1
|
Li W, Gong Q, Zhu W, Ali T, Yu ZJ, Li S, Yu X. AMPA receptor potentiation alleviates NLRP3 knockout-induced fear generalization in mice. Biochem Biophys Res Commun 2024; 722:150074. [PMID: 38805785 DOI: 10.1016/j.bbrc.2024.150074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome enhances the extinction of contextual fear memory, which is attributed to its role in neuronal and synaptic dysregulation, concurrent with neurotransmitter function disturbances. This study aimed to determine whether NLRP3 plays a role in generalizing fear via the inflammatory axis. We established the NLRP3 KO mice model, followed by behavioral and biochemical analyses. The NLRP3 KO mice displayed impaired fear generalization, lower neuroinflammation levels, and dysregulated neurotransmitter function. Additionally, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not the inhibition of NMDA or 5-HT2C receptors, resulted in fear generalization in NLRP3 KO mice because TAT-GluA2 3Y, but not SB242084 and D-cycloserine, treated blocked NLRP3 deprivation effects on fear generalization. Thus, global knockout of NLRP3 is associated with aberrant fear generalization, possibly through AMPA receptor signaling.
Collapse
Affiliation(s)
- Weifen Li
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China; State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Qichao Gong
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wenhui Zhu
- Southern Medical University, Nanfang Hospital, Department of Laboratory Medicine, Guangzhou, 510515, Guangdong, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
2
|
Cai J, Chen H, Wang R, Zhong Q, Chen W, Zhang M, He R, Chen W. Membrane Damage and Metabolic Disruption as the Mechanisms of Linalool against Pseudomonas fragi: An Amino Acid Metabolomics Study. Foods 2024; 13:2501. [PMID: 39200428 PMCID: PMC11353791 DOI: 10.3390/foods13162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Pseudomonas fragi (P. fragi) is usually detected in low-temperature meat products, and seriously threatens food safety and human health. Therefore, the study investigated the antibacterial mechanism of linalool against P. fragi from membrane damage and metabolic disruption. Results from field-emission transmission electron microscopy (FETEM) and atomic force microscopy (AFM) showed that linalool damage membrane integrity increases surface shrinkage and roughness. According to Fourier transform infrared (FTIR) spectra results, the components in the membrane underwent significant changes, including nucleic acid leakage, carbohydrate production, protein denaturation and modification, and fatty acid content reduction. The data obtained from amino acid metabolomics indicated that linalool caused excessive synthesis and metabolism of specific amino acids, particularly tryptophan metabolism and arginine biosynthesis. The reduced activities of glucose 6-phosphate dehydrogenase (G6PDH), malate dehydrogenase (MDH), and phosphofructokinase (PFK) suggested that linalool impair the respiratory chain and energy metabolism. Meanwhile, genes encoding the above enzymes were differentially expressed, with pfkB overexpression and zwf and mqo downregulation. Furthermore, molecular docking revealed that linalool can interact with the amino acid residues of G6DPH, MDH and PFK through hydrogen bonds. Therefore, it is hypothesized that the mechanism of linalool against P. fragi may involve cell membrane damage (structure and morphology), disturbance of energy metabolism (TCA cycle, EMP and HMP pathway) and amino acid metabolism (cysteine, glutamic acid and citrulline). These findings contribute to the development of linalool as a promising antibacterial agent in response to the food security challenge.
Collapse
Affiliation(s)
- Jiaxin Cai
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Haiming Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Runqiu Wang
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Qiuping Zhong
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Weijun Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Ming Zhang
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Rongrong He
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Wenxue Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| |
Collapse
|
3
|
McNeil MB, Cook GM, Krause KL. Dual transcriptional inhibition of glutamate and alanine racemase is synergistic in Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001484. [PMID: 39115544 PMCID: PMC11309781 DOI: 10.1099/mic.0.001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.
Collapse
Affiliation(s)
- Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Kurt L Krause
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Jia H, Chen Y, Chen Y, Liu R, Zhang Q, Bartlam M. Structure and function of the pyridoxal 5'-phosphate-dependent (PLP) threonine deaminase IlvA1 from Pseudomonas aeruginosa PAO1. Biochem Biophys Res Commun 2024; 704:149710. [PMID: 38417345 DOI: 10.1016/j.bbrc.2024.149710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
IlvA1, a pyridoxal phosphate-dependent (PLP) enzyme, catalyzes the deamination of l-threonine and l-serine to yield 2-ketobutyric acid or pyruvate. To gain insights into the function of IlvA1, we determined its crystal structure from Pseudomonas aeruginosa to 2.3 Å. Density for a 2-ketobutyric acid product was identified in the active site and a putative allosteric site. Activity and substrate binding assays confirmed that IlvA1 utilizes l-threonine, l-serine, and L-allo-threonine as substrates. The enzymatic activity is regulated by the end products l-isoleucine and l-valine. Additionally, the efficiency of d-cycloserine and l-cycloserine inhibitors on IlvA1 enzymatic activity was examined. Notably, site-directed mutagenesis confirmed the active site residues and revealed that Gln165 enhances the enzyme activity, emphasizing its role in substrate access. This work provides crucial insights into the structure and mechanism of IlvA1 and serves as a starting point for further functional and mechanistic studies of the threonine deaminase in P. aeruginosa.
Collapse
Affiliation(s)
- Haizhu Jia
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China; Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Institute of Materia Medica, Beijing, 100050, China
| | - Yujing Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China; College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
6
|
Becker R, Pederick JL, Dawes EG, Bruning JB, Abell AD. Structure-guided design and synthesis of ATP-competitive N-acyl-substituted sulfamide d-alanine-d-alanine ligase inhibitors. Bioorg Med Chem 2023; 96:117509. [PMID: 37948922 DOI: 10.1016/j.bmc.2023.117509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
d-Alanine-d-alanine ligase (Ddl) catalyses the ATP-dependent formation of d-Ala-d-Ala, a critical component in bacterial cell wall biosynthesis and is a validated target for new antimicrobial agents. Here, we describe the structure-guided design, synthesis, and evaluation of ATP-competitive N-acyl-substituted sulfamides 27-36, 42, 46, 47 as inhibitors of Staphylococcus aureus Ddl (SaDdl). A crystal structure of SaDdl complexed with ATP and d-Ala-d-Ala (PDB: 7U9K) identified ATP-mimetic 8 as an initial scaffold for further inhibitor design. Evaluation of 8 in SaDdl enzyme inhibition assays revealed the ability to reduce enzyme activity to 72 ± 8 % (IC50 = 1.6 mM). The sulfamide linker of 8 was extended with 2-(4-methoxyphenyl)ethanol to give 29, to investigate further interactions with the d-Ala pocket of SaDdl, as predicted by molecular docking. This compound reduced enzyme activity to 89 ± 1 %, with replacement of the 4-methoxyphenyl group in 29 with alternative phenyl substituents (27, 28, 31-33, 35, 36) failing to significantly improve on this (80-89 % remaining enzyme activity). Exchanging these phenyl substituents with selected heterocycles (42, 46, 47) did improve activity, with the most active compound (42) reducing SaDdl activity to 70 ± 1 % (IC50 = 1.7 mM), which compares favourably to the FDA-approved inhibitor d-cycloserine (DCS) (IC50 = 0.1 mM). To the best of our knowledge, this is the first reported study of bisubstrate SaDdl inhibitors.
Collapse
Affiliation(s)
- Rouven Becker
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; Institute for Photonics and Advanced Sensing, (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jordan L Pederick
- Institute for Photonics and Advanced Sensing, (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Edward G Dawes
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing, (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; Institute for Photonics and Advanced Sensing, (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
7
|
Rambaher MH, Zdovc I, Glavač NK, Gobec S, Frlan R. Mur ligase F as a new target for the flavonoids quercitrin, myricetin, and (-)-epicatechin. J Comput Aided Mol Des 2023; 37:721-733. [PMID: 37796382 PMCID: PMC10618370 DOI: 10.1007/s10822-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
MurC, D, E, and F are ATP-dependent ligases involved in the stepwise assembly of the tetrapeptide stem of forming peptidoglycan. As highly conserved targets found exclusively in bacterial cells, they are of significant interest for antibacterial drug discovery. In this study, we employed a computer-aided molecular design approach to identify potential inhibitors of MurF. A biochemical inhibition assay was conducted, screening twenty-four flavonoids and related compounds against MurC-F, resulting in the identification of quercitrin, myricetin, and (-)-epicatechin as MurF inhibitors with IC50 values of 143 µM, 139 µM, and 92 µM, respectively. Notably, (-)-epicatechin demonstrated mixed type inhibition with ATP and uncompetitive inhibition with D-Ala-D-Ala dipeptide and UM3DAP substrates. Furthermore, in silico analysis using Sitemap and subsequent docking analysis using Glide revealed two plausible binding sites for (-)-epicatechin. The study also investigated the crucial structural features required for activity, with a particular focus on the substitution pattern and hydroxyl group positions, which were found to be important for the activity. The study highlights the significance of computational approaches in targeting essential enzymes involved in bacterial peptidoglycan synthesis.
Collapse
Affiliation(s)
- Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Irena Zdovc
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Gerbičeva ul. 60, Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Rok Frlan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Pederick JL, Woolman JC, Bruning JB. Comparative functional and structural analysis of Pseudomonas aeruginosa d-alanine-d-alanine ligase isoforms as prospective antibiotic targets. FEBS J 2023; 290:5536-5553. [PMID: 37581574 DOI: 10.1111/febs.16932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Pseudomonas aeruginosa is a major human pathogen in the healthcare setting. The emergence of multi-drug-resistant and extensive drug-resistant P. aeruginosa is of great concern, and clearly indicates that new alternatives to current first-line antibiotics are required in the future. Inhibition of d-alanine-d-alanine production presents as a promising avenue as it is a key component in the essential process of cell wall biosynthesis. In P. aeruginosa, d-alanine-d-alanine production is facilitated by two isoforms, d-alanine-d-alanine ligase A (PaDdlA) and d-alanine-d-alanine ligase B (PaDdlA), but neither enzyme has been individually characterised to date. Here, we present the functional and structural characterisation of PaDdlA and PaDdlB, and assess their potential as antibiotic targets. This was achieved using a combination of in vitro enzyme-activity assays and X-ray crystallography. The former revealed that both isoforms effectively catalyse d-alanine-d-alanine production with near identical efficiency, and that this is effectively disrupted by the model d-alanine-d-alanine ligase inhibitor, d-cycloserine. Next, each isoform was co-crystallised with ATP and either d-alanine-d-alanine or d-cycloserine, allowing direct comparison of the key structural features. Both isoforms possess the same structural architecture and share a high level of conservation within the active site. Although residues forming the d-alanine pocket are completely conserved, the ATP-binding pocket possesses several amino acid substitutions resulting in a differing chemical environment around the ATP adenine base. Together, these findings support that the discovery of dual PaDdlA/PaDdlB competitive inhibitors is a viable approach for developing new antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Jordan L Pederick
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| | - Jessica C Woolman
- School of Biological Sciences, The University of Adelaide, SA, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| |
Collapse
|
9
|
Proj M, Hrast M, Bajc G, Frlan R, Meden A, Butala M, Gobec S. Discovery of a fragment hit compound targeting D-Ala:D-Ala ligase of bacterial peptidoglycan biosynthesis. J Enzyme Inhib Med Chem 2023; 38:387-397. [PMID: 36446617 PMCID: PMC9718554 DOI: 10.1080/14756366.2022.2149745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bacterial resistance is an increasing threat to healthcare systems, highlighting the need for discovering new antibacterial agents. An established technique, fragment-based drug discovery, was used to target a bacterial enzyme Ddl involved in the biosynthesis of peptidoglycan. We assembled general and focused fragment libraries that were screened in a biochemical inhibition assay. Screening revealed a new fragment-hit inhibitor of DdlB with a Ki value of 20.7 ± 4.5 µM. Binding to the enzyme was confirmed by an orthogonal biophysical method, surface plasmon resonance, making the hit a promising starting point for fragment development.
Collapse
Affiliation(s)
- Matic Proj
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Hrast
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Frlan
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Meden
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Butala
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Ljubljana, Slovenia,CONTACT Stanislav Gobec Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Ljubljana, Askerceva 7, 1000Ljubljana, Slovenia
| |
Collapse
|
10
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
11
|
Italia A, Shaik MM, Peri F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules 2023; 13:999. [PMID: 37371579 PMCID: PMC10296423 DOI: 10.3390/biom13060999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging pharmacological strategies that target major virulence factors of antibiotic-resistant Mycobacterium tuberculosis (Mtb) are presented and discussed. This review is divided into three parts corresponding to structures and functions important for Mtb pathogenicity: the cell wall, the lipoarabinomannan, and the secretory proteins. Within the cell wall, we further focus on three biopolymeric sub-components: mycolic acids, arabinogalactan, and peptidoglycan. We present a comprehensive overview of drugs and drug candidates that target cell walls, envelopes, and secretory systems. An understanding at a molecular level of Mtb pathogenesis is provided, and potential future directions in therapeutic strategies are suggested to access new drugs to combat the growing global threat of antibiotic-resistant Mtb infection.
Collapse
Affiliation(s)
| | | | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (A.I.); (M.M.S.)
| |
Collapse
|
12
|
Vu Q, Nissley DA, Jiang Y, O’Brien EP, Li MS. Is Posttranslational Folding More Efficient Than Refolding from a Denatured State: A Computational Study. J Phys Chem B 2023; 127:4761-4774. [PMID: 37200608 PMCID: PMC10240488 DOI: 10.1021/acs.jpcb.3c01694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Indexed: 05/20/2023]
Abstract
The folding of proteins into their native conformation is a complex process that has been extensively studied over the past half-century. The ribosome, the molecular machine responsible for protein synthesis, is known to interact with nascent proteins, adding further complexity to the protein folding landscape. Consequently, it is unclear whether the folding pathways of proteins are conserved on and off the ribosome. The main question remains: to what extent does the ribosome help proteins fold? To address this question, we used coarse-grained molecular dynamics simulations to compare the mechanisms by which the proteins dihydrofolate reductase, type III chloramphenicol acetyltransferase, and d-alanine-d-alanine ligase B fold during and after vectorial synthesis on the ribosome to folding from the full-length unfolded state in bulk solution. Our results reveal that the influence of the ribosome on protein folding mechanisms varies depending on the size and complexity of the protein. Specifically, for a small protein with a simple fold, the ribosome facilitates efficient folding by helping the nascent protein avoid misfolded conformations. However, for larger and more complex proteins, the ribosome does not promote folding and may contribute to the formation of intermediate misfolded states cotranslationally. These misfolded states persist posttranslationally and do not convert to the native state during the 6 μs runtime of our coarse-grain simulations. Overall, our study highlights the complex interplay between the ribosome and protein folding and provides insight into the mechanisms of protein folding on and off the ribosome.
Collapse
Affiliation(s)
- Quyen
V. Vu
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Daniel A. Nissley
- Department
of Statistics, University of Oxford, Oxford OX1 3LB, U.K.
| | - Yang Jiang
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edward P. O’Brien
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Bioinformatics
and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute
for Computational and Data Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute
for Computational Sciences and Technology, Quang Trung Software City, Tan
Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
13
|
de Oliveira Rossini N, Dos Santos Silva C, Vinicius Bertacine Dias M. The crystal structure of Mycobacterium thermoresistibile MurE ligase reveals the binding mode of the substrate m-diaminopimelate. J Struct Biol 2023; 215:107957. [PMID: 36944394 DOI: 10.1016/j.jsb.2023.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
The cytoplasmatic biosynthesis of the stem peptide from the peptidoglycan in bacteria involves six steps, which have the role of three ATP-dependent Mur ligases that incorporate three consecutive amino acids to a substrate precursor. MurE is the last Mur ligase to incorporate a free amino acid. Although the structure of MurE from Mycobacterium tuberculosis (MtbMurE) was determined at 3.0Å, the binding mode of (meso-Diaminopimelate) m-DAP and the effect of substrate absence is unknown. Herein, we show the structure of MurE from M. thermoresistibile (MthMurE) in complex with ADP and m-DAP at 1.4 Å resolution. The analysis of the structure indicates key conformational changes that the substrate UDP-MurNAc-L-Ala-D-Glu (UAG) and the free amino acid m-DAP cause on the MthMurE conformation. We observed several movements of domains or loop regions that displace their position in order to perform enzymatic catalysis. Since MthMurE has a high similarity to MtbMurE, this enzyme could also guide strategies for structure-based antimicrobial discovery to fight against tuberculosis or other mycobacterial infections. Synopsis Structural characterization of Mycobacterium thermoresistibile MurE at 1.45Å resolution in complex with ADP and m-DAP shows novel conformational changes when compared to other MurE structures in complex with different ligands.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil; Department of Chemistry. The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
14
|
Kumar G, Kapoor S. Targeting mycobacterial membranes and membrane proteins: Progress and limitations. Bioorg Med Chem 2023; 81:117212. [PMID: 36804747 DOI: 10.1016/j.bmc.2023.117212] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Among the various bacterial infections, tuberculosis continues to hold center stage. Its causative agent, Mycobacterium tuberculosis, possesses robust defense mechanisms against most front-line antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. It is now well-established that bacteria change their membrane composition to optimize their environment to survive and elude drug action. Thus targeting membrane or membrane components is a promising avenue for exploiting the chemical space focussed on developing novel membrane-centric anti-bacterial small molecules. These approaches are more effective, non-toxic, and can attenuate resistance phenotype. We present the relevance of targeting the mycobacterial membrane as a practical therapeutic approach. The review highlights the direct and indirect targeting of membrane structure and function. Direct membrane targeting agents cause perturbation in the membrane potential and can cause leakage of the cytoplasmic contents. In contrast, indirect membrane targeting agents disrupt the function of membrane-associated proteins involved in cell wall biosynthesis or energy production. We discuss the chronological chemical improvements in various scaffolds targeting specific membrane-associated protein targets, their clinical evaluation, and up-to-date account of their ''mechanisms of action, potency, selectivity'' and limitations. The sources of anti-TB drugs/inhibitors discussed in this work have emerged from target-based identification, cell-based phenotypic screening, drug repurposing, and natural products. We believe this review will inspire the exploration of uncharted chemical space for informing the development of new scaffolds that can inhibit novel mycobacterial membrane targets.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Departemnt of Natural Products, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad 500037, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan.
| |
Collapse
|
15
|
Jianu C, Rusu LC, Muntean I, Cocan I, Lukinich-Gruia AT, Goleț I, Horhat D, Mioc M, Mioc A, Șoica C, Bujancă G, Ilie AC, Muntean D. In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil. Antioxidants (Basel) 2022; 11:2472. [PMID: 36552681 PMCID: PMC9774620 DOI: 10.3390/antiox11122472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The study was designed to analyze and evaluate the antioxidant and antibacterial properties of the essential oils of Thymus pulegioides L. grown in Western Romania. Thymus pulegioides L. essential oil (TPEO) was extracted by steam distillation (0.71% v/w) using a Craveiro-type apparatus. GC-MS investigation of the TPEO identified 39 different compounds, representing 98.46% of total oil. Findings revealed that thymol (22.89%) is the main compound of TPEO, followed by para-cymene (14.57%), thymol methyl ether (11.19%), isothymol methyl ether (10.45%), and beta-bisabolene (9.53%). The oil exhibits good antibacterial effects; C. parapsilosis, C. albicans, S. pyogenes, and S. aureus were the most sensitive strains. The antioxidant activity of TPEO was evaluated by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium] (ABTS) radical scavenging assay, and beta-carotene/linoleic acid bleaching testing. The antioxidative data recorded reveal, for the first time, that TPEO inhibits primary and secondary oxidation products, in some particular conditions, better than butylated hydroxyanisole (BHA) with significant statistical difference (p < 0.05). Moreover, TPEO antioxidant capabilities in DPPH and ABTS assays outperformed alpha-tocopherol (p < 0.001) and delta-tocopherol (p < 0.001). Molecular docking analysis revealed that one potential target correlated with the TPEO antimicrobial activity was d-alanine-d-alanine ligase (DDl). The best scoring ligand, linalyl anthranilate, shared highly similar binding patterns with the DDl native inhibitor. Furthermore, molecular docking analysis also showed that the main constituents of TPEO are good candidates for xanthine oxidase and lipoxygenase inhibition, making the essential oil a valuable source for protein-targeted antioxidant compounds. Consequently, TPEO may represent a new potential source of antioxidant and antibacterial agents with applicability in the food and pharmaceutic industries.
Collapse
Affiliation(s)
- Călin Jianu
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Laura-Cristina Rusu
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy, Spl. Tudor Vladimir escu 14A, 300173 Timisoara, Romania
| | - Iulia Muntean
- Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babes” University of Medicine and Pharmacy, Spl. Tudor Vladimir escu 14A, 300173 Timisoara, Romania
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | | | - Ionuț Goleț
- Faculty of Economics and Business Administration, West University of Timisoara, 300233 Timisoara, Romania
| | - Delia Horhat
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Codruța Șoica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Gabriel Bujancă
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Adrian Cosmin Ilie
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Delia Muntean
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
16
|
Edwards BD, Field SK. The Struggle to End a Millennia-Long Pandemic: Novel Candidate and Repurposed Drugs for the Treatment of Tuberculosis. Drugs 2022; 82:1695-1715. [PMID: 36479687 PMCID: PMC9734533 DOI: 10.1007/s40265-022-01817-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
This article provides an encompassing review of the current pipeline of putative and developed treatments for tuberculosis, including multidrug-resistant strains. The review has organized each compound according to its site of activity. To provide context, mention of drugs within current recommended treatment regimens is made, thereafter followed by discussion on recently developed and upcoming molecules at established and novel targets. The review is designed to provide a clinically applicable understanding of the compounds that are deemed most currently relevant, including those already under clinical study and those that have shown promising pre-clinical results. An extensive review of the efficacy and safety data for key contemporary drugs already incorporated into treatment regimens, such as bedaquiline, pretomanid, and linezolid, is provided. The three levels of the bacterial cell wall (mycolic acid, arabinogalactan, and peptidoglycan layers) are highlighted and important compounds designed to target each layer are delineated. Amongst others, the highly optimistic and potent anti-mycobacterial activity of agents such as BTZ-043, PBTZ 169, and OPC-167832 are emphasized. The evolving spectrum of oxazolidinones, such as sutezolid, delpazolid, and TBI-223, all aiming to exceed the efficacy achieved with linezolid yet offer a safer alternative to the potential toxicity, are reviewed. New and exciting prospective agents with novel mechanisms of impact against TB, including 3-aminomethyl benzoxaboroles and telacebec, are underscored. We describe new diaryloquinolines in development, striving to build on the immense success of bedaquiline. Finally, we discuss some of these compounds that have shown encouraging additive or synergistic benefit when used in combination, providing some promise for the future in treating this ancient scourge.
Collapse
Affiliation(s)
- Brett D Edwards
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada.
| | - Stephen K Field
- Division of Infectious Diseases and Tuberculosis Services, Alberta Health Services, Department of Medicine, Cumming School of Medicine, University of Calgary, Peter Lougheed Centre, 3500, 26 Avenue NE, Calgary, AB, T1Y6J4, Canada
| |
Collapse
|
17
|
Acyldepsipeptide Analogues: A Future Generation Antibiotics for Tuberculosis Treatment. Pharmaceutics 2022; 14:pharmaceutics14091956. [PMID: 36145704 PMCID: PMC9502522 DOI: 10.3390/pharmaceutics14091956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Acyldepsipeptides (ADEPs) are a new class of emerging antimicrobial peptides (AMPs), which are currently explored for treatment of pathogenic infections, including tuberculosis (TB). These cyclic hydrophobic peptides have a unique bacterial target to the conventional anti-TB drugs, and present a therapeutic window to overcome Mycobacterium Tuberculosis (M. tb) drug resistance. ADEPs exerts their antibacterial activity on M. tb strains through activation of the protein homeostatic regulatory protease, the caseinolytic protease (ClpP1P2). ClpP1P2 is normally regulated and activated by the ClpP-ATPases to degrade misfolded and toxic peptides and/or short proteins. ADEPs bind and dysregulate all the homeostatic capabilities of ClpP1P2 while inducing non-selective proteolysis. The uncontrolled proteolysis leads to M. tb cell death within the host. ADEPs analogues that have been tested possess cytotoxicity and poor pharmacokinetic and pharmacodynamic properties. However, these can be improved by drug design techniques. Moreover, the use of nanomaterial in conjunction with ADEPs would yield effective synergistic effect. This new mode of action has potential to combat and eradicate the extensive multi-drug resistance (MDR) problem that is currently faced by the public health pertaining bacterial infections, especially TB.
Collapse
|
18
|
Craggs PD, de Carvalho LPS. Bottlenecks and opportunities in antibiotic discovery against Mycobacterium tuberculosis. Curr Opin Microbiol 2022; 69:102191. [PMID: 35970040 DOI: 10.1016/j.mib.2022.102191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) persists as a major global health issue and a leading cause of death by a single infectious agent. The global burden of TB is further exacerbated by the continuing emergence and dissemination of strains of Mycobacterium tuberculosis resistant to multiple antibiotics. The need for novel drugs that can be used to shorten the course for current TB drug regimens as well as combat the persistent threat of antibiotic resistance has never been greater. There have been significant advances in the discovery of de novo TB treatments, with the first TB-specific drugs in 45 years approved for use. However, there are still issues that restrict the pipeline of new antitubercular chemotherapies. The rate of failure of TB drug candidates in clinical trials remains high, while the validation of new TB drug targets and subsequent identification of novel inhibitors remains modest.
Collapse
Affiliation(s)
- Peter D Craggs
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.
| |
Collapse
|
19
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
20
|
Belete TM. Recent Progress in the Development of Novel Mycobacterium Cell Wall Inhibitor to Combat Drug-Resistant Tuberculosis. Microbiol Insights 2022; 15:11786361221099878. [PMID: 35645569 PMCID: PMC9131376 DOI: 10.1177/11786361221099878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Despite decades of research in drug development against TB, it is still the leading cause of death due to infectious diseases. The long treatment duration, patient noncompliance coupled with the ability of the tuberculosis bacilli to resist the current drugs increases multidrug-resistant tuberculosis that exacerbates the situation. Identification of novel drug targets is important for the advancement of drug development against Mycobacterium tuberculosis. The development of an effective treatment course that could help us eradicates TB. Hence, we require drugs that could eliminate the bacteria and shorten the treatment duration. This review briefly describes the available data on the peptidoglycan component structural characterization, identification of the metabolic pathway, and the key enzymes involved in the peptidoglycan synthesis, like N-Acetylglucosamine-1-phosphate uridyltransferase, mur enzyme, alanine racemase as well as their inhibition. Besides, this paper also provides studies on mycolic acid and arabinogalactan synthesis and the transport mechanisms that show considerable promise as new targets to develop a new product with their inhibiter.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
21
|
Júnior JRP, Caruso ÍP, de Sá JM, Mezalira TS, de Souza Lima D, Pilau EJ, Roper D, Fernandez MA, Vicente Seixas FA. Characterization of Secondary Structure and Thermal Stability by
Biophysical Methods of the D-alanyl,D-alanine Ligase B Protein from
Escherichia coli. Protein Pept Lett 2022; 29:448-459. [DOI: 10.2174/0929866529666220405104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Background:
Peptidoglycan (PG) is a key structural component of the bacterial cell wall and interruption of its biosynthesis is a validated target for antimicrobials. Of the enzymes involved in PG biosynthesis, D-alanyl,D-alanine ligase B (DdlB), is responsible for the condensation of two alanines, forming D-Ala-D-Ala, which is required for subsequent extracellular transpeptidase crosslinking of the mature peptidoglycan polymer.
Objectives:
We aimed the biophysical characterization of recombinant Escherichia coli DdlB (EcDdlB), regarding parameters of melting temperature (Tm), calorimetry and van’t Hoff enthalpy changes of denaturation ( and ), as well as characterization of elements of secondary structure at three different pHs.
Methods:
DdlB was overexpressed in E. coli BL21 and purified by affinity chromatography. Thermal stability and structural characteristics of the purified enzyme were analyzed by circular dichroism (CD), differential scanning calorimetry and fluorescence spectroscopy.
Results:
The stability of EcDdlB increased with proximity to its pI of 5.0, reaching the maximum at pH 5.4 with Tm and of 52.68 ºC and 484 kJ.mol-1, respectively. Deconvolutions of the CD spectra at 20 ºC showed a majority percentage of α-helix at pH 5.4 and 9.4, whereas for pH 7.4, an equal contribution of β-structures and α-helices was calculated. Thermal denaturation process of EcDdlB proved to be irreversible with an increase in β-structures that can contribute to the formation of protein aggregates.
Conclutions:
Such results will be useful for energy minimization of structural models aimed at virtual screening simulations, providing useful information in the search for drugs that inhibit peptidoglycan synthesis.
Collapse
Affiliation(s)
| | - Ícaro Putinhon Caruso
- Department of Physics,
Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista “Júlio de Mesquita Filho”, São
José do Rio Preto, SP, Brazil
- National Center for Nuclear Magnetic Resonance of Macromolecules, Institute of Medical Biochemistry and National Center for Structure Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Jéssica Maróstica de Sá
- Department of Physics,
Instituto de Biociências, Letras e Ciências Exatas - Universidade Estadual Paulista “Júlio de Mesquita Filho”, São
José do Rio Preto, SP, Brazil
| | | | - Diego de Souza Lima
- Departament of Technology, Universidade Estadual de Maringá, Umuarama, PR, Brazil
| | - Eduardo Jorge Pilau
- Departament of Chemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - David Roper
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Maria Aparecida Fernandez
- Departament of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
22
|
Mayank, Sidhu JS, Joshi G, Sindhu J, Kaur N, Singh N. Structural Diversity of D‐Alanine: D‐Alanine Ligase and Its Exploration in Development of Antibacterial Agents Against the Multi‐Variant Bacterial Infections. ChemistrySelect 2022. [DOI: 10.1002/slct.202104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mayank
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
- School of Pharmaceutical Sciences Lovely Professional University Phagwara India
| | - Jagpreet Singh Sidhu
- Department of Pharmaceutical Sciences and Natural Products School of Health Science Central University of Punjab Bathinda 151 001 India
| | - Gaurav Joshi
- School of Pharmacy Graphic Era Hill University Dehradun Uttarakhand India
| | - Jayant Sindhu
- Department of Chemistry COBS&H CCS Haryana Agricultural University Hisar 125004 India
| | - Navneet Kaur
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Narinder Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab 140001 India
| |
Collapse
|
23
|
Pantoja Angles A, Ali Z, Mahfouz M. CS-Cells: A CRISPR-Cas12 DNA Device to Generate Chromosome-Shredded Cells for Efficient and Safe Molecular Biomanufacturing. ACS Synth Biol 2022; 11:430-440. [PMID: 34978812 DOI: 10.1021/acssynbio.1c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic biology holds great promise for translating ideas into products to address the grand challenges facing humanity. Molecular biomanufacturing is an emerging technology that facilitates the production of key products of value, including therapeutics and select chemical compounds. Current biomanufacturing technologies require improvements to overcome limiting factors, including efficient production, cost, and safe release; therefore, developing optimum chassis for biomolecular manufacturing is of great interest for enabling diverse synthetic biology applications. Here, we harnessed the power of the CRISPR-Cas12 system to design, build, and test a DNA device for genome shredding, which fragments the native genome to enable the conversion of bacterial cells into nonreplicative, biosynthetically active, and programmable molecular biomanufacturing chassis. As a proof of concept, we demonstrated the efficient production of green fluorescent protein and violacein, an antimicrobial and antitumorigenic compound. Our CRISPR-Cas12-based chromosome-shredder DNA device has built-in biocontainment features providing a roadmap for the conversion of any bacterial cell into a chromosome-shredded chassis amenable to high-efficiency molecular biomanufacturing, thereby enabling exciting and diverse biotechnological applications.
Collapse
Affiliation(s)
- Aarón Pantoja Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Alhadrami HA, Abdulaal WH, Hassan HM, Alhakamy NA, Sayed AM. In Silico-Based Discovery of Natural Anthraquinones with Potential against Multidrug-Resistant E. coli. Pharmaceuticals (Basel) 2022; 15:ph15010086. [PMID: 35056143 PMCID: PMC8778091 DOI: 10.3390/ph15010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/21/2023] Open
Abstract
E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, over 16,000 structures covering almost all African medicinal plants in AfroDb in a structural-based virtual screening were used to find efficient anti-E. coli candidates. These drug-like structures were docked into the active sites of two important molecular targets (i.e., E. coli’s Ddl-B and Gyr-B). The top-scoring hits (i.e., got docking scores < −10 kcal/mol) produced in the initial virtual screening (0.15% of the database structures for Ddl-B and 0.17% of the database structures for Gyr-B in the database) were further refined using molecular dynamic simulation-based binding free energy (ΔG) calculation. Anthraquinones were found to prevail among the retrieved hits. Accordingly, readily available anthraquinone derivatives (10 hits) were selected, prepared, and tested in vitro against Ddl-B, Gyr-B, multidrug-resistant (MDR) E. coli, MRSA, and VRSA. A number of the tested derivatives demonstrated strong micromolar enzyme inhibition and antibacterial activity against E. coli, MRSA, and VRSA, with MIC values ranging from 2 to 64 µg/mL. Moreover, both E. coli’s Ddl-B and Gyr-B were inhibited by emodin and chrysophanol with IC50 values comparable to the reference inhibitors (IC50 = 216 ± 5.6, 236 ± 8.9 and 0.81 ± 0.3, 1.5 ± 0.5 µM for Ddl-B and Gyr-B, respectively). All of the active antibacterial anthraquinone hits showed low to moderate cellular cytotoxicity (CC50 > 50 µM) against human normal fibroblasts (WI-38). Furthermore, molecular dynamic simulation (MDS) experiments were carried out to reveal the binding modes of these inhibitors inside the active site of each enzyme. The findings presented in this study are regarded as a significant step toward developing novel antibacterial agents against MDR strains.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
- Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: (H.M.H.); (A.M.S.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Correspondence: (H.M.H.); (A.M.S.)
| |
Collapse
|
25
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
27
|
Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli. Microbiol Spectr 2021; 9:e0028921. [PMID: 34756069 PMCID: PMC8579933 DOI: 10.1128/spectrum.00289-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activation of unrecognized antibiotic resistance genes in the bacterial cell can give rise to antibiotic resistance without the need for major mutations or horizontal gene transfer. We hypothesize that bacteria harbor an extensive array of diverse cryptic genes that can be activated in response to antibiotics via adaptive resistance. To test this hypothesis, we developed a plasmid assay to randomly manipulate gene copy numbers in Escherichia coli cells and identify genes that conferred resistance when amplified. We then tested for cryptic resistance to 18 antibiotics and identified genes conferring resistance. E. coli could become resistant to 50% of the antibiotics tested, including chloramphenicol, d-cycloserine, polymyxin B, and 6 beta-lactam antibiotics, following this manipulation. Known antibiotic resistance genes comprised 13% of the total identified genes, where 87% were unclassified (cryptic) antibiotic resistance genes. These unclassified genes encoded cell membrane proteins, stress response/DNA repair proteins, transporters, and miscellaneous or hypothetical proteins. Stress response/DNA repair genes have a broad antibiotic resistance potential, as this gene class, in aggregate, conferred cryptic resistance to nearly all resistance-positive antibiotics. We found that antibiotics that are hydrophilic, those that are amphipathic, and those that inhibit the cytoplasmic membrane or cell wall biosynthesis were more likely to induce cryptic resistance in E. coli. This study reveals a diversity of cryptic genes that confer an antibiotic resistance phenotype when present in high copy number. Thus, our assay can identify potential novel resistance genes while also describing which antibiotics are prone to induce cryptic antibiotic resistance in E. coli. IMPORTANCE Predicting where new antibiotic resistance genes will rise is a challenge and is especially important when new antibiotics are developed. Adaptive resistance allows sensitive bacterial cells to become transiently resistant to antibiotics. This provides an opportune time for cells to develop more efficient resistance mechanisms, such as tolerance and permanent resistance to higher antibiotic concentrations. The biochemical diversity harbored within bacterial genomes may lead to the presence of genes that could confer resistance when timely activated. Therefore, it is crucial to understand adaptive resistance to identify potential resistance genes and prolong antibiotics. Here, we investigate cryptic resistance, an adaptive resistance mechanism, and identify unknown (cryptic) antibiotic resistance genes that confer resistance when amplified in a laboratory strain of E. coli. We also pinpoint antibiotic characteristics that are likely to induce cryptic resistance. This study may help detect novel antibiotic resistance genes and provide the foundation to help develop more effective antibiotics.
Collapse
|
28
|
Long J, Ji W, Zhang D, Zhu Y, Bi Y. Bioactivities and Structure-Activity Relationships of Fusidic Acid Derivatives: A Review. Front Pharmacol 2021; 12:759220. [PMID: 34721042 PMCID: PMC8554340 DOI: 10.3389/fphar.2021.759220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Fusidic acid (FA) is a natural tetracyclic triterpene isolated from fungi, which is clinically used for systemic and local staphylococcal infections, including methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci infections. FA and its derivatives have been shown to possess a wide range of pharmacological activities, including antibacterial, antimalarial, antituberculosis, anticancer, tumor multidrug resistance reversal, anti-inflammation, antifungal, and antiviral activity in vivo and in vitro. The semisynthesis, structural modification and biological activities of FA derivatives have been extensively studied in recent years. This review summarized the biological activities and structure-activity relationship (SAR) of FA in the last two decades. This summary can prove useful information for drug exploration of FA derivatives.
Collapse
Affiliation(s)
- Junjun Long
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Wentao Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Doudou Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yifei Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
29
|
Song I, Kim Y, Yu J, Go SY, Lee HG, Song WJ, Kim S. Molecular mechanism underlying substrate recognition of the peptide macrocyclase PsnB. Nat Chem Biol 2021; 17:1123-1131. [PMID: 34475564 DOI: 10.1038/s41589-021-00855-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Graspetides, also known as ω-ester-containing peptides (OEPs), are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) bearing side chain-to-side chain macrolactone or macrolactam linkages. Here, we present the molecular details of precursor peptide recognition by the macrocyclase enzyme PsnB in the biosynthesis of plesiocin, a group 2 graspetide. Biochemical analysis revealed that, in contrast to other RiPPs, the core region of the plesiocin precursor peptide noticeably enhanced the enzyme-precursor interaction via the conserved glutamate residues. We obtained four crystal structures of symmetric or asymmetric PsnB dimers, including those with a bound core peptide and a nucleotide, and suggest that the highly conserved Arg213 at the enzyme active site specifically recognizes a ring-forming acidic residue before phosphorylation. Collectively, this study provides insights into the mechanism underlying substrate recognition in graspetide biosynthesis and lays a foundation for engineering new variants.
Collapse
Affiliation(s)
- Inseok Song
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Younghyeon Kim
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Jaeseung Yu
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Su Yong Go
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Seokhee Kim
- Department of Chemistry, Seoul National University, Seoul, South Korea.
| |
Collapse
|
30
|
Jiang Q, He X, Shui Y, Lyu X, Wang L, Xu L, Chen Z, Zou L, Zhou X, Cheng L, Li M. d-Alanine metabolic pathway, a potential target for antibacterial drug designing in Enterococcus faecalis. Microb Pathog 2021; 158:105078. [PMID: 34245823 DOI: 10.1016/j.micpath.2021.105078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
Enterococcus faecalis (E. faecalis) is associated with persistent root canal infection because of its biofilm and various virulence factors. However, E. faecalis exhibits extensive drug resistance. d-Alanine (D-Ala) metabolism is essential for bacterial peptidoglycan biosynthesis. d-cycloserine (DCS), a second line drug used in the treatment of Mycobacterium tuberculosis infection, can inhibit two key enzymes in D-Ala metabolism: alanine racemase and d-alanine-d-alanine ligase. The aim of this study was to evaluate the effect of D-Ala metabolism on E. faecalis growth, cell wall integrity, biofilm formation and virulence gene expression by additional DCS with or without D-Ala. The results showed that DCS inhibited the planktonic growth and biofilm formation of E. faecalis in a dose-dependent manner. Both the minimum inhibitory concentration (MIC) and minimum biofilm inhibition concentration (MBIC) of DCS against E. faecalis were 200 μg/ml, whereas 50 μg/ml of DCS could inhibit planktonic growth and biofilm formation effectively. The addition of DCS also resulted in bacterial cell wall damage, biofilm surface roughness increase and biofilm adhesion force reduction. Moreover, the treatment of DCS downregulated the expression of asa1, esp, efaA, gelE, sprE, fsrB and ace genes. However, all of these inhibitory effects of DCS could be rescued by the addition of exogenous D-Ala. Meanwhile, DCS exhibited no toxicity to HGEs and HOKs. Therefore, D-Ala metabolic pathway in E. faecalis is a potential target for drug designing.
Collapse
Affiliation(s)
- Qingsong Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoya He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Laijun Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhu Chen
- Department of Conservative Dentistry and Endodontics, Guiyang Hospital of Stomatology, Guiyang, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
31
|
Rossi I, Bettini R, Buttini F. Resistant Tuberculosis: the Latest Advancements of Second-line Antibiotic Inhalation Products. Curr Pharm Des 2021; 27:1436-1452. [PMID: 33480336 DOI: 10.2174/1381612827666210122143214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug-resistant tuberculosis (TB) can be considered the man-made result of interrupted, erratic or inadequate TB therapy. As reported in WHO data, resistant Mycobacterium tuberculosis (Mtb) strains continue to constitute a public health crisis. Mtb is naturally able to survive host defence mechanisms and to resist most antibiotics currently available. Prolonged treatment regimens using the available first-line drugs give rise to poor patient compliance and a rapid evolution of strains resistant to rifampicin only or to both rifampicin and isoniazid (multi drug-resistant, MDR-TB). The accumulation of mutations may give rise to extensively drug-resistant strains (XDR-TB), i.e. strains with resistance also to fluoroquinolones and to the injectable aminoglycoside, which represent the second-line drugs. Direct lung delivery of anti-tubercular drugs, as an adjunct to conventional routes, provides high concentrations within the lungs, which are the intended target site of drug delivery, representing an interesting strategy to prevent or reduce the development of drug-resistant strains. The purpose of this paper is to describe and critically analyse the most recent and advanced results in the formulation development of WHO second-line drug inhalation products, with particular focus on dry powder formulation. Although some of these formulations have been developed for other lung infectious diseases (Pseudomonas aeruginosa, nontuberculous mycobacteria), they could be valuable to treat MDR-TB and XDR-TB.
Collapse
Affiliation(s)
- Irene Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
32
|
Akhtar A, Pilkhwal Sah S. Advances in the pharmacotherapeutic management of post-traumatic stress disorder. Expert Opin Pharmacother 2021; 22:1919-1930. [PMID: 34124975 DOI: 10.1080/14656566.2021.1935871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Post-traumatic stress disorder (PTSD), a mental disorder, is associated with anxiety, depression, and social awkwardness resulting from past traumatic episodes like natural disasters, accidents, terrorist attacks, war, rape, and sexual violence. It affects primarily the amygdala, cortex, and hippocampus where neurochemical changes result in altered behavior. PTSD patients display impaired fear extinction, and past events keep haunting them. The topic presents relevant sections like PTSD pharmacotherapy, associated challenges, and the novel targets and drugs for future research and therapy.Areas covered: The authors discuss the current pharmacotherapy like SSRIs, NDRIs, SNRIs, anticonvulsants, antidepressants, and benzodiazepines, used to attenuate the associated symptoms. However, the primary focus being the novel and potential targets which can be explored better to understand possible future research and advanced therapy in PTSD. For the same, an account of both preclinical and clinical studies has been covered.Expert opinion: Excessive adverse effects, limited efficacy, and lower patient compliance are some of the major challenges with conventional drugs. Moreover, they correct only fewer symptoms without halting the disease progression. Several agents are investigated in different preclinical and clinical phases, which can potentially overcome the pitfalls and limitations associated with conventional therapies.
Collapse
Affiliation(s)
- Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
33
|
Trouve J, Zapun A, Arthaud C, Durmort C, Di Guilmi AM, Söderström B, Pelletier A, Grangeasse C, Bourgeois D, Wong YS, Morlot C. Nanoscale dynamics of peptidoglycan assembly during the cell cycle of Streptococcus pneumoniae. Curr Biol 2021; 31:2844-2856.e6. [PMID: 33989523 DOI: 10.1016/j.cub.2021.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
Dynamics of cell elongation and septation are key determinants of bacterial morphogenesis. These processes are intimately linked to peptidoglycan synthesis performed by macromolecular complexes called the elongasome and the divisome. In rod-shaped bacteria, cell elongation and septation, which are dissociated in time and space, have been well described. By contrast, in ovoid-shaped bacteria, the dynamics and relationships between these processes remain poorly understood because they are concomitant and confined to a nanometer-scale annular region at midcell. Here, we set up a metabolic peptidoglycan labeling approach using click chemistry to image peptidoglycan synthesis by single-molecule localization microscopy in the ovoid bacterium Streptococcus pneumoniae. Our nanoscale-resolution data reveal spatiotemporal features of peptidoglycan assembly and fate along the cell cycle and provide geometrical parameters that we used to construct a morphogenesis model of the ovoid cell. These analyses show that septal and peripheral peptidoglycan syntheses first occur within a single annular region that later separates in two concentric regions and that elongation persists after septation is completed. In addition, our data reveal that freshly synthesized peptidoglycan is remodeled all along the cell cycle. Altogether, our work provides evidence that septal peptidoglycan is synthesized from the beginning of the cell cycle and is constantly remodeled through cleavage and insertion of material at its periphery. The ovoid-cell morphogenesis would thus rely on the relative dynamics between peptidoglycan synthesis and cleavage rather than on the existence of two distinct successive phases of peripheral and septal synthesis.
Collapse
Affiliation(s)
- Jennyfer Trouve
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - André Zapun
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Claire Durmort
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Bill Söderström
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia; Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, 904-0495 Okinawa, Japan
| | - Anais Pelletier
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Univ. Lyon 1, UMR 5086, Lyon 69007, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Univ. Lyon 1, UMR 5086, Lyon 69007, France
| | | | | | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
34
|
Gallagher LA, Shears RK, Fingleton C, Alvarez L, Waters EM, Clarke J, Bricio-Moreno L, Campbell C, Yadav AK, Razvi F, O'Neill E, O'Neill AJ, Cava F, Fey PD, Kadioglu A, O'Gara JP. Impaired Alanine Transport or Exposure to d-Cycloserine Increases the Susceptibility of MRSA to β-lactam Antibiotics. J Infect Dis 2020; 221:1000-1016. [PMID: 31628459 DOI: 10.1093/infdis/jiz542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
Prolonging the clinical effectiveness of β-lactams, which remain first-line antibiotics for many infections, is an important part of efforts to address antimicrobial resistance. We report here that inactivation of the predicted d-cycloserine (DCS) transporter gene cycA resensitized methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics. The cycA mutation also resulted in hypersusceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and d-alanine ligase required for d-alanine incorporation into cell wall peptidoglycan. Alanine transport was impaired in the cycA mutant, and this correlated with increased susceptibility to oxacillin and DCS. The cycA mutation or exposure to DCS were both associated with the accumulation of muropeptides with tripeptide stems lacking the terminal d-ala-d-ala and reduced peptidoglycan cross-linking, prompting us to investigate synergism between β-lactams and DCS. DCS resensitized MRSA to β-lactams in vitro and significantly enhanced MRSA eradication by oxacillin in a mouse bacteremia model. These findings reveal alanine transport as a new therapeutic target to enhance the susceptibility of MRSA to β-lactam antibiotics.
Collapse
Affiliation(s)
- Laura A Gallagher
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rebecca K Shears
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Claire Fingleton
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Laura Alvarez
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Elaine M Waters
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Jenny Clarke
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | | | - Akhilesh K Yadav
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eoghan O'Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Connolly Hospital, Dublin, Ireland
| | - Alex J O'Neill
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Felipe Cava
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - James P O'Gara
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
35
|
c-di-AMP Accumulation Impairs Muropeptide Synthesis in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00307-20. [PMID: 33020220 DOI: 10.1128/jb.00307-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger among bacteria. c-di-AMP regulates many cellular pathways through direct binding to several molecular targets in bacterial cells. c-di-AMP depletion is well known to destabilize the bacterial cell wall, resulting in increased bacteriolysis and enhanced susceptibility to cell wall targeting antibiotics. Using the human pathogen Listeria monocytogenes as a model, we found that c-di-AMP accumulation also impaired cell envelope integrity. An L. monocytogenes mutant deleted for c-di-AMP phosphodiesterases (pdeA pgpH mutant) exhibited a 4-fold increase in c-di-AMP levels and several cell wall defects. For instance, the pdeA pgpH mutant was defective for the synthesis of peptidoglycan muropeptides and was susceptible to cell wall-targeting antimicrobials. Among different muropeptide precursors, we found that the pdeA pgpH strain was particularly impaired in the synthesis of d-Ala-d-Ala, which is required to complete the pentapeptide stem associated with UDP-N-acetylmuramic acid (MurNAc). This was consistent with an increased sensitivity to d-cycloserine, which inhibits the d-alanine branch of peptidoglycan synthesis. Finally, upon examining d-Ala:d-Ala ligase (Ddl), which catalyzes the conversion of d-Ala to d-Ala-d-Ala, we found that its activity was activated by K+ Based on previous reports that c-di-AMP inhibits K+ uptake, we propose that c-di-AMP accumulation impairs peptidoglycan synthesis, partially through the deprivation of cytoplasmic K+ levels, which are required for cell wall-synthetic enzymes.IMPORTANCE The bacterial second messenger c-di-AMP is produced by a large number of bacteria and conditionally essential to many species. Conversely, c-di-AMP accumulation is also toxic to bacterial physiology and pathogenesis, but its mechanisms are largely undefined. We found that in Listeria monocytogenes, elevated c-di-AMP levels diminished muropeptide synthesis and increased susceptibility to cell wall-targeting antimicrobials. Cell wall defects might be an important mechanism for attenuated virulence in bacteria with high c-di-AMP levels.
Collapse
|
36
|
Kumari P, Pillai VVS, Benedetto A. Mechanisms of action of ionic liquids on living cells: the state of the art. Biophys Rev 2020; 12:1187-1215. [PMID: 32936423 PMCID: PMC7575683 DOI: 10.1007/s12551-020-00754-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of "ILs, biomolecules, and cells."
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
- School of Physics, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Visakh V S Pillai
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
- School of Physics, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Antonio Benedetto
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
- School of Physics, University College Dublin, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
- Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232, Villigen, Switzerland.
| |
Collapse
|
37
|
Pharmacomodulations of the benzoyl-thiosemicarbazide scaffold reveal antimicrobial agents targeting d-alanyl-d-alanine ligase in bacterio. Eur J Med Chem 2020; 200:112444. [DOI: 10.1016/j.ejmech.2020.112444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022]
|
38
|
Zhang Y, Gong S, Wang X, Muhammad M, Li Y, Meng S, Li Q, Liu D, Zhang H. Insights into the Inhibition of Aeromonas hydrophila d-Alanine-d-Alanine Ligase by Integration of Kinetics and Structural Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7509-7519. [PMID: 32609505 DOI: 10.1021/acs.jafc.0c00682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aeromonas hydrophila, a pathogenic bacterium, is harmful to humans, domestic animals, and fishes and, moreover, of public health concern due to the emergence of multiple drug-resistant strains. The cell wall has been discovered as a novel and efficient drug target against bacteria, and d-alanine-d-alanine ligase (Ddl) is considered as an essential enzyme in bacterial cell wall biosynthesis. Herein, we studied the A. hydrophila HBNUAh01 Ddl (AhDdl) enzyme activity and kinetics and determined the crystal structure of AhDdl/d-Ala complex at 2.7 Å resolution. An enzymatic assay showed that AhDdl exhibited higher affinity to ATP (Km: 54.1 ± 9.1 μM) compared to d-alanine (Km: 1.01 ± 0.19 mM). The kinetic studies indicated a competitive inhibition of AhDdl by d-cycloserine (DCS), with an inhibition constant (Ki) of 120 μM and the 50% inhibitory concentrations (IC50) value of 0.5 mM. Meanwhile, structural analysis indicated that the AhDdl/d-Ala complex structure adopted a semi-closed conformation form, and the active site was extremely conserved. Noteworthy is that the substrate d-Ala occupied the second d-Ala position, not the first d-Ala position. These results provided more insights for understanding the details of the catalytic mechanism and resources for the development of novel drugs against the diseases caused by A. hydrophila.
Collapse
Affiliation(s)
- Yingli Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Siyu Gong
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Xuan Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Murtala Muhammad
- Department of Biochemistry, Kano University of Science and Technology, Wudil 713281, Nigeria
| | - Yangyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Shuaishuai Meng
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Dong Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| |
Collapse
|
39
|
Pederick JL, Thompson AP, Bell SG, Bruning JB. d-Alanine-d-alanine ligase as a model for the activation of ATP-grasp enzymes by monovalent cations. J Biol Chem 2020; 295:7894-7904. [PMID: 32335509 DOI: 10.1074/jbc.ra120.012936] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The ATP-grasp superfamily of enzymes shares an atypical nucleotide-binding site known as the ATP-grasp fold. These enzymes are involved in many biological pathways in all domains of life. One ATP-grasp enzyme, d-alanine-d-alanine ligase (Ddl), catalyzes ATP-dependent formation of the d-alanyl-d-alanine dipeptide essential for bacterial cell wall biosynthesis and is therefore an important antibiotic drug target. Ddl is activated by the monovalent cation (MVC) K+, but despite its clinical relevance and decades of research, how this activation occurs has not been elucidated. We demonstrate here that activating MVCs bind adjacent to the active site of Ddl from Thermus thermophilus and used a combined biochemical and structural approach to characterize MVC activation. We found that TtDdl is a type II MVC-activated enzyme, retaining activity in the absence of MVCs. However, the efficiency of TtDdl increased ∼20-fold in the presence of activating MVCs, and it was maximally activated by K+ and Rb+ ions. A strict dependence on ionic radius of the MVC was observed, with Li+ and Na+ providing little to no TtDdl activation. To understand the mechanism of MVC activation, we solved crystal structures of TtDdl representing distinct catalytic stages in complex with K+, Rb+, or Cs+ Comparison of these structures with apo TtDdl revealed no evident conformational change on MVC binding. Of note, the identified MVC binding site is structurally conserved within the ATP-grasp superfamily. We propose that MVCs activate Ddl by altering the charge distribution of its active site. These findings provide insight into the catalytic mechanism of ATP-grasp enzymes.
Collapse
Affiliation(s)
- Jordan L Pederick
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew P Thompson
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen G Bell
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia .,Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
40
|
Boudrioua A, Li Y, Hartke A, Giraud C. Opposite effect of vancomycin and D-Cycloserine combination in both vancomycin resistant Staphylococcus aureus and enterococci. FEMS Microbiol Lett 2020; 367:5819017. [DOI: 10.1093/femsle/fnaa062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
The increasing spread of antibiotic resistant bacteria is a major human health concern. The challenging development of new effective antibiotics has led to focus on seeking synergistic antibiotic combinations. Vancomycin (VAN) is a glycopeptide antibiotic used to treat Staphylococcus aureus and enterococci infections. It is targeting D-Alanyl-D-Alanine dimers during peptidoglycan biosynthesis. D-cycloserine (DCS) is a D-Alanine analogue that targets peptidoglycan biosynthesis by inhibiting D-Alanine:D-Alanine ligase (Ddl). The VAN-DCS combination was found to be synergistic in VAN resistant S. aureus strains lacking van genes cluster. We hypothesize that this combination leads to opposite effects in S. aureus and enterococci strains harboring van genes cluster where VAN resistance is conferred by the synthesis of modified peptidoglycan precursors ending in D-Alanyl-D-Lactate. The calculated Fractional Inhibitory Concentration of VAN-DCS combination in a van- vancomycin-intermediate, VanA type, and VanB type strains were 0.5, 5 and 3, respectively. As a result, VAN-DCS combination leads to synergism in van-lacking strains, and to antagonism in strains harboring van genes cluster. The VAN-DCS antagonism is due to a mechanism that we named van-mediated Ddl inhibition bypass. Our results show that antibiotic combinations can lead to opposite effects depending on the genetic backgrounds.
Collapse
Affiliation(s)
| | - Yanyan Li
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France
| | - Axel Hartke
- Normandie Univ, UNICAEN, U2RM, 14000, Caen, France
| | | |
Collapse
|
41
|
Fan C, Davison PA, Habgood R, Zeng H, Decker CM, Gesell Salazar M, Lueangwattanapong K, Townley HE, Yang A, Thompson IP, Ye H, Cui Z, Schmidt F, Hunter CN, Huang WE. Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. Proc Natl Acad Sci U S A 2020; 117:6752-6761. [PMID: 32144140 PMCID: PMC7104398 DOI: 10.1073/pnas.1918859117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A type of chromosome-free cell called SimCells (simple cells) has been generated from Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits. It was found that the glycolysis pathway significantly extended longevity of SimCells due to its ability to regenerate ATP and NADH/NADPH. The SimCells were able to continuously express synthetic genetic circuits for 10 d after chromosome removal. As a proof of principle, we demonstrated that SimCells can be used as a safe agent (as they cannot replicate) for bacterial therapy. SimCells were used to synthesize catechol (a potent anticancer drug) from salicylic acid to inhibit lung, brain, and soft-tissue cancer cells. SimCells represent a simplified synthetic biology chassis that can be programmed to manufacture and deliver products safely without interference from the host genome.
Collapse
Affiliation(s)
- Catherine Fan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Paul A Davison
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Robert Habgood
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Hong Zeng
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Christoph M Decker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | | | - Helen E Townley
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Zhanfeng Cui
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom;
| |
Collapse
|
42
|
D-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition. Nat Chem Biol 2020; 16:686-694. [PMID: 32203411 PMCID: PMC7246083 DOI: 10.1038/s41589-020-0498-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Abstract
The broad-spectrum antibiotic D-cycloserine (DCS) is a key component of regimens used to treat multi- and extensively drug-resistant tuberculosis. DCS, a structural analog of D-alanine, binds to and inactivates two essential enzymes involved in peptidoglycan biosynthesis, alanine racemase (Alr) and D-Ala:D-Ala ligase. Inactivation of Alr is thought to proceed via a mechanism-based irreversible route, forming an adduct with the pyridoxal 5'-phosphate cofactor, leading to bacterial death. Inconsistent with this hypothesis, Mycobacterium tuberculosis Alr activity can be detected after exposure to clinically relevant DCS concentrations. To address this paradox, we investigated the chemical mechanism of Alr inhibition by DCS. Inhibition of M. tuberculosis Alr and other Alrs is reversible, mechanistically revealed by a previously unidentified DCS-adduct hydrolysis. Dissociation and subsequent rearrangement to a stable substituted oxime explains Alr reactivation in the cellular milieu. This knowledge provides a novel route for discovery of improved Alr inhibitors against M. tuberculosis and other bacteria.
Collapse
|
43
|
Berta D, Buigues PJ, Badaoui M, Rosta E. Cations in motion: QM/MM studies of the dynamic and electrostatic roles of H + and Mg 2+ ions in enzyme reactions. Curr Opin Struct Biol 2020; 61:198-206. [PMID: 32065923 DOI: 10.1016/j.sbi.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Here we discuss current trends in the simulations of enzymatic reactions focusing on phosphate catalysis. The mechanistic details of the proton transfers coupled to the phosphate cleavage is one of the key challenges in QM/MM calculations of these and other enzyme catalyzed reactions. The lack of experimental information offers both an opportunity for computations as well as often unresolved controversies. We discuss the example of small GTPases including the important human Ras protein. The high dimensionality and chemical complexity of these reactions demand carefully chosen computational techniques both in terms of the underlying quantum chemical theory and the sampling of the conformational ensemble. We also point out the important role of Mg2+ ions, and recent advances in their transient involvement in the catalytic mechanisms.
Collapse
Affiliation(s)
- Dénes Berta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Pedro J Buigues
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Magd Badaoui
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Edina Rosta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom.
| |
Collapse
|
44
|
Matoba Y, Uda N, Kudo M, Sugiyama M. Cyclization mechanism catalyzed by an ATP-grasp enzyme essential for d-cycloserine biosynthesis. FEBS J 2019; 287:2763-2778. [PMID: 31793174 DOI: 10.1111/febs.15163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 11/26/2022]
Abstract
In the biosynthetic pathway of an antitubercular antibiotic d-cycloserine (d-CS), O-ureido-d-serine (d-OUS) is converted to d-CS. We have previously demonstrated that DcsG, classified into the ATP-grasp superfamily enzyme, catalyzes the ring formation to generate d-CS, which is accompanied by the cleavage of a bond in the urea moiety of d-OUS to remove a carbamoyl group. Although the general ATP-grasp enzymes catalyze an ATP-dependent ligation reaction between two substrates, DcsG catalyzes specifically the generation of an intramolecular covalent bond. In the present study, cyanate was found in the reaction mixture, suggesting that carbamoyl group is eliminated as an isocyanic acid during the reaction. By the crystallographic and mutational investigations of DcsG, we anticipate the residues necessary for the binding of d-OUS. An acylphosphate intermediate must be bound at the narrow pocket of DcsG in a folded conformation, inducing the bond cleavage and the new bond formation to generate cyanate and d-CS, respectively. DATABASE: Structural data are available in Protein Data Bank database under the accession number 6JIL.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Narutoshi Uda
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Mako Kudo
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Masanori Sugiyama
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
45
|
Muhammad M, Li Y, Gong S, Shi Y, Ju J, Zhao B, Liu D. Purification, Characterization and Inhibition of Alanine Racemase from a Pathogenic Strain of Streptococcus iniae. Pol J Microbiol 2019; 68:331-341. [PMID: 31880879 PMCID: PMC7256847 DOI: 10.33073/pjm-2019-036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/25/2023] Open
Abstract
Streptococcus iniae is a pathogenic and zoonotic bacteria that impacted high mortality to many fish species as well as capable of causing serious disease to humans. Alanine racemase (Alr, EC 5.1.1.1) is a pyridoxal-5’-phosphate (PLP)-containing homodimeric enzyme that catalyzes the racemization of L-alanine and D-alanine. In this study, we purified alanine racemase from S. iniae that was isolated from an infected Chinese sturgeon (Acipenser sinensis), as well as determined its biochemical characteristics and inhibitors. The alr gene has an open reading frame (ORF) of 1107 bp, encoding a protein of 369 amino acids, which has a molecular mass of 40 kDa. The enzyme has optimal activity at a temperature of 35°C and a pH of 9.5. It belongs to the PLP-dependent enzymes family and is highly specific to L-alanine. S. iniae Alr (SiAlr) could be inhibited by some metal ions, hydroxylamine and dithiothreitol (DTT). The kinetic parameters Km and Vmax of the enzyme were 33.11 mM, 2426 units/mg for L-alanine, and 14.36 mM, 963.6 units/mg for D-alanine. Finally, the 50% inhibitory concentrations (IC50) values and antibiotic activity of two alanine racemase inhibitors (homogentisic acid and hydroquinone), were determined and found to be effective against both Gram-positive and Gram-negative bacteria employed in this study.
Collapse
Affiliation(s)
- Murtala Muhammad
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Yangyang Li
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Siyu Gong
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Yanmin Shi
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| | - Dong Liu
- College of Life Science, Hebei Normal University , Shijiazhuang , China
| |
Collapse
|
46
|
Kuru E, Radkov A, Meng X, Egan A, Alvarez L, Dowson A, Booher G, Breukink E, Roper DI, Cava F, Vollmer W, Brun Y, VanNieuwenhze MS. Mechanisms of Incorporation for D-Amino Acid Probes That Target Peptidoglycan Biosynthesis. ACS Chem Biol 2019; 14:2745-2756. [PMID: 31743648 PMCID: PMC6929685 DOI: 10.1021/acschembio.9b00664] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Bacteria exhibit a myriad of different morphologies,
through the
synthesis and modification of their essential peptidoglycan (PG) cell
wall. Our discovery of a fluorescent D-amino acid (FDAA)-based PG labeling approach provided a powerful method
for observing how these morphological changes occur. Given that PG
is unique to bacterial cells and a common target for antibiotics,
understanding the precise mechanism(s) for incorporation of (F)DAA-based
probes is a crucial determinant in understanding the role of PG synthesis
in bacterial cell biology and could provide a valuable tool in the
development of new antimicrobials to treat drug-resistant antibacterial
infections. Here, we systematically investigate the mechanisms of
FDAA probe incorporation into PG using two model organisms Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive). Our in vitro and in vivo data unequivocally demonstrate
that these bacteria incorporate FDAAs using two extracytoplasmic pathways:
through activity of their D,D-transpeptidases, and,
if present, by their L,D-transpeptidases and not
via cytoplasmic incorporation into a D-Ala-D-Ala
dipeptide precursor. Our data also revealed the unprecedented finding
that the DAA-drug, D-cycloserine, can be incorporated into
peptide stems by each of these transpeptidases, in addition to its
known inhibitory activity against D-alanine racemase and D-Ala-D-Ala ligase. These mechanistic findings enabled
development of a new, FDAA-based, in vitro labeling approach that
reports on subcellular distribution of muropeptides, an especially
important attribute to enable the study of bacteria with poorly defined
growth modes. An improved understanding of the incorporation mechanisms
utilized by DAA-based probes is essential when interpreting results
from high resolution experiments and highlights the antimicrobial
potential of synthetic DAAs.
Collapse
Affiliation(s)
- Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Atanas Radkov
- Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California 94158, United States
| | - Xin Meng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Alexander Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Amanda Dowson
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Garrett Booher
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eefjan Breukink
- Department of Chemistry, Utrecht University, 3584 CH, Utrecht, Netherlands
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Yves Brun
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Michael S. VanNieuwenhze
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
47
|
Díaz‐Sáez L, Torrie LS, McElroy SP, Gray D, Hunter WN. Burkholderia pseudomallei d-alanine-d-alanine ligase; detailed characterisation and assessment of a potential antibiotic drug target. FEBS J 2019; 286:4509-4524. [PMID: 31260169 PMCID: PMC6899670 DOI: 10.1111/febs.14976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023]
Abstract
Burkholderia pseudomallei is a serious, difficult to treat Gram-negative pathogen and an increase in the occurrence of drug-resistant strains has been detected. We have directed efforts to identify and to evaluate potential drug targets relevant to treatment of infection by B. pseudomallei. We have selected and characterised the essential enzyme d-alanine-d-alanine ligase (BpDdl), required for the ATP-assisted biosynthesis of a peptidoglycan precursor. A recombinant supply of protein supported high-resolution crystallographic and biophysical studies with ligands (AMP and AMP+d-Ala-d-Ala), and comparisons with orthologues enzymes suggest a ligand-induced conformational change occurring that might be relevant to the catalytic cycle. The detailed biochemical characterisation of the enzyme, development and optimisation of ligand binding assays supported the search for novel inhibitors by screening of selected compound libraries. In a similar manner to that observed previously in other studies, we note a paucity of hits that are worth follow-up and then in combination with a computational analysis of the active site, we conclude that this ligase represents a difficult target for drug discovery. Nevertheless, our reagents, protocols and data can underpin future efforts exploiting more diverse chemical libraries and structure-based approaches.
Collapse
Affiliation(s)
- Laura Díaz‐Sáez
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeUK
| | - Leah S. Torrie
- Drug Discovery UnitWellcome Centre for Anti‐Infectives ResearchSchool of Life SciencesUniversity of DundeeUK
| | - Stuart P. McElroy
- European Screening Centre Newhouse, Biocity ScotlandUniversity of DundeeNewhouseUK
- Present address:
BioAscent Discovery LtdBo'ness RoadNewhouseLanarkshireML1 5UHUK
| | - David Gray
- Drug Discovery UnitWellcome Centre for Anti‐Infectives ResearchSchool of Life SciencesUniversity of DundeeUK
| | - William N. Hunter
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
48
|
Tang Q, Feng M, Xia H, Zhao Y, Hou B, Ye J, Wu H, Zhang H. Differential quantitative proteomics reveals the functional difference of two yigP locus products, UbiJ and EsrE. J Basic Microbiol 2019; 59:1125-1133. [PMID: 31553492 DOI: 10.1002/jobm.201900350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 11/06/2022]
Abstract
The yigP (ubiJ) locus has been shown to be associated with many phenotypic changes in Escherichia coli, while the individual function of its two products, EsrE small RNA and UbiJ protein, is still elusive. In this study, we constructed two single-element mutants, EsrE mutant strain Mut and UbiJ mutant strain Ter, on the basis of the base substitution programs. The variable antibiotics resistance and ubiquinone (UQ, coenzyme Q) yield and the similar cell growth between mutants revealed the division of labor and collaboration of EsrE and UbiJ in JM83. Furthermore, we detected the concentration of intracellular proteins of Mut and Ter by stable isotope-labeled quantitative proteomics. The results demonstrate that both EsrE and UbiJ are involved in the aerobic growth of E. coli, while EsrE preferentially contributes to the amino acid-related pathway, and UbiJ is an indispensable factor in the biosynthesis of UQ. Moreover, we uncovered a potential regulatory circuit of d-cycloserine (DCS) that composed of EsrE, GcvA, and GcvB by proteomic analysis.
Collapse
Affiliation(s)
- Qiongwei Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meilin Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
49
|
Helal AM, Sayed AM, Omara M, Elsebaei MM, Mayhoub AS. Peptidoglycan pathways: there are still more! RSC Adv 2019; 9:28171-28185. [PMID: 35530449 PMCID: PMC9071014 DOI: 10.1039/c9ra04518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022] Open
Abstract
The discovery of 3rd and 4th generations of currently existing classes of antibiotics has not hindered bacterial resistance, which is escalating at an alarming global level. This review follows WHO recommendations through implementing new criteria for newly discovered antibiotics. These recommendations focus on abandoning old scaffolds and hitting new targets. In light of these recommendations, this review discusses seven bacterial proteins that no commercial antibiotics have targeted yet, alongside their reported chemical scaffolds.
Collapse
Affiliation(s)
- Ahmed M Helal
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Ahmed M Sayed
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Mariam Omara
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
- University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
50
|
Mulubwa M, Mugabo P. Sensitive Ultra-performance Liquid Chromatography Tandem Mass Spectrometry Method for Determination of Cycloserine in Plasma for a Pharmacokinetics Study. J Chromatogr Sci 2019; 57:560-564. [PMID: 30927010 DOI: 10.1093/chromsci/bmz028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/26/2018] [Accepted: 03/05/2019] [Indexed: 11/13/2022]
Abstract
A simple and sensitive ultra-performance liquid chromatography tandem mass spectrometry method has been developed and validated for the analysis of cycloserine in patients' plasma. Using methanol, cyloserine and propranolol (internal standard (IS)) was extracted from plasma by protein precipitation procedure. The chromatographic separation was successfully achieved on Phenomenex KinetexTM PFP C18 (2.1 mm × 100 mm, 2.6 μm) reversed-phase column. Acidified with 0.1% formic acid, water and acetonitrile were used as mobile phases for gradient elution. Cycloserine and IS were detected by Xevo® TQ MS triple quadrupole tandem mass spectrometer. The transition of protonated precursor to product ion were monitored at 103 → 75 m/z and 260.2 → 183 m/z for cycloserine and IS, respectively. The lower limit of quantification was 0.01 μg/mL. The method was linear over the concentration range 0.01-50 μg/mL with average coefficient of determination of 0.9994. The within-run and between-run precision and accuracy were in the range 3.7-19.3% (RSD) and 98.7-117.3%, respectively. Processed cycloserine sample was stable for 48 hours at 8°C and after three freeze-thaw cycles. The extraction efficiency ranged between 88.7 and 91.2%. The method was successfully applied in a pharmacokinetic study for the determination of cycloserine in plasma of patients with drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Mwila Mulubwa
- School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa
| | - Pierre Mugabo
- School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa
| |
Collapse
|