1
|
Zhu H, Sun D, Zhang S, Chen J, Xu Z. Rhodium-Catalyzed Pyridylation of Alkynamides with Pyridylboronic Acids: A Route to Functionalized Enamides. Chemistry 2024; 30:e202401830. [PMID: 39037552 DOI: 10.1002/chem.202401830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
The catalytic direct hydroarylation of alkynamides is a highly efficient approach for accessing functionalized trisubstituted arylalkenes with amide groups. Herein, we report a rhodium-catalyzed pyridylation of alkynamides with pyridylboronic acids, producing a variety of primary, secondary, and tertiary enamides with high yields (up to 94 %). This reaction demonstrates broad tolerance towards various alkyl and aryl functional groups, providing convenient access to a diverse array of alkenylpyridine derivatives. To demonstrate potential applications in late-stage hydropyridylation, we synthesized α,β-unsaturated ketones, aldehydes, and esters with high yields from the pyridylation product of Weinreb amides. This indirect expansion of the substrate scope enhances the practicality of this strategy. Additionally, the α,β-unsaturated ketone obtained can be further reduced to yield a chiral alcohol with a 99 % ee, further demonstrating the versatility and potential utility of this approach.
Collapse
Affiliation(s)
- Huilong Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dingcheng Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shengxiang Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junning Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Hou YJ, Wang YL, Chang J, Chai GL. Chiral Binaphthol-Catalyzed Enantioselective Conjugate Addition of Alkenyl and Arylboronic Acids to α,β-Unsaturated Cyclic N-Sulfonyl Ketimines. J Org Chem 2024; 89:13137-13149. [PMID: 39223946 DOI: 10.1021/acs.joc.4c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The chiral binaphthol-catalyzed enantioselective conjugate addition of alkenylboronic acids and heteroarylboronic acids to cyclic N-sulfonyl ketimines is reported, providing the 1,4-addition products in high yields and moderate to excellent enantioselectivities (up to >99% ee). This mild, scalable catalytic system exhibits high efficiency and broad substrate scopes. Additionally, arylboronic acids were viable nucleophiles under more forcing conditions.
Collapse
Affiliation(s)
- Ya-Jing Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang-Ling Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Kozhummal H, Das SK, Cooze CJC, Lundgren RJ. Enantio- and Z-Selective δ-Hydroarylation of Aryl-Substituted 1,3-Dienes via Rh-Catalyzed Conjugate Addition. Angew Chem Int Ed Engl 2024; 63:e202406102. [PMID: 38753742 DOI: 10.1002/anie.202406102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Metal-catalyzed enantioselective conjugate arylations of electron-poor alkenes are highly selective processes for C(sp2)-C(sp3) bond formation. δ-Selective hydroarylations of electron-poor 1,3-dienes are less well developed and reactions that deliver high enantioselectivity while giving single alkene isomer products are elusive. Here we report the Rh-catalyzed δ-arylation of aryl-substituted 1,3-dienes that gives nearly exclusive Z-1,4-addition products (generally with >95 : 5 positional and geometrical selectivity). This remote functionalization provides access to chiral diarylated alkenes from readily available precursors poised for further functionalization, including in the synthesis of bioactive molecules. Mechanistic studies suggest that protonolysis of a Rh-allyl intermediate generated by diene insertion into a Rh-aryl is the turnover limiting step and occurs by an inner-sphere proton transfer pathway.
Collapse
Affiliation(s)
- Hima Kozhummal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Sandip Kumar Das
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
4
|
Huang W, Wang C, Zhang Y, Qu J, Chen Y. Nickel-catalyzed acylation of vinylpyridine with alkylzincs under 1 atm CO. Org Biomol Chem 2024; 22:2380-2383. [PMID: 38436087 DOI: 10.1039/d4ob00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A nickel-catalyzed acylation of vinylpyridines with CO at atmospheric pressure is reported, allowing for an expedient approach to synthesize β-acyl pyridine derivatives with high regio- and chemoselectivity. The electron-withdrawing property of pyridine plays pivotal roles in activating the alkenyl group, thereby facilitating this carbonylative process. In addition to vinylpyridines, other alkenylheterocycles such as thiazole and quinoline were also suitable for this method.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yetong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| |
Collapse
|
5
|
Tyagi S, Mishra R, Mazumder A, Mazumder R, Singh G, Pandey P. Synthesis, in silico screening, and biological evaluation of novel pyridine congeners as anti-epileptic agents targeting AMPA (α-amino-3-hydroxy-5-methylisoxazole) receptors. Chem Biol Drug Des 2024; 103:e14498. [PMID: 38453241 DOI: 10.1111/cbdd.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The research involves the synthesis of a series of new pyridine analogs 5(i-x) and their evaluation for anti-epileptic potential using in silico and in vivo models. Synthesis of the compounds was accomplished by using the Vilsmeier-Haack reaction principle. AutoDock 4.2 was used for their in silico screening against AMPA (-amino-3-hydroxy-5-methylisoxazole) receptor (PDB ID:3m3f). For in vivo testing, the maximal electroshock seizure (MES) model was used. The physicochemical, pharmacokinetic, drug-like, and drug-score features of all synthesized compounds were assessed using the online Swiss ADME and Protein Plus software. The in silico results showed that all the synthesized compounds 5(i-x) had 1-3 interactions and affinities ranging from -6.5 to -8.0 kJ/mol with the targeted receptor compared to the binding affinities of the standard drug phenytoin and the original ligand of the target (P99), which were -7.6 and -6.8 kJ/mol, respectively. In vivo study results showed that the compound 5-Carbamoyl-2-formyl-1-[2-(4-nitrophenyl)-2-oxo-ethyl]-pyridinium gave 60% protection against epileptic seizures compared to 59% protection afforded by regular phenytoin. All of them met Lipinski's rule of five and had drug-likeness and drug score values of 0.55 and 0.8, respectively, making them chemically and functionally like phenytoin. According to the findings of the studies, the synthesized derivatives have the potential to be employed as a stepping stone in the development of novel anti-epileptic drugs.
Collapse
Affiliation(s)
- Shivani Tyagi
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Gurvinder Singh
- School of Pharmaceutical Science, Lovely Professional University, Phagwara, Punjab, India
| | - Pratibha Pandey
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
- Noida Institute of Engineering and Technology, Biotechnology Department, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Tyagi S, Mishra R, Mazumder R, Mazumder A. Current Market Potential and Prospects of Copper-based Pyridine Derivatives: A Review. Curr Mol Med 2024; 24:1111-1123. [PMID: 37496249 DOI: 10.2174/1566524023666230726160056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 07/28/2023]
Abstract
Nicotine, minodronic acid, nicotinamide (niacin), zolpidem, zolimidine, and other pyridine-based chemicals play vital roles in medicine and biology. Pyridinecontaining drugs are widely available on the market to treat a wide range of human ailments. As a result of these advances, pyridine research is continually expanding, and there are now higher expectations for how it may aid in the treatment of numerous ailments. This evaluation incorporates data acquired from sources, like PubMed, to provide a thorough summary of the approved drugs and bioactivity data for compounds containing pyridine. Most of the reactions discussed in this article will provide readers with a deeper understanding of various pyridine-related examples, which is necessary for the creation of copper catalysis-based synthetic processes that are more accessible, secure, environmentally friendly, and practical, and that also have higher accuracy and selectivity. This paper also discusses significant innovations in the multi-component copper-catalyzed synthesis of N-heterocycles (pyridine), with the aim of developing precise, cost-effective, and environmentally friendly oxygenation and oxidation synthetic methods for the future synthesis of additional novel pyridine base analogs. Therefore, the review article will serve as a novel platform for researchers investigating copperbased pyridine compounds.
Collapse
Affiliation(s)
- Shivani Tyagi
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| |
Collapse
|
7
|
Long T, Zeng YL, Dong ZH, Li S, Zhan J, Zeng SM, Qiu JL, Chu WD, Liu QZ. Nickel-Catalyzed Three-Component Alkylarylation of Alkenyl N-Heteroarenes. Org Lett 2023; 25:8344-8349. [PMID: 37962415 DOI: 10.1021/acs.orglett.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A nickel-catalyzed three-component alkylarylation of alkenyl N-heteroarenes with α-bromocarboxylates and aryl boronic acids is reported. The protocol provides a new method to access a variety of N-heteroarene substituted diarylalkanes in moderate to good yields. It features mild reaction conditions, cheap nickel catalyst, readily available substrates, and broad substrate scope.
Collapse
Affiliation(s)
- Teng Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Ya-Li Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Shu Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jie Zhan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Sheng-Min Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jia-Li Qiu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| |
Collapse
|
8
|
Yang JS, Lu K, Li CX, Zhao ZH, Zhang FM, Zhang XM, Tu YQ. NiH-Catalyzed Regio- and Enantioselective Hydroalkylation for the Synthesis of β- or γ-Branched Chiral Aromatic N-Heterocycles. J Am Chem Soc 2023; 145:22122-22134. [PMID: 37749771 DOI: 10.1021/jacs.3c07919] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A nickel hydride-catalyzed regio- and enantioselective hydroalkylation reaction was developed to give access to a library of chiral β- or γ-branched aromatic N-heterocycles. This intriguing asymmetric transformation features excellent selectivities, step- and atom-economies, and generating two kinds of chiral products through one synthetic strategy. Furthermore, the possible reaction mechanism was extensively investigated using numerous control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Ju-Song Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chen-Xiao Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zu-Hang Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Minhang, China
| |
Collapse
|
9
|
Goka B, Klumpp DA. Synthesis of warfarin analogs: conjugate addition reactions of alkenyl-substituted N-heterocycles with 4-hydroxycoumarin and related substrates. RSC Adv 2023; 13:4754-4756. [PMID: 36760300 PMCID: PMC9900474 DOI: 10.1039/d3ra00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
We have developed a procedure for the Michael addition of 4-hydroxycoumarins to vinyl-substituted N-heterocycles. The chemistry is also suitable for thiocoumarins and quinolinones. A mechanism is proposed involving nucleophilic attack at the vinyl-group of the protonated N-heterocycle.
Collapse
Affiliation(s)
- Benjamin Goka
- Department of Chemistry and Biochemistry, Northern Illinois University DeKalb Illinois 60115 USA
| | - Douglas A. Klumpp
- Department of Chemistry and Biochemistry, Northern Illinois UniversityDeKalbIllinois60115USA
| |
Collapse
|
10
|
Pan ZZ, Pan D, Li JH, Xue XS, Yin L. Copper(I)-Catalyzed Asymmetric Conjugate Addition of 1,4-Dienes to β-Substituted Alkenyl Azaarenes. J Am Chem Soc 2023; 145:1749-1758. [PMID: 36623207 DOI: 10.1021/jacs.2c10688] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiral azaarene compounds are extremely important due to their prevalence in pharmaceutical ingredients. Herein, an array of chiral molecules bearing azaaryl groups is synthesized in moderate-to-excellent yields with moderate-to-excellent Z/E ratios, high dr, and excellent enantioselectivity by a copper(I)-catalyzed asymmetric conjugate addition of 1,4-dienes to (E)-β-substituted alkenyl azaarenes. The reaction is carried out under mild proton-transfer conditions, which enjoys very high atom economy. Moreover, the reaction features a broad substrate scope on (E)-α,β-unsaturated azaarenes as various azaarenes are well tolerated, such as benzothiazole, thiazole, N-methyl-benzimidazole, benzoxazole, quinoline, isoquinoline, pyrimidine, pyrazine, and triazine. Interestingly, the reaction with (Z)-α,β-unsaturated azaarenes affords the same products in excellent results but with a reversed absolute configuration. DFT calculations indicate that the C-C bond-forming nucleophilic addition is a Z-/E- and enantio-selectivities-determining step and provides a rationale for the origin of selectivities. At last, the synthetic utilities of the product are showcased by several transformations, including olefin metathesis, [4 + 2] cyclization, [2 + 1] cyclization, and cleavage of the benzothiazole ring.
Collapse
Affiliation(s)
- Zhi-Zhou Pan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Deng Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jia-Heng Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 P. R. China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
11
|
Quinoxaline-specific enantioselective sulfa-michael reaction catalyzed by chiral phosphoric acid. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Guo J, Xie Y, Lai ZM, Weng J, Chan ASC, Lu G. Enantioselective Hydroalkylation of Alkenylpyridines Enabled by Merging Photoactive Electron Donor–Acceptor Complexes with Chiral Bifunctional Organocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Guo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ying Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ze-Min Lai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
13
|
Zurro M, Ge L, Harutyunyan SR. Catalytic Access to 4-(sec-Alkyl)Anilines via 1,6-Conjugate Addition of Grignard Reagents to in Situ Generated aza- p-Quinone Methides. Org Lett 2022; 24:6686-6691. [PMID: 36053069 PMCID: PMC9486948 DOI: 10.1021/acs.orglett.2c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/30/2022]
Abstract
The synthesis of aniline derivatives, common building blocks in many pharmaceuticals, agrochemicals, dyes or polymers, has been limited to reactions based on benzene-toluene-xylene derivatives (BTX) due to their ample availability. Despite the large number of existing methodologies, the synthesis of chiral 4-(sec-alkyl)anilines has not been accomplished so far. In this work, a tandem strategy based on the generation of a reactive aza-p-quinone methide (aza-p-QM) intermediate followed by Cu(I)-catalyzed addition of Grignard reagents has been developed.
Collapse
Affiliation(s)
- Mercedes Zurro
- Stratingh
Institute for Chemistry University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Luo Ge
- Stratingh
Institute for Chemistry University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R. Harutyunyan
- Stratingh
Institute for Chemistry University of Groningen Institution Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
14
|
Du P, Yin Y, Shi D, Mao K, Yu Q, Zhao J. Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study. Molecules 2022; 27:molecules27175694. [PMID: 36080460 PMCID: PMC9457550 DOI: 10.3390/molecules27175694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
This study investigates the mechanism of metal-free pyridine phosphination with P(OEt)3, PPh3, and PAr2CF3 using density functional theory calculations. The results show that the reaction mechanism and rate-determining step vary depending on the phosphine and additive used. For example, phosphination of pyridine with P(OEt)3 occurs in five stages, and ethyl abstraction is the rate-determining step. Meanwhile, 2-Ph-pyridine phosphination with PPh3 is a four-step reaction with proton abstraction as the rate-limiting step. Energy decomposition analysis of the transition states reveals that steric hindrance in the phosphine molecule plays a key role in the site-selective formation of the phosphonium salt. The mechanism of 2-Ph-pyridine phosphination with PAr2CF3 is similar to that with PPh3, and analyses of the effects of substituents show that electron-withdrawing groups decreased the nucleophilicity of the phosphine, whereas aryl electron-donating groups increased it. Finally, TfO− plays an important role in the C–H fluoroalkylation of pyridine, as it brings weak interactions.
Collapse
Affiliation(s)
- Pan Du
- School of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Yuhao Yin
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Dai Shi
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Kexin Mao
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Qianyuan Yu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Jiyang Zhao
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Correspondence:
| |
Collapse
|
15
|
Mao B, Chen ZW, Wang JF, Zhang CH, Du ZQ, Yu CM. Enantioselective Conjugate Addition of Alkenyl Trifluoroborates to Alkenyl-Substituted Benzimidazoles Catalyzed by Chiral Binaphthols. Org Lett 2022; 24:6588-6593. [PMID: 36053071 DOI: 10.1021/acs.orglett.1c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enantioselective organocatalytic conjugate alkenylation of β-substituted alkenyl benzimidazoles afforded β-stereogenic 2-alkyl benzimidazole derivatives in excellent enantioselectivities. Chiral binaphthols were effective catalysts for promoting the nucleophilic addition of bench-stable alkenyl trifluoroborate salts under mild conditions, expanding their applications by utilizing C=N-containing azaarenes as activating groups. The synthetic utility of this strategy is demonstrated by conversions into several useful enantiomerically enriched benzimidazole building blocks.
Collapse
Affiliation(s)
- Bin Mao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Wei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jian-Fei Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chao-Huan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qian Du
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chuan-Ming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
16
|
Wang Y, Yin J, Li Y, Yuan X, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Conjugate Addition of Alkene-Derived Nucleophiles to Alkenyl-Substituted Heteroarenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - JianJun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Zhu H, Xing J, Wu C, Wang C, Yao W, Dou X. Rhodium-Catalyzed Chemodivergent Pyridylation of Alkynes with Pyridylboronic Acids. Org Lett 2022; 24:4896-4901. [PMID: 35770903 DOI: 10.1021/acs.orglett.2c01718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pyridylation of alkynes with pyridylboronic acids is realized under rhodium catalysis. Chemodivergent pyridylation products, including alkenylpyridines produced via the hydropyridylation pathway and cyclopenta[c]pyridines produced via the pyridylation/cyclization pathway, were selectively produced by fine-tuning the reaction conditions. A mechanistic study revealed that 1,4-rhodium migration to the pyridine ring was involved as the key step in the chemodivergent synthesis.
Collapse
Affiliation(s)
- Huilong Zhu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Junhao Xing
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chenhong Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
18
|
Novel Copper(II) Complexes with Dipinodiazafluorene Ligands: Synthesis, Structure, Magnetic and Catalytic Properties. Molecules 2022; 27:molecules27134072. [PMID: 35807331 PMCID: PMC9268630 DOI: 10.3390/molecules27134072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The reactions of CuX2 (X = Cl, Br) with dipinodiazafluorenes yielded four new complexes [CuX2L1]2 (X = Cl (1), Br (2), L1 = (1R,3R,8R,10R)-2,2,9,9-Tetramethyl-3,4,7,8,9,10-hexahydro-1H-1,3:8,10-dimethanocyclopenta [1,2-b:5,4-b’]diquinolin-12(2H)-one) and [(CuX2)2L2]n (X = Cl (3), Br (4), L2 = (1R,3R,8R,10R,1’R,3’R,8’R,10’R)-2,2,2’,2’,9,9,9’,9’-Octamethyl-1,1’,2,2’,3,3’,4,4’,7,7’,8,8’,9,9’,10,10’-hexadecahydro-1,3:1’,3’:8,10:8’,10’-tetramethano-12,12’-bi(cyclopenta [1,2-b:5,4-b’]diquinolinylidene). The complexes were characterized by IR and EPR spectroscopy, HR-ESI-MS and elemental analysis. The crystal structures of compounds 1, 2 and 4 were determined by X-ray diffraction (XRD) analysis. Complexes 1–2 have a monomeric structure, while complex 4 has a polymeric structure due to additional coordinating N,N sites in L2. All complexes contain a binuclear fragment {Cu2(μ-X)2×2} (X = Cl, Br) in their structures. Each copper atom has a distorted square-pyramidal coordination environment formed by two nitrogen atoms and three halogen atoms. The Cu-Nax distance is elongated compared to Cu-Neq. The EPR spectra of compounds 1–4 in CH3CN confirm their paramagnetic nature due to the d9 electronic configuration of the copper(II) ion. The magnetic properties of all compounds were studied by the method of static magnetic susceptibility. For complexes 1 and 2, the effective magnetic moments are µeff ≈ 1.87 and 1.83 µB (per each Cu2+ ion), respectively, in the temperature range 50–300 K, which are close to the theoretical spin value (1.73 µB). Ferromagnetic exchange interactions between Cu(II) ions inside {Cu2(μ-X)2X2} (X = Cl, Br) dimers (J/kB ≈ 25 and 31 K for 1 and 2, respectively) or between dimers (θ′ ≈ 0.30 and 0.47 K for 1 and 2, respectively) were found at low temperatures. For compounds 3 and 4, the magnetic susceptibility is well described by the Curie–Weiss law in the temperature range 1.77–300 K with µeff ≈ 1.72 and 1.70 µB for 3 and 4, respectively, and weak antiferromagnetic interactions (θ ≈ −0.4 K for 3 and −0.65 K for 4). Complexes 1–4 exhibit high catalytic activity in the oxidation of alkanes and alcohols with peroxides. The maximum yield of cyclohexane oxidation products reached 50% (complex 3). Based on the data on the study of regio- and bond-selectivity, it was concluded that hydroxyl radicals play a decisive role in the oxidation reaction. The initial products in reactions with alkanes are alkyl hydroperoxides.
Collapse
|
19
|
Chu WD, Wang YT, Liang TT, Long T, Zuo JY, Shao Z, Chen B, He CY, Liu QZ. Enantioselective [3 + 2] Cycloaddition of Vinylcyclopropanes with Alkenyl N-Heteroarenes Enabled by Palladium Catalysis. Org Lett 2022; 24:3965-3969. [PMID: 35639837 DOI: 10.1021/acs.orglett.2c01326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first catalytic enantioselective [3 + 2] cycloaddition reaction between vinylcyclopropanes and alkenyl N-heteroarenes in the presence of LiBr and a Pd(0)/SEGPHOS complex was developed. LiBr plays a key role in improving the reactivity of alkenyl N-heteroarenes as a mild Lewis acid.
Collapse
Affiliation(s)
- Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P.R. China
| | - Ya-Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Tian-Tian Liang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Teng Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jia-Yu Zuo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, P.R. China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| |
Collapse
|
20
|
Zhou J, Li T, Li Q, Zheng P, Yang S, Chai J, Zhu M. Insight into the Effects of Chiral Diphosphine Ligands on the Structure and Optical Properties of the Au 24Cd 2 Nanocluster. Inorg Chem 2022; 61:6493-6499. [PMID: 35436089 DOI: 10.1021/acs.inorgchem.2c00246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction of chiral ligands has been regarded as an effective strategy to obtain nanoclusters with optical purity. However, how the chiral ligands work is still unclear due to the lack of structural comparison between racemic nanoclusters and the corresponding optically active ones. In this work, three structurally related Au24Cd2 nanoclusters, including one racemic and two homochiral nanoclusters, were synthesized, and their crystal structures were characterized using single-crystal X-ray crystallography (SC-XRD). Based on their crystal structures, the origin of the chirality in Au24Cd2 was found to be the twist of the kernel and the chiral arrangement of the metal-ligand surface. Au24Cd2 protected with chiral ligands exhibits a more twisted kernel than the racemic one. Therefore, the chirality of chiral diphosphine was found to transfer from the ligands to the metal-ligand interface and then to the metal core, inducing its distortion to produce enhanced chirality. In addition, the optical properties including optical absorption and circular dichroism of these structurally related Au24Cd2 nanoclusters were compared.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Tianrong Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Peisen Zheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
21
|
Liu ZC, Yue WJ, Yin L. Copper(I)-Catalyzed Asymmetric Synthesis of Unnatural α-Amino Acid Derivatives and Related Peptides Containing γ-(aza)Aryls. J Org Chem 2021; 87:399-405. [PMID: 34908422 DOI: 10.1021/acs.joc.1c02426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral α-amino acids are indispensable compounds in organic chemistry, biochemistry, and medicinal chemistry. Herein, by means of copper(I)-catalyzed asymmetric conjugate addition of derivatives of glycine, serine, cysteine, and β-amino-alanine to electron-deficient vinyl(aza)arenes, an array of novel unnatural chiral α-amino acid derivatives bearing a γ-(aza)aryl is prepared in moderate to high yields with high enantioselectivity. Various azaarenes, such as pyrimidine, 1,3,5-triazine, pyridine, pyridine-N-oxide, quinoline, quinoxaline, purine, benzo[d]imidazole, benzothiazole, and 1,2,4-oxadiazole, are well tolerated. Moreover, the electrophiles are nicely extended to (Z)/(E) mixtures of electron-deficient butadienylpyridine and benzene, which are transformed to the corresponding chiral α-amino acid derivatives in high (E)/(Z) ratio and high enantioselectivity. More importantly, the present methodology is successfully applied in the catalytic asymmetric functionalization of Schiff bases derived from peptides, which finally afforded a new chiral tripeptide bearing two electron-deficient azaaryls and one electron-deficient aryl in high total yield with high diastereo- and excellent enantioselectivities.
Collapse
Affiliation(s)
- Zong-Ci Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen-Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
22
|
Chang X, Yang Y, Shen C, Xue KS, Wang ZF, Cong H, Tao HY, Chung LW, Wang CJ. β-Substituted Alkenyl Heteroarenes as Dipolarophiles in the Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides Empowered by a Dual Activation Strategy: Stereoselectivity and Mechanistic Insight. J Am Chem Soc 2021; 143:3519-3535. [DOI: 10.1021/jacs.0c12911] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuhong Yang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Chong Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Kun-Shan Xue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
23
|
Wasfy N, Doan B, Rasheed F, Fishlock D, Orellana A. Palladium-Catalyzed, Mild Dehydrogenation of 4-Alkylpyridines. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nour Wasfy
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Brian Doan
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Faizan Rasheed
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Dan Fishlock
- Process Chemistry and Catalysis, Synthetic Molecule Technical Development, F. Hoffmann-La Roche Ltd. Basel 4070, Switzerland
| | - Arturo Orellana
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
24
|
Wang S, Liu Z, Yue W, Yin L. Copper(I)‐Catalyzed Asymmetric Vinylogous Aldol‐Type Reaction of Allylazaarenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Si‐Qing Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zong‐Ci Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wen‐Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
25
|
Wang S, Liu Z, Yue W, Yin L. Copper(I)‐Catalyzed Asymmetric Vinylogous Aldol‐Type Reaction of Allylazaarenes. Angew Chem Int Ed Engl 2021; 60:4604-4608. [DOI: 10.1002/anie.202013207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Si‐Qing Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zong‐Ci Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wen‐Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
26
|
Jia F, Zhang B. Mechanistic insights into aryl nickel-catalyzed benzylic dehydrogenation of electron-deficient heteroarenes by using DFT calculations. NEW J CHEM 2021. [DOI: 10.1039/d1nj03119h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By using DFT calculations, we have revealed a novel γ-hydride elimination mechanism.
Collapse
Affiliation(s)
- Feiyun Jia
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Bo Zhang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| |
Collapse
|
27
|
Facchetti G, Fusè M, Pecoraro T, Nava D, Rimoldi I. New sp 3 diphosphine-based rhodium catalysts for the asymmetric conjugate addition of aryl boronic acids to 3-azaarylpropenones. NEW J CHEM 2021. [DOI: 10.1039/d1nj03634c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The new diphosphine (R,R)-EPHOS featuring a stereogenic sp3 carbon combined with a C2 axial chirality was applied to the Rh-catalyzed asymmetric 1,4 addition of aryl boronic acids to 3-azaarylpropenones, affording the product with e.e. up to 94%.
Collapse
Affiliation(s)
- Giorgio Facchetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tania Pecoraro
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, 20156, Italy
| | - Donatella Nava
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
28
|
Lv L, Li CJ. Ruthenium catalyzed β-selective alkylation of vinylpyridines with aldehydes/ketones via N 2H 4 mediated deoxygenative couplings. Chem Sci 2020; 12:2870-2875. [PMID: 34164052 PMCID: PMC8179402 DOI: 10.1039/d0sc06586b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Umpolung (polarity reversal) tactics of aldehydes/ketones have greatly broadened carbonyl chemistry by enabling transformations with electrophilic reagents and deoxygenative functionalizations. Herein, we report the first ruthenium-catalyzed β-selective alkylation of vinylpyridines with both naturally abundant aromatic and aliphatic aldehyde/ketones via N2H4 mediated deoxygenative couplings. Compared with one-electron umpolung of carbonyls to alcohols, this two-electron umpolung strategy realized reductive deoxygenation targets, which were not only applicable to the regioselective alkylation of a broad range of 2/4-alkene substituted pyridines, but also amenable to challenging 3-vinyl and steric-embedded internal pyridines as well as their analogous heterocyclic structures. Ruthenium-catalyzed β-selective alkylation of vinylpyridines with carbonyls (both aromatic and aliphatic ketones/aldehydes) via N2H4 mediated deoxygenative couplings was achieved.![]()
Collapse
Affiliation(s)
- Leiyang Lv
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Center for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
29
|
Ge L, Zurro M, Harutyunyan SR. Copper-Catalyzed Addition of Grignard Reagents to in situ Generated Indole-Derived Vinylogous Imines. Chemistry 2020; 26:16277-16280. [PMID: 32960461 PMCID: PMC7918645 DOI: 10.1002/chem.202004232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 11/30/2022]
Abstract
Chiral indole derivatives are ubiquitous motifs in pharmaceuticals and alkaloids. Herein, the first protocol for catalytic asymmetric conjugate addition of Grignard reagents to various sulfonyl indoles, offering a straightforward approach for the synthesis of chiral 3‐sec‐alkyl‐substituted indoles in high yields and enantiomeric ratios is presented. This methodology makes use of a chiral catalyst based on copper phosphoramidite complexes and in situ formation of vinylogous imine intermediates.
Collapse
Affiliation(s)
- Luo Ge
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Mercedes Zurro
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
30
|
Han J, Kim J, Lee J, Kim Y, Lee SY. Boron Lewis Acid-Catalyzed Hydrophosphinylation of N-Heteroaryl-Substituted Alkenes with Secondary Phosphine Oxides. J Org Chem 2020; 85:15476-15487. [PMID: 33179920 DOI: 10.1021/acs.joc.0c02246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the boron-catalyzed hydrophosphinylation of N-heteroaryl-substituted alkenes with secondary phosphine oxides that furnishes various phosphorus-containing N-heterocycles. This process proceeds under mild conditions and enables the introduction of a phosphorus atom into multisubstituted alkenylazaarenes. The available mechanistic data can be explained by a reaction pathway wherein the C-P bond is created by the reaction between the activated alkene (by coordination to a boron catalyst) and the phosphorus(III) nucleophile (in tautomeric equilibrium with phosphine oxide).
Collapse
Affiliation(s)
- Jimin Han
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jongwon Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehoo Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Younghun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
31
|
Kulish K, Boldrini C, Castiñeira Reis M, Pérez JM, Harutyunyan SR. Lewis Acid Promoted Dearomatization of Naphthols. Chemistry 2020; 26:15843-15846. [PMID: 32960476 PMCID: PMC7894535 DOI: 10.1002/chem.202003392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
Two-step dearomative functionalization of naphthols promoted by Lewis acids and copper(I) catalysis was developed. Initially, Lewis acid complexation inverted the electronic properties of the ring and established an equilibrium with the dearomatized counterpart. Subsequent trapping of the dearomatized intermediate with organometallics as well as organophosphines was demonstrated and provided the corresponding dearomatized products.
Collapse
Affiliation(s)
- Kirill Kulish
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Cosimo Boldrini
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Juana M Pérez
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
32
|
Stentzel MR, Klumpp DA. Michael Addition with an Olefinic Pyridine: Organometallic Nucleophiles and Carbon Electrophiles. J Org Chem 2020; 85:12740-12746. [PMID: 32883082 DOI: 10.1021/acs.joc.0c00823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugate addition reactions of trans-1,2-di(2-pyridyl)ethylene have been studied. This substrate reacts with organolithium nucleophiles, and the resulting anionic intermediates may be trapped by proton or various carbonyl-based electrophiles. It is suggested that the dipyridyl structure stabilizes the intermediate carbanion, allowing the Michael adduct to be captured by an added electrophile.
Collapse
Affiliation(s)
- Michael R Stentzel
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb, Illinois 60115, United States
| | - Douglas A Klumpp
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb, Illinois 60115, United States
| |
Collapse
|
33
|
Guo Y, Harutyunyan SR. Copper-catalysed alkylation of heterocyclic acceptors with organometallic reagents. Beilstein J Org Chem 2020; 16:1006-1021. [PMID: 32509032 PMCID: PMC7237809 DOI: 10.3762/bjoc.16.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Copper-catalysed asymmetric C–C bond-forming reactions using organometallic reagents have developed into a powerful tool for the synthesis of complex molecules with single or multiple stereogenic centres over the past decades. Among the various acceptors employed in such reactions, those with a heterocyclic core are of particular importance because of the frequent occurrence of heterocyclic scaffolds in the structures of chiral natural products and bioactive molecules. Hence, this review focuses on the progress made over the past 20 years for heterocyclic acceptors.
Collapse
Affiliation(s)
- Yafei Guo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
34
|
Liu XY, Tan YX, Wang X, Xu H, Wang YH, Tian P, Lin GQ. Nickel(II)-Catalyzed Addition of Aryl-, Alkenyl-, and Alkylboronic Acids to Alkenylazaarenes. Org Lett 2020; 22:4038-4042. [PMID: 32379460 DOI: 10.1021/acs.orglett.0c01425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A nickel(II)-catalyzed addition of aryl-, alkenyl-, and alkylboronic acids to alkenylazaarenes was presented. This reaction exhibited high efficiency (up to 93% yield), a broad substrate scope (seven types of heterocycles), and good functional group compatibility. The resulting products can be further transformed to many useful building blocks. Finally, the preliminary studies suggested that the adjacent N atom of the heterocycles was essential for the high reactivity.
Collapse
Affiliation(s)
- Xing-Yu Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun-Xuan Tan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hao Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
35
|
Zhu H, Yin L, Chang Z, Wang Y, Dou X. Rhodium-Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Carbonyl-Activated Alkenyl Azaarenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huilong Zhu
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Long Yin
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Zhiqian Chang
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Yuhan Wang
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| | - Xiaowei Dou
- Department of Chemistry, School of Science; China Pharmaceutical University; Nanjing 211198 People's Republic of China
| |
Collapse
|
36
|
Abstract
The activation of pyridinium salts with electron-withdrawing heterocycles enables an iridium-catalyzed reductive hydroxymethylation reaction to proceed smoothly, facilitating the preparation of useful 3D heteroaryl-substituted functionalized piperidines. The methodology is used to prepare 3-hydroxymethylated analogues of pharmaceutical agents. Mechanistically, formaldehyde acts as both a hydride donor and the electrophile, leading to the formation of two new carbon-hydrogen bonds and one new carbon-carbon bond under relatively mild conditions.
Collapse
Affiliation(s)
- Hamish B Hepburn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
37
|
Zhang P, Huang D, Newhouse TR. Aryl-Nickel-Catalyzed Benzylic Dehydrogenation of Electron-Deficient Heteroarenes. J Am Chem Soc 2020; 142:1757-1762. [PMID: 31847514 DOI: 10.1021/jacs.9b12706] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This manuscript describes the first practical benzylic dehydrogenation of electron-deficient heteroarenes, including pyridines, pyrazines, pyrimidines, pyridazines, and triazines. This transformation allows for the efficient benzylic oxidation of heteroarenes to afford heterocyclic styrenes by the action of nickel catalysis paired with an unconventional bromothiophene oxidant.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520-8107 , United States
| | - David Huang
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520-8107 , United States
| | - Timothy R Newhouse
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
38
|
Zeng YL, Chen B, Wang YT, He CY, Mu ZY, Du JY, He L, Chu WD, Liu QZ. Copper-catalyzed asymmetric silyl addition to alkenyl-substituted N-heteroarenes. Chem Commun (Camb) 2020; 56:1693-1696. [PMID: 31939945 DOI: 10.1039/c9cc08910a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Asymmetric conjugate addition of PhMe2SiBPin to a wide range of N-heteroaryl alkenes proceeded in the presence of a copper catalyst coordinated with a chiral phosphoramidite ligand to afford useful β-silyl N-heteroarenes in high yields and ees.
Collapse
Affiliation(s)
- Ya-Li Zeng
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Bo Chen
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Ya-Ting Wang
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Zi-Yuan Mu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Long He
- College of Chemistry and Materials Engineering
- Guiyang University
- Guiyang 550005
- China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| |
Collapse
|
39
|
Vargová D, Pérez JM, Harutyunyan SR, Šebesta R. Trapping of chiral enolates generated by Lewis acid promoted conjugate addition of Grignard reagents to unreactive Michael acceptors by various electrophiles. Chem Commun (Camb) 2019; 55:11766-11769. [PMID: 31513177 DOI: 10.1039/c9cc05041h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we show trapping of chiral enolates with carbenium ions, Michael acceptors, and bromine. Silyl ketene aminals, disilyl acetals, and aza-enolates were obtained via Lewis acid mediated enantioselective conjugate addition of Grignard reagents to unsaturated amides, carboxylic acids and alkenyl heterocycles.
Collapse
Affiliation(s)
- Denisa Vargová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynska dolina, Ilkovičova 6, 84215 Bratislava, Slovakia. and Stratingh Institute for Chemistry, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Juana M Pérez
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Radovan Šebesta
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynska dolina, Ilkovičova 6, 84215 Bratislava, Slovakia.
| |
Collapse
|
40
|
Guo Y, Harutyunyan SR. Highly Enantioselective Catalytic Addition of Grignard Reagents to N-Heterocyclic Acceptors. Angew Chem Int Ed Engl 2019; 58:12950-12954. [PMID: 31257687 PMCID: PMC6772156 DOI: 10.1002/anie.201906237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/23/2019] [Indexed: 01/14/2023]
Abstract
General methods to prepare chiral N‐heterocyclic molecular scaffolds are greatly sought after because of their significance in medicinal chemistry. Described here is the first general catalytic methodology to access a wide variety of chiral 2‐ and 4‐substituted tetrahydro‐quinolones, dihydro‐4‐pyridones, and piperidones with excellent yields and enantioselectivities, utilizing a single catalyst system.
Collapse
Affiliation(s)
- Yafei Guo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
41
|
Guo Y, Harutyunyan SR. Highly Enantioselective Catalytic Addition of Grignard Reagents to N‐Heterocyclic Acceptors. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yafei Guo
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Syuzanna R. Harutyunyan
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
42
|
Mao W, Xue W, Irran E, Oestreich M. Kupferkatalysierte regio‐ und enantioselektive Addition von Silicium‐Grignard‐Reagenzien an durch Azaarylgruppen aktivierte Alkene. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenbin Mao
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Weichao Xue
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Elisabeth Irran
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| |
Collapse
|
43
|
Mao W, Xue W, Irran E, Oestreich M. Copper‐Catalyzed Regio‐ and Enantioselective Addition of Silicon Grignard Reagents to Alkenes Activated by Azaaryl Groups. Angew Chem Int Ed Engl 2019; 58:10723-10726. [DOI: 10.1002/anie.201905934] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Wenbin Mao
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Weichao Xue
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Elisabeth Irran
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
44
|
Formica M, Sorin G, Farley AJM, Díaz J, Paton RS, Dixon DJ. Bifunctional iminophosphorane catalysed enantioselective sulfa-Michael addition of alkyl thiols to alkenyl benzimidazoles. Chem Sci 2018; 9:6969-6974. [PMID: 30210771 PMCID: PMC6124915 DOI: 10.1039/c8sc01804a] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
The first enantioselective sulfa-Michael addition of alkyl thiols to alkenyl benzimidazoles, enabled by a bifunctional iminophosphorane (BIMP) organocatalyst, is described. The iminophosphorane moiety of the catalyst provides the required basicity to deprotonate the thiol nucleophile while the chiral scaffold and H-bond donor control facial selectivity. The reaction is broad in scope with respect to the thiol and benzimidazole reaction partners with the reaction proceeding in up to 98% yield and 96 : 4 er.
Collapse
Affiliation(s)
- Michele Formica
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , UK .
| | - Geoffroy Sorin
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , UK .
- Faculté des Sciences Pharmaceutiques et Biologiques , Unité CNRS UMR 8638 COMETE , Paris Descartes University , Sorbonne Paris Cité , 4 Avenue de l'Observatoire , 75270 Paris Cedex 06 , France
| | - Alistair J M Farley
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , UK .
| | - Jesús Díaz
- Departamento de Química Orgánica , Universidad de Extremadura , Avda. Universidad , s/n, 10003 Cáceres , Spain
| | - Robert S Paton
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA
| | - Darren J Dixon
- Department of Chemistry , Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , UK .
| |
Collapse
|