dose-response linearity, fading of the luminescent signal, variation of the TL intensity with the heating rate, OSL decay curves, correlation between TL and OSL emissions and minimum detectable dose (MDD) were comprehensively investigated. For dosimetric analyses, the samples were irradiated with doses from 169 mGy to 10 Gy. The emission band fits with the characteristic line of the Mn2+ emission features, ascribed to 6A1→4T1 transition. CaSO4:Mn pellets present a TL glow curve with a single typical peak centered around 494 nm, an OSL decay curve with predominance of a fast decay component, and a MDD on the order of mGy. The luminescent signals showed to be linear and reproducible in the studied dose range. The trapping centers located between 0.83 eV and 1.07 eV were revealed for different heating rates in the TL study. The high TL sensitivity of CaSO4:Mn was proven when comparing with commercially available dosimeters. The luminescent signals exhibit a smaller fading than described in the literature for CaSO4:Mn produced by other methods.
Collapse
Affiliation(s)
- Anderson M B Silva
- Departamento de Física, Universidade Federal de Sergipe, Marechal Rondon, S/N, 49100-000, São Cristovão, SE, Brazil.
| | - Daniel S Rodrigues
- Departamento de Física, Universidade Federal de Sergipe, Marechal Rondon, S/N, 49100-000, São Cristovão, SE, Brazil
| | - Patrícia L Antonio
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN/CNEN-SP, Av. Prof. Lineu Preste, 2242, 05508-000, São Paulo, SP, Brazil
| | - Danilo O Junot
- Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro UERJ, Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro, RJ, Brazil
| | - Linda V E Caldas
- Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, IPEN/CNEN-SP, Av. Prof. Lineu Preste, 2242, 05508-000, São Paulo, SP, Brazil
| | - Divanizia N Souza
- Departamento de Física, Universidade Federal de Sergipe, Marechal Rondon, S/N, 49100-000, São Cristovão, SE, Brazil
| |
Collapse
|
26
|
Zhang T, Wang L, Wang J, Wang Z, Gupta M, Guo X, Zhu Y, Yiu YC, Hui TKC, Zhou Y, Li C, Lei D, Li KH, Wang X, Wang Q, Shao L, Chu Z. Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate. Nat Commun 2023; 14:2507. [PMID: 37130871 PMCID: PMC10154296 DOI: 10.1038/s41467-023-38178-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
The growing prevalence of counterfeit products worldwide poses serious threats to economic security and human health. Developing advanced anti-counterfeiting materials with physical unclonable functions offers an attractive defense strategy. Here, we report multimodal, dynamic and unclonable anti-counterfeiting labels based on diamond microparticles containing silicon-vacancy centers. These chaotic microparticles are heterogeneously grown on silicon substrate by chemical vapor deposition, facilitating low-cost scalable fabrication. The intrinsically unclonable functions are introduced by the randomized features of each particle. The highly stable signals of photoluminescence from silicon-vacancy centers and light scattering from diamond microparticles can enable high-capacity optical encoding. Moreover, time-dependent encoding is achieved by modulating photoluminescence signals of silicon-vacancy centers via air oxidation. Exploiting the robustness of diamond, the developed labels exhibit ultrahigh stability in extreme application scenarios, including harsh chemical environments, high temperature, mechanical abrasion, and ultraviolet irradiation. Hence, our proposed system can be practically applied immediately as anti-counterfeiting labels in diverse fields.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jing Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Zhongqiang Wang
- Dongguan Institute of Opto-Electronics, Peking University, Dongguan, China
| | - Madhav Gupta
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yau Chuen Yiu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Primemax Biotech Limited, Hong Kong, China
| | | | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Can Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dangyuan Lei
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Kwai Hei Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
| | - Xinqiang Wang
- Dongguan Institute of Opto-Electronics, Peking University, Dongguan, China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Qi Wang
- Dongguan Institute of Opto-Electronics, Peking University, Dongguan, China.
| | - Lei Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Liang SY, Liu YF, Ji ZK, Xia H. Femtosecond Laser Ablation of Quantum Dot Films toward Physical Unclonable Multilevel Fluorescent Anticounterfeiting Labels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10986-10993. [PMID: 36692254 DOI: 10.1021/acsami.2c16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Femtosecond laser ablation (FsLA) technology has been demonstrated to achieve programmable ablation and removal of diverse materials with high precision. Owing to the cross-scale and digital processing characteristics, the FsLA technology has attracted increasing interest. However, the moderate repeatability of FsLA limits its application in the fabrication of advanced micro-/nanostructures due to the nonidentity of each laser pulse and fluctuation of environment. Fortunately, moderate repeatability combined with programmable ablation and high precision perfectly matches with the technical requirements of a physical unclonable fluorescent anticounterfeiting label. Herein, we applied FsLA to quantum dot (QD) films to fabricate a physical unclonable multilevel fluorescent anticounterfeiting label. Visual Jilin University logos, quick response (QR) codes, microlines, and microholes have been achieved for the multilevel anticounterfeiting functions. Of particular significance, the microholes with a macroidentical and microidentifiable geometry guarantee the physical unclonable functions (PUFs). Moreover, the fluorescent anticounterfeiting label is compatible with deep learning algorithms that facilitate authentication to be convenient and accurate. This work shows a fantastic future potential to be a core anticounterfeiting technique for commercial products and drugs.
Collapse
Affiliation(s)
- Shu-Yu Liang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yue-Feng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhi-Kun Ji
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hong Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
28
|
Avram D, Colbea C, Patrascu AA, Istrate MC, Teodorescu V, Tiseanu C. Up-conversion emission in transition metal and lanthanide co-doped systems: dimer sensitization revisited. Sci Rep 2023; 13:2165. [PMID: 36750635 PMCID: PMC9905471 DOI: 10.1038/s41598-023-28583-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Lanthanide (Ln) co-doped transition metal (TM) upconversion (UC) co-doped systems are being intensively investigated for their exciting applications in photonics, bioimaging, and luminescence thermometry. The presence of TM, such as Mo6 + /W6 +, Mn2 +, or Fe3 + determines significant changes in Ln UC emission, such as intensity enhancement, colour modulation, and even the alteration of the photon order. The current mechanism assumes a ground-state absorption/excited-state absorption (ESA/GSA) in TM-Yb dimer followed by direct energy transfer to Er/Tm excited states. We revisit this mechanism by addressing two issues that remain ignored: a dynamical approach to the investigation of the upconversion mechanism and the intrinsic chemical complexity of co-doped TM, Ln systems. To this aim, we employ a pulsed, excitation variable laser across a complete set of UC measurements, such as the emission and excitation spectra and emission decays and analyze multiple grains with transmission electron microscopy (TEM). In the Mo co-doped garnet, the results sustain the co-existence of Mo-free garnet and Mo oxide impurity. In this Mo oxide, the Er upconversion emission properties are fully explained by a relatively efficient sequential Yb to Er upconversion process, with no contribution from Yb-Mo dimer sensitization.
Collapse
Affiliation(s)
- Daniel Avram
- grid.435167.20000 0004 0475 5806National Institute for Laser, Plasma and Radiation Physics, PO Box MG-36, 76900 Bucharest-Magurele, Romania
| | - Claudiu Colbea
- grid.5801.c0000 0001 2156 2780Scientific Center for Optical and Electron Microscopy, ETH Zürich, Zürich, Switzerland
| | - Andrei A. Patrascu
- grid.435167.20000 0004 0475 5806National Institute for Laser, Plasma and Radiation Physics, PO Box MG-36, 76900 Bucharest-Magurele, Romania
| | - Marian Cosmin Istrate
- grid.443870.c0000 0004 0542 4064National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele-Ilfov, Romania ,grid.5100.40000 0001 2322 497XFaculty of Physics, University of Bucharest, 077125 Magurele, Romania
| | - Valentin Teodorescu
- grid.443870.c0000 0004 0542 4064National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele-Ilfov, Romania ,grid.435118.a0000 0004 6041 6841Academy of Romanian Scientists, 050094 Bucharest, Romania
| | - Carmen Tiseanu
- National Institute for Laser, Plasma and Radiation Physics, PO Box MG-36, 76900, Bucharest-Magurele, Romania.
| |
Collapse
|
29
|
Tu L, Wu K, Luo Y, Wang E, Yuan J, Zuo J, Zhou D, Li B, Zhou J, Jin D, Zhang H. Significant Enhancement of the Upconversion Emission in Highly Er 3+ -Doped Nanoparticles at Cryogenic Temperatures. Angew Chem Int Ed Engl 2023; 62:e202217100. [PMID: 36511155 PMCID: PMC10107519 DOI: 10.1002/anie.202217100] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Relatively low efficiency is the bottleneck for the application of lanthanide-doped upconversion nanoparticles (UCNPs). The high-level doping strategy realized in recent years has not improved the efficiency as much as expected. It is argued that cross relaxation (CR) is not detrimental to upconversion. Here we combine theoretical simulation and spectroscopy to elucidate the role of CR in upconversion process of Er3+ highly doped (HD) UCNPs. It is found that if CR is purposively suppressed, upconversion efficiency can be significantly improved. Specifically, we demonstrate experimentally that inhibition of CR by introducing cryogenic environment (40 K) enhances upconversion emission by more than two orders of magnitude. This work not only elucidates the nature of CR and its non-negligible adverse effects, but also provides a new perspective for improving upconversion efficiency. The result can be directly applied to cryogenic imaging and wide range temperature sensing.
Collapse
Grants
- nr. 731.015.206 Dutch Research Council (NWO) in the framework of the Fund New Chemical Innovation
- nr. 675743 NWO TTW perspective project MEDPHOT, EU H2020-MSCA-ITN-ETN Action program, ISPIC
- nr. 777682 EU H2020MSCA-RISE-2017 Action program, CANCER
- 20210101148JC,202512JC010475440 Jilin Provincial Department of Science and Technology
- KQTD20170810110913065, 20200925174735005 Shenzhen Science and Technology Program
- 12104179, 62075217, 11874355, 11874354, 61575194, 22172154, 62075215, 51720105015 Natural Science Foundation of China
- Jilin Provincial Department of Science and Technology
- Natural Science Foundation of China
Collapse
Affiliation(s)
- Langping Tu
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin, 130033China
| | - Kefan Wu
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098XHThe Netherlands
| | - Yongshi Luo
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin, 130033China
| | - Enhui Wang
- Key Laboratory of Automobile Materials (Ministry of Education)College of Materials Science and EngineeringJilin UniversityChangchun130025China
| | - Jun Yuan
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098XHThe Netherlands
| | - Jing Zuo
- Key Laboratory of Automobile Materials (Ministry of Education)College of Materials Science and EngineeringJilin UniversityChangchun130025China
| | - Ding Zhou
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin, 130033China
| | - Bin Li
- State Key Laboratory of Luminescence and ApplicationsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunJilin, 130033China
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)Faculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
- UTS-SUSTech Joint Research Centre for Biomedical Materials and DevicesDepartment of Biomedical EngineeringCollege of EngineeringSouthern University of Science and TechnologyShenzhenGuangdong 518055China
| | - Hong Zhang
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098XHThe Netherlands
| |
Collapse
|
30
|
Chen H, Hu H, Sun B, Zhao H, Qie Y, Luo Z, Pan Y, Chen W, Lin L, Yang K, Guo T, Li F. Dynamic Anti-Counterfeiting Labels with Enhanced Multi-Level Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2104-2111. [PMID: 36541836 DOI: 10.1021/acsami.2c17870] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Information encryption is an important means to improve the security of anti-counterfeiting labels. At present, it is still challenging to realize an anti-counterfeiting label with multi-function, high security factor, low production cost, and easy detection and identification. Herein, using inkjet and screen printing technology, we construct a multi-dimensional and multi-level dynamic optical anti-counterfeiting label based on instantaneously luminescent quantum dots and long afterglow phosphor, whose color and luminous intensity varied in response to time. Self-assembled quantum dot patterns with intrinsic fingerprint information endow the label with physical unclonable functions (PUFs), and the information encryption level of the label is significantly improved in view of the information variation in the temporal dimension. Furthermore, the convolutional residual neural networks are used to decode the massive information of PUFs, enabling fast and accurate identification of the anti-counterfeit labels.
Collapse
Affiliation(s)
- Hang Chen
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hailong Hu
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Beichen Sun
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Haobing Zhao
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuan Qie
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhiqi Luo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Youjiang Pan
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Wei Chen
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lihua Lin
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Kaiyu Yang
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tailiang Guo
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, People's Republic of China
| |
Collapse
|
31
|
Kim J, Park HS, Ahn Y, Cho YJ, Shin HH, Hong KS, Nam SH. Universal Emission Characteristics of Upconverting Nanoparticles Revealed by Single-Particle Spectroscopy. ACS NANO 2023; 17:648-656. [PMID: 36565305 DOI: 10.1021/acsnano.2c09896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Upconverting nanoparticles (UCNPs) have been extensively investigated for nanophotonics and biomedical applications. However, establishing a unified view of their emission characteristics to elucidate the underlying photophysics and expand the application fields of these materials is a great challenge due to their sophisticated internal energy transfer and lack of standardized single-particle spectroscopy (SPS) platform. Here, we present an SPS technique called multiband single-particle irradiance-dependent imaging (multiband SPIDI). We demonstrate that the emission characteristics of Yb3+,Tm3+-doped UCNPs are universal for three emission bands over a wide range of irradiance and dependent on the Tm3+ doping concentration, indicating that the number of emitted photons of each band is proportional to the number of activator ions and is dependent on the number of absorbed photons and the activator interionic distance. We also suggest a cooperative energy transfer upconversion (CETU) mechanism for transition to a higher-energy state through photon accumulation. For a single UCNP, the emission at 800 nm is detectable at an ultralow irradiance of 4.9 W cm-2; moreover, that at 450 nm is measurable at 98 W cm-2, based on the optimal concentration. These findings based on the multiband SPIDI platform can provide insights into the interionic energy transfer by studying irradiance-dependent steady-state dynamics to achieve brighter UCNPs and their broader applications.
Collapse
Affiliation(s)
- Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju28119, Republic of Korea
| | - Yun Ahn
- Department of Physics, Chungbuk National University, Cheongju, Chungbuk28644, Republic of Korea
| | - Youn-Joo Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju28119, Republic of Korea
| | - Hyeon Ho Shin
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul02841, Republic of Korea
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon34134, Republic of Korea
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
| |
Collapse
|
32
|
Wang M, Ming X, Cao J, Yang L, Wang Z, Ma C, Zhang M, Liu W. Multimodal and Multicolor Anti-counterfeiting Realized in CaCd 2Ga 2Ge 3O 12 with a Single Activator of Mn 2. Inorg Chem 2023; 62:75-86. [PMID: 36574356 DOI: 10.1021/acs.inorgchem.2c02917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The continuously growing significance of information security and authentication has put forward many new requirements and challenges for modern luminescent materials and anti-counterfeiting technologies. Recently, luminescent materials have attracted much attention in this field owing to their legibility, repeatability, multicolor, and multiple stimuli-responsive nature. In this work, the efficient multicolor and multimodal luminescence material CaCd2Ga2Ge3O12:Mn2+ was successfully designed and synthesized using the strategy of single-doped Mn2+ in a single matrix. Also, we combined the morphology, crystal structure, energy band calculation, luminescence properties, and trap analysis to study the optical data storage capacity of CaCd2Ga2Ge3O12:Mn2+. Interestingly, in the presence of the 254 nm UV lamp, the sample can exhibit a tunable emission color from bule to cyan to yellow by increasing the dopant concentration of Mn2+. Also, under the afterglow and thermoluminescence luminescence modes, it presented strong yellow emission centered at 558 nm. Based on the advantage of multiple tunable luminescence, samples were made into anti-counterfeiting ink and were used to print four optical devices through the screen printing technology. The results show that the material has excellent multicolor anti-counterfeiting properties under the three luminescence modes, which has contributed to the development of many kinds of luminescent anti-counterfeiting materials for security purposes.
Collapse
Affiliation(s)
- Mi Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.,Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, China
| | - Xinxing Ming
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Jiajia Cao
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Liwei Yang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Zhenbin Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.,Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, China
| | - Cunhua Ma
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.,Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, China
| | - Mingjin Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.,Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, China
| | - Weisheng Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China.,Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining 810016, China.,Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Wei T, Shi Y, Wang X, Xu Y, Cui J, Wu L, Zhang B, Wang J, Han Y. Realization of multiple luminescence manipulation in tungsten bronze oxides based on photochromism toward real-time, reversible, and fast processes. Inorg Chem Front 2023. [DOI: 10.1039/d3qi00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Multiple luminescence manipulation in tungsten bronze oxides based on photochromism.
Collapse
Affiliation(s)
- Tong Wei
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Yongchao Shi
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Xiangyu Wang
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Yingqiu Xu
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Jiao Cui
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Liwei Wu
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Borui Zhang
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Jiawei Wang
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
| | - Yingdong Han
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
34
|
Wang Y, Zhou S, Sun F, Hu P, Zhong W, Fu J. In-depth insight into the Yb 3+ effect in NaErF 4-based host sensitization upconversion: a double-edged sword. NANOSCALE 2022; 14:16156-16169. [PMID: 36269343 DOI: 10.1039/d2nr01828d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
NaErF4 is the most extensively studied host for self-sensitized upconversion (UC), and Yb3+ is the most commonly used energy absorber. It has been reported that the red luminescence of Er3+ can be enhanced by introducing Yb3+ into the NaErF4 host lattice, where Yb3+ ions serve as trapping centers to confine the excitation energy. Also, it has been pointed out that the Yb3+ doping in the shell of NaErF4-hosted core-shell nanocrystals can further improve the red emission intensity. Conversely, it can be argued that the Yb3+ doping in the shell always results in the luminescence quenching of the NaErF4 core. These imply that the impact of Yb3+ on NaErF4-based host-sensitized UC is rather complicated and must be probed deeply. In this study, we thoroughly discussed the effect of Yb3+ located in the core/shell on the NaErF4-based host sensitization UC and afforded the related mechanism interpretations. In the NaErF4 core nanocrystals, the green-dominated UCL presented an enhancement on increasing the concentration of the Yb3+ dopant owing to the promoted energy harvesting for luminescence. Furthermore, the emission properties of NaErF4:10%Yb shelled with diverse inert layers were also investigated, and the intensity difference of these core-inert shell nanoparticles could be explained by the lattice mismatch and shell thickness. In NaErF4:10%Yb@NaYF4:Yb with variable Yb3+ doping in the shell, the red-dominated UCL was generally weakened with more Yb3+ localized in the shell, which was ascribed to the competition of energy pooling and energy dissipation of Yb3+ in the outer layer. Therefore, Yb3+ ions wield a two-sided influence (termed a "double-edged sword") on the UC emissions of the Er3+ host. Additionally, we demonstrated the application potential of such UCNPs in water sensing and high-level anti-counterfeiting. This work offers an in-depth insight into the UC mechanism of Yb3+-doped NaErF4 nanocrystals and inspires the engineering of novel luminescent materials with distinguished properties.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - Shuai Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - Fuyao Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - Po Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - Wei Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| |
Collapse
|
35
|
Yin X, Xu W, Zhu G, Ji Y, Xiao Q, Dong X, He M, Cao B, Zhou N, Luo X, Guo L, Dong B. Towards highly efficient NIR II response up-conversion phosphor enabled by long lifetimes of Er 3. Nat Commun 2022; 13:6549. [PMID: 36319657 PMCID: PMC9626601 DOI: 10.1038/s41467-022-34350-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
The second near-infrared (NIR II) response photon up-conversion (UC) materials show great application prospects in the fields of biology and optical communication. However, it is still an enormous challenge to obtain efficient NIR II response materials. Herein, we develop a series of Er3+ doped ternary sulfides phosphors with highly efficient UC emissions under 1532 nm irradiation. β-NaYS2:Er3+ achieves a visible UC efficiency as high as 2.6%, along with high brightness, spectral stability of lights illumination and temperature. Such efficient UC is dominated by excited state absorption, accompanied by the advantage of long lifetimes (4I9/2, 9.24 ms; 4I13/2, 30.27 ms) of excited state levels of Er3+, instead of the well-recognized energy transfer UC between sensitizer and activator. NaYS2:Er3+ phosphors are further developed for high-performance underwater communication and narrowband NIR photodetectors. Our findings suggest a novel approach for developing NIR II response UC materials, and simulate new applications, eg., simultaneous NIR and visible optical communication.
Collapse
Affiliation(s)
- Xiumei Yin
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Wen Xu
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Ge Zhu
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Yanan Ji
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Qi Xiao
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Xinyao Dong
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Ming He
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Baosheng Cao
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Na Zhou
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Xixian Luo
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| | - Lin Guo
- grid.64939.310000 0000 9999 1211School of Chemistry and Environment, Beijing University of Aeronautics & Astronautics, 37 Xueyuan Road, Beijing, 100191 China
| | - Bin Dong
- grid.440687.90000 0000 9927 2735School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 China
| |
Collapse
|
36
|
Fang M, Lu H, Li R, Wei W, Mao L, Christoforo T, Chen G, Guan Y, Pei X, Chen Q, Tian M, Wei Y. Triphenylamine derivatives functionalized di-ureasil hybrids for information encipherment. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
37
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
38
|
Zhou T, Jiang X. Modulating luminescence and assembled shapes of ultrasmall Au nanoparticles towards hierarchical information encryption. Chem Sci 2022; 13:12107-12113. [PMID: 36349114 PMCID: PMC9601247 DOI: 10.1039/d2sc04031j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 08/26/2023] Open
Abstract
Because of their intriguing luminescence performances, ultrasmall Au nanoparticles (AuNPs) and their assemblies hold great potential in diverse applications, including information security. However, modulating luminescence and assembled shapes of ultrasmall AuNPs to achieve a high-security level of stored information is an enduring and significant challenge. Herein, we report a facile strategy using Pluronic F127 as an adaptive template for preparing Au nanoassemblies (AuNAs) with controllable structures and tunable luminescence to realize hierarchical information encryption through modulating excitation light. The template guided ultrasmall AuNP in situ growth in the inner core and assembled these ultrasmall AuNPs into intriguing necklace-like or spherical nanoarchitectures. By regulating the type of ligand and reductant, their emission was also tunable, ranging from green to the second near-infrared (NIR-II) region. The excitation-dependent emission could be shifted from red to NIR-II, and this significant shift was considerably distinct from the small range variation of conventional nanomaterials in the visible region. In virtue of tunable luminescence and controllable structures, we expanded their potential utility to hierarchical information encryption, and the true information could be decrypted in a two-step sequential manner by regulating excitation light. These findings provided a novel pathway for creating uniform nanomaterials with desired functions for potential applications in information security.
Collapse
Affiliation(s)
- Tingyao Zhou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology 1088 Xueyuan Road, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology 1088 Xueyuan Road, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
39
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
40
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209378. [DOI: 10.1002/anie.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyan Zhu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Xiaohan Wang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
41
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyan Zhu
- Fudan University chemistry department Room 631, Advanced materials lab,2205 songhu road, yangpu district,Shanghai 200438 Shanghai CHINA
| | | | | | - Fan Zhang
- Fudan University Chemistry 2205 Songhu Road 200438 Shanghai CHINA
| |
Collapse
|
42
|
Zhang L, Bai J, Ma T, Yin J, Jiang X. Intelligent Surface with Multi-dimensional Information Enabled by a Dual Responsive Pattern with Fluorescence and Wrinkle. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luzhi Zhang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Bai
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianjiao Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
43
|
Du K, Feng J, Gao X, Zhang H. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:222. [PMID: 35831282 PMCID: PMC9279428 DOI: 10.1038/s41377-022-00871-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 06/10/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have aroused extraordinary interest due to the unique physical and chemical properties. Combining UCNPs with other functional materials to construct nanocomposites and achieve synergistic effect abound recently, and the resulting nanocomposites have shown great potentials in various fields based on the specific design and components. This review presents a summary of diverse designs and synthesis strategies of UCNPs-based nanocomposites, including self-assembly, in-situ growth and epitaxial growth, as well as the emerging applications in bioimaging, cancer treatments, anti-counterfeiting, and photocatalytic fields. We then discuss the challenges, opportunities, and development tendency for developing UCNPs-based nanocomposites.
Collapse
Affiliation(s)
- Kaimin Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023, Dalian, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
44
|
Chen W, Song Y, Zhang W, Deng R, Zhuang Y, Xie RJ. Time-Gated Imaging of Latent Fingerprints with Level 3 Details Achieved by Persistent Luminescent Fluoride Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28230-28238. [PMID: 35687348 DOI: 10.1021/acsami.2c06097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of X-ray-charged persistent luminescence (PersL) in fluoride nanoparticles enables these materials to emit photons without real-time excitation, which provides a great possibility for the development of new luminescent nanotechnologies. In this work, we developed NaLuF4:Mn nanoparticles with intense green PersL and functionalized surfaces and accordingly achieved time-gated imaging of latent fingerprints (LFPs) with Level 3 details. These surface-modified NaLuF4:Mn nanoparticles exhibited near-spherical morphology, long-lasting emission for several hours, appropriate trap depth distribution, and tight chemical bonding with amino acids from fingerprints, thus greatly improving the accuracy of LFP imaging in a variety of environments. The developed NaLuF4:Mn PersL nanoparticles are expected to find broad applications in the fields of LFP imaging and in vivo biological imaging.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, China
| | - Yifan Song
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, China
| | - Wenxing Zhang
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yixi Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, China
- Baotou Research Institute of Rare Earths, Huanghe-Avenue 36, Baotou 014060, China
| | - Rong-Jun Xie
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, China
- Baotou Research Institute of Rare Earths, Huanghe-Avenue 36, Baotou 014060, China
| |
Collapse
|
45
|
Zha S, Wong K, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022; 11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 000000 P. R. China
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| | - Angelo H. All
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| |
Collapse
|
46
|
Wang J, Zhou B, Hu X, Ma J, Jin M, Wang L, Jiang W. Binary temporary photo-response of ZnSe:Mn/ZnS quantum dots for visible time-domain anti-counterfeiting. NANOSCALE 2022; 14:7015-7024. [PMID: 35471453 DOI: 10.1039/d2nr00946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of multi-level anti-counterfeiting techniques is of great significance for economics and security issues, particularly the newly emerged temporal-domain techniques based on lifetime coding. However, the intricate reading methods required to obtain temporal-level information are inevitably cumbersome and expensive, which greatly limits the practical applications of these techniques. Herein, we report a novel, unclonable time-domain anti-counterfeiting strategy for the first time, which is achieved using photo-responsive ZnSe:Mn/ZnS quantum dots (QDs) with dynamic luminescence and can be authenticated by the naked eye. Through introducing electron traps and constructing cascade electron channels in the QDs, the binary temporary photo-response is tailored and manifested as distinctive response rates between the band-edge and Mn 4T1-6A1 transition emissions. Impressively, the generated photo-response is instantaneous, is capable of delayed recovery, and can be visibly detected under UV irradiation. The prospective use of colorless, nontoxic aqueous-phase ZnSe:Mn/ZnS QDs provides a new idea and important guidance for developing the next generation of multi-level anti-counterfeiting techniques without the need for complex time-gated decoding instrumentation.
Collapse
Affiliation(s)
- Jiancheng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Beiying Zhou
- Institute of Functional Materials, Donghua University, Shanghai 201620, China.
| | - Xiaobo Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jiaxin Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meizhen Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Institute of Functional Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
47
|
The High-Energy Milling Preparation and Spectroscopic Characterization of Rare-Earth Ions Doped BaY2F8 Nanoparticles. CRYSTALS 2022. [DOI: 10.3390/cryst12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BaY2F8 nanoparticles (NPs), doped with Yb3+ and Er3+ ions, were successfully produced by high-energy ball-milling. High-quality monoclinic single crystals (sp. gr. C2/m, a = 0.6969(3), b = 1.0502(1), c = 0.4254(1) nm, β = 99.676°) grown from the melt by the Bridgman technique were used as raw materials. The prepared nanocrystals were comprehensively studied by X-ray diffraction analysis, transmission electron microscopy, and optical spectroscopy. The fabrication possibility of single-phase irregular shaped Ba(Y0.964Yb0.030Er0.006)2F8 NPs in the size range of 20–100 nm with a milling duration of 10 h at 600 rpm is demonstrated. Ba(Y0.964Yb0.030Er0.006)2F8 NPs show intense luminescence by both up- (λ = 540 and 650 nm) and down-conversion (λ = 1540 nm) mechanisms upon IR excitation (λ = 980 nm). A qualitative comparison of the spectroscopic characteristics of the produced Ba(Y0.964Yb0.030Er0.006)2F8 NPs with the initial bulk crystal and the widely used up-conversion β-Na1.5(Y1.17Yb0.3Er0.03)F6 NPs is presented. Experimental data offer great opportunities of the Ba(Y0.964Yb0.030Er0.006)2F8 NPs applications in nanophotonics and biotechnology. High-energy ball-milling has potential as a versatile method for the scalable production of fluoride nanoparticles.
Collapse
|
48
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
49
|
Shi Y, Yuan M, Li J, Li F, Cui W, Jiao X, Peng Y, Huang Y, Chen L. Upconversion Properties and Temperature-Sensing Behaviors of Alkaline-Earth-Metal Scandate Nanocrystals Doped with Er 3+/Yb 3+ Ions in the Presence of Alkali Ions (Li +, Na +, and K +). Inorg Chem 2022; 61:5309-5317. [PMID: 35316029 DOI: 10.1021/acs.inorgchem.1c04041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temperature-sensing media based on the fluorescence intensity ratio (FIR) of upconversion materials that suffer from low sensitivity owing to the small energy gap still have a need for new compounds with strong upconversion luminescence (UCL). In this work, a series of MSc2O4:Er3+/Yb3+ (M = Mg, Ca, Sr, and Ba) nanocrystals were prepared by a hydrothermal method using NaOH alkaline solution. The structure, morphology, and UCL characteristics of materials were investigated, and the red UCL of the CaSc2O4:Er3+/Yb3+ sample was dramatically enhanced by a factor of ∼12, ∼23, and ∼2000 compared with SrSc2O4, MgSc2O4, and BaSc2O4 samples, respectively. By adjusting alkali ions (Li+, Na+, K+), the UCL intensities of CaSc2O4:Er3+/Yb3+ and SrSc2O4:Er3+/Yb3+ samples were further improved, especially in the presence of Li+ ions. Excellent temperature-sensing behaviors are realized for CaSc2O4:Er3+/Yb3+ and SrSc2O4:Er3+/Yb3+ samples in the presence of Li+ ions, in which the maximum absolute sensitivity SA values are about 0.0041 and 0.0036 K-1 at 600 K and the corresponding relative sensitivity SR values are expressed as 1197/T2 and 1129/T2 (the current optimal SR = 1289/T2), respectively. The intense UCL and excellent SA and SR values indicate that CaSc2O4:Er3+/Yb3+ and SrSc2O4:Er3+/Yb3+ materials are promising candidates for application in high-temperature sensors working under 980 nm excitation.
Collapse
Affiliation(s)
- Yuchao Shi
- School of Materials Science and Engineering, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China
| | - Meijuan Yuan
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China.,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China
| | - Jing Li
- School of Materials Science and Engineering, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China
| | - Fen Li
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China
| | - Wenhao Cui
- School of Materials Science and Engineering, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China
| | - Xuechen Jiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230039, China
| | - Yaru Peng
- School of Materials Science and Engineering, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China
| | - Yuxin Huang
- School of Materials Science and Engineering, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China
| | - Li Chen
- School of Materials Science and Engineering, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China.,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yan'an Street, Changchun 130012, Jilin, China
| |
Collapse
|
50
|
Meng Z, Wu Y, Ren J, Li X, Zhang S, Wu S. Upconversion Nanoparticle-Integrated Bilayer Inverse Opal Photonic Crystal Film for the Triple Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12562-12570. [PMID: 35230796 DOI: 10.1021/acsami.1c25059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical anticounterfeiting plays a vital role in information security because it can be recognized by the naked eye and is difficult to imitate. Herein, a hydrophilic modified upconversion nanoparticle (M-UCNP)-integrated bilayer inverse opal photonic crystal (IOPC) film was designed in which the luminescent M-UCNPs were deposited on the surface of the optimized bilayer structure with double photonic stop bands. The structure which can modulate light to produce structural colors can also enhance the upconversion luminescence (UCL) to improve the anticounterfeiting effect synergistically. On the one hand, the reflection colors from green to blue were observed in the specular angles on the front (540-layer) of the film. Meanwhile, the scattering colors under nonspecular angles from red to blue on the back (808-layer) appeared in the natural light. On the other hand, the bilayer structure in which the 808-layer functions as a "secondary excitation source" to improve the intensity of the excitation light on M-UCNPs and the 540-layer reflects the emission light of the M-UCNPs to enhance the UCL intensity endows the film with good night vision ability. Finally, the dual-mode structural colors and enhanced UCL of the patterned film work together to realize triple anticounterfeiting in banknotes.
Collapse
Affiliation(s)
- Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|