1
|
Granzier HL, Labeit S. Discovery of Titin and Its Role in Heart Function and Disease. Circ Res 2025; 136:135-157. [PMID: 39745989 DOI: 10.1161/circresaha.124.323051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing. Its I-band segment, which includes the N2B element and the PEVK (proline, glutamate, valine, and lysine-rich regions), serves as a viscoelastic spring, adjusting sarcomere length and force in response to cardiac stretch. The review details how alternative splicing of titin pre-mRNA produces different isoforms that greatly impact passive tension and cardiac function, under physiological and pathological conditions. Key posttranslational modifications, especially phosphorylation, play crucial roles in adjusting titin's stiffness, allowing for rapid adaptation to changing hemodynamic demands. Abnormal titin modifications and dysregulation of isoforms are linked to cardiac diseases such as heart failure with preserved ejection fraction, where increased stiffness impairs diastolic function. In addition, the review discusses the importance of the A-band region of titin in setting thick filament length and enhancing Ca²+ sensitivity, contributing to the Frank-Starling Mechanism of the heart. TTN truncating variants are frequently associated with dilated cardiomyopathy, and the review outlines potential disease mechanisms, including haploinsufficiency, sarcomere disarray, and altered thick filament regulation. Variants in TTN have also been linked to conditions such as peripartum cardiomyopathy and chemotherapy-induced cardiomyopathy. Therapeutic avenues are explored, including targeting splicing factors such as RBM20 (RNA binding motif protein 20) to adjust isoform ratios or using engineered heart tissues to study disease mechanisms. Advances in genetic engineering, including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), offer promise for modifying TTN to treat titin-related cardiomyopathies. This comprehensive review highlights titin's structural, mechanical, and signaling roles in heart function and the impact of TTN mutations on cardiac diseases.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, The University of Arizona, Tucson (H.L.G.)
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.)
| |
Collapse
|
2
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
4
|
Herwig M, Begovic M, Budde H, Delalat S, Zhazykbayeva S, Sieme M, Schneider L, Jaquet K, Mügge A, Akin I, El-Battrawy I, Fielitz J, Hamdani N. Protein Kinase D Plays a Crucial Role in Maintaining Cardiac Homeostasis by Regulating Post-Translational Modifications of Myofilament Proteins. Int J Mol Sci 2024; 25:2790. [PMID: 38474037 DOI: 10.3390/ijms25052790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Protein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress. To do this, we used mice with a cardiomyocyte-specific knock-out of Prkd1, which encodes PKD1 (Prkd1loxP/loxP; αMHC-Cre; PKD1 cKO), as well as wild type littermate controls (Prkd1loxP/loxP; WT). We isolated permeabilized cardiomyocytes from PKD1 cKO mice and found that they exhibited increased passive stiffness (Fpassive), which was associated with increased oxidation of titin, but showed no change in titin ubiquitination. Additionally, the PKD1 cKO mice showed increased myofilament calcium (Ca2+) sensitivity (pCa50) and reduced maximum Ca2+-activated tension. These changes were accompanied by increased oxidation and reduced phosphorylation of the small myofilament protein cardiac myosin binding protein C (cMyBPC), as well as altered phosphorylation levels at different phosphosites in troponin I (TnI). The increased Fpassive and pCa50, and the reduced maximum Ca2+-activated tension were reversed when we treated the isolated permeabilized cardiomyocytes with reduced glutathione (GSH). This indicated that myofilament protein oxidation contributes to cardiomyocyte dysfunction. Furthermore, the PKD1 cKO mice exhibited increased oxidative stress and increased expression of pro-inflammatory markers interleukin (IL)-6, IL-18, and tumor necrosis factor alpha (TNF-α). Both oxidative stress and inflammation contributed to an increase in microtubule-associated protein 1 light chain 3 (LC3)-II levels and heat shock response by inhibiting the mammalian target of rapamycin (mTOR) in the PKD1 cKO mouse myocytes. These findings revealed a previously unknown role for PKD1 in regulating diastolic passive properties, myofilament Ca2+ sensitivity, and maximum Ca2+-activated tension under conditions of oxidative stress. Finally, we emphasized the importance of PKD1 in maintaining the balance of oxidative stress and inflammation in the context of autophagy, as well as cardiomyocyte function.
Collapse
Affiliation(s)
- Melissa Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Merima Begovic
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Simin Delalat
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Saltanat Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Marcel Sieme
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Luca Schneider
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Kornelia Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University Bochum, 44789 Bochum, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University Bochum, 44789 Bochum, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Physiology, University Maastricht, 6211 LK Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
5
|
Martinez-Martin I, Crousilles A, Ochoa JP, Velazquez-Carreras D, Mortensen SA, Herrero-Galan E, Delgado J, Dominguez F, Garcia-Pavia P, de Sancho D, Wilmanns M, Alegre-Cebollada J. Titin domains with reduced core hydrophobicity cause dilated cardiomyopathy. Cell Rep 2023; 42:113490. [PMID: 38052212 DOI: 10.1016/j.celrep.2023.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The underlying genetic defect in most cases of dilated cardiomyopathy (DCM), a common inherited heart disease, remains unknown. Intriguingly, many patients carry single missense variants of uncertain pathogenicity targeting the giant protein titin, a fundamental sarcomere component. To explore the deleterious potential of these variants, we first solved the wild-type and mutant crystal structures of I21, the titin domain targeted by pathogenic variant p.C3575S. Although both structures are remarkably similar, the reduced hydrophobicity of deeply buried position 3575 strongly destabilizes the mutant domain, a scenario supported by molecular dynamics simulations and by biochemical assays that show no disulfide involving C3575. Prompted by these observations, we have found that thousands of similar hydrophobicity-reducing variants associate specifically with DCM. Hence, our results imply that titin domain destabilization causes DCM, a conceptual framework that not only informs pathogenicity assessment of gene variants but also points to therapeutic strategies counterbalancing protein destabilization.
Collapse
Affiliation(s)
- Ines Martinez-Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Audrey Crousilles
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain; Health in Code, 15008 A Coruña, Spain
| | | | - Simon A Mortensen
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | - Elias Herrero-Galan
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Javier Delgado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain
| | - Pablo Garcia-Pavia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, CIBERCV, 28222 Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU, 20018 Donostia-San Sebastian, Euskadi, Spain; Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
| | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, 22607 Hamburg, Germany
| | | |
Collapse
|
6
|
Day NJ, Kelly SS, Lui LY, Mansfield TA, Gaffrey MJ, Trejo JB, Sagendorf TJ, Attah K, Moore RJ, Douglas CM, Newman AB, Kritchevsky SB, Kramer PA, Marcinek DJ, Coen PM, Goodpaster BH, Hepple RT, Cawthon PM, Petyuk VA, Esser KA, Qian WJ, Cummings SR. Signatures of Cysteine Oxidation on Muscle Structural and Contractile Proteins Are Associated with Physical Performance and Muscle Function in Older Adults: Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.07.23298224. [PMID: 37986748 PMCID: PMC10659491 DOI: 10.1101/2023.11.07.23298224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Oxidative stress is considered a contributor to declining muscle function and mobility during aging; however, the underlying molecular mechanisms remain poorly described. We hypothesized that greater levels of cysteine (Cys) oxidation on muscle proteins are associated with decreased measures of mobility. Herein, we applied a novel redox proteomics approach to measure reversible protein Cys oxidation in vastus lateralis muscle biopsies collected from 56 subjects in the Study of Muscle, Mobility and Aging (SOMMA), a community-based cohort study of individuals aged 70 years and older. We tested whether levels of Cys oxidation on key muscle proteins involved in muscle structure and contraction were associated with muscle function (leg power and strength), walking speed, and fitness (VO2 peak on cardiopulmonary exercise testing) using linear regression models adjusted for age, sex, and body weight. Higher oxidation levels of select nebulin Cys sites were associated with lower VO2 peak, while greater oxidation of myomesin-1, myomesin-2, and nebulin Cys sites was associated with slower walking speed. Higher oxidation of Cys sites in key proteins such as myomesin-2, alpha-actinin-2, and skeletal muscle alpha-actin were associated with lower leg power and strength. We also observed an unexpected correlation (r = 0.48) between a higher oxidation level of 8 Cys sites in alpha-actinin-3 and stronger leg power. Despite this observation, the results generally support the hypothesis that Cys oxidation of muscle proteins impair muscle power and strength, walking speed, and cardiopulmonary fitness with aging.
Collapse
Affiliation(s)
- Nicholas J. Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Shane S. Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Tyler A. Mansfield
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jesse B. Trejo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tyler J. Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Collin M. Douglas
- Department of Physiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Anne B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Philip A. Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | | | - Russell T. Hepple
- Department of Physical Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Karyn A. Esser
- Department of Physiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| |
Collapse
|
7
|
Kaur V, Garg S, Rakshit S. Polyprotein synthesis: a journey from the traditional pre-translational method to modern post-translational approaches for single-molecule force spectroscopy. Chem Commun (Camb) 2023. [PMID: 37183922 DOI: 10.1039/d3cc01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polyproteins, an array of protein units of similar or differential functions in tandem, have been extensively utilized by organisms, unicellular or multicellular, as concentrators of the myriad of molecular activities. Most eukaryotic proteins, two-thirds in unicellular organisms, and more than 80% in metazoans, are polyproteins. Although the use of polyproteins continues to evolve in nature, our understanding of the structure-function-property of polyproteins is still limited. Cumbersome recombinant strategies and the lack of convenient in vitro synthetic routes of polyproteins have been rate-determining factors in the progress. However, in this review we have discussed the revolutionary journey of polyprotein synthesis with a major focus on surface-based structure-function-property studies, especially using force spectroscopy at the single-molecule level.
Collapse
Affiliation(s)
- Veerpal Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
| | - Surbhi Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India
| |
Collapse
|
8
|
Linke WA. Stretching the story of titin and muscle function. J Biomech 2023; 152:111553. [PMID: 36989971 DOI: 10.1016/j.jbiomech.2023.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The discovery of the giant protein titin, also known as connectin, dates almost half a century back. In this review, I recapitulate major advances in the discovery of the titin filaments and the recognition of their properties and function until today. I briefly discuss how our understanding of the layout and interactions of titin in muscle sarcomeres has evolved and review key facts about the titin sequence at the gene (TTN) and protein levels. I also touch upon properties of titin important for the stability of the contractile units and the assembly and maintenance of sarcomeric proteins. The greater part of my discussion centers around the mechanical function of titin in skeletal muscle. I cover milestones of research on titin's role in stretch-dependent passive tension development, recollect the reasons behind the enormous elastic diversity of titin, and provide an update on the molecular mechanisms of titin elasticity, details of which are emerging even now. I reflect on current knowledge of how muscle fibers behave mechanically if titin stiffness is removed and how titin stiffness can be dynamically regulated, such as by posttranslational modifications or calcium binding. Finally, I highlight novel and exciting, but still controversially discussed, insight into the role titin plays in active tension development, such as length-dependent activation and contraction from longer muscle lengths.
Collapse
Affiliation(s)
- Wolfgang A Linke
- Institute of Physiology II, University of Münster, Germany; Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| |
Collapse
|
9
|
Beedle AEM, Garcia-Manyes S. The role of single protein elasticity in mechanobiology. NATURE REVIEWS. MATERIALS 2023; 8:10-24. [PMID: 37469679 PMCID: PMC7614781 DOI: 10.1038/s41578-022-00488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 07/21/2023]
Abstract
In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. Yet the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are comparatively not so well understood. With the advent, development and refining of single molecule nanomechanical techniques, enabling to exquisitely probe the conformational dynamics of individual proteins under the effect of a calibrated force, we have begun to acquire a comprehensive knowledge on the rich plethora of physicochemical principles that regulate the elasticity of single proteins. Here we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of such a prolific and burgeoning field.
Collapse
Affiliation(s)
- Amy EM Beedle
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
| |
Collapse
|
10
|
Dupuy A, Ju LA, Chiu J, Passam FH. Mechano-Redox Control of Integrins in Thromboinflammation. Antioxid Redox Signal 2022; 37:1072-1093. [PMID: 35044225 DOI: 10.1089/ars.2021.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: How mechanical forces and biochemical cues are coupled remains a miracle for many biological processes. Integrins, well-known adhesion receptors, sense changes in mechanical forces and reduction-oxidation reactions (redox) in their environment to mediate their adhesive function. The coupling of mechanical and redox function is a new area of investigation. Disturbance of normal mechanical forces and the redox balance occurs in thromboinflammatory conditions; atherosclerotic plaques create changes to the mechanical forces in the circulation. Diabetes induces redox changes in the circulation by the production of reactive oxygen species and vascular inflammation. Recent Advances: Integrins sense changes in the blood flow shear stress at the level of focal adhesions and respond to flow and traction forces by increased signaling. Talin, the integrin-actin linker, is a traction force sensor and adaptor. Oxidation and reduction of integrin disulfide bonds regulate their adhesion. A conserved disulfide bond in integrin αlpha IIb beta 3 (αIIbβ3) is directly reduced by the thiol oxidoreductase endoplasmic reticulum protein 5 (ERp5) under shear stress. Critical Issues: The coordination of mechano-redox events between the extracellular and intracellular compartments is an active area of investigation. Another fundamental issue is to determine the spatiotemporal arrangement of key regulators of integrins' mechanical and redox interactions. How thromboinflammatory conditions lead to mechanoredox uncoupling is relatively unexplored. Future Directions: Integrated approaches, involving disulfide bond biochemistry, microfluidic assays, and dynamic force spectroscopy, will aid in showing that cell adhesion constitutes a crossroad of mechano- and redox biology, within the same molecule, the integrin. Antioxid. Redox Signal. 37, 1072-1093.
Collapse
Affiliation(s)
- Alexander Dupuy
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| | - Lining Arnold Ju
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia.,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Australia
| | - Joyce Chiu
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, Australia
| | - Freda H Passam
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| |
Collapse
|
11
|
Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin. Int J Mol Sci 2022; 23:ijms23179836. [PMID: 36077234 PMCID: PMC9456048 DOI: 10.3390/ijms23179836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titin is the largest protein in humans, composed of more than one hundred immunoglobulin (Ig) domains, and plays a critical role in muscle’s passive elasticity. Thus, the molecular design of this giant polyprotein is responsible for its mechanical function. Interestingly, most of these Ig domains are connected directly with very few interdomain residues/linker, which suggests such a design is necessary for its mechanical stability. To understand this design, we chose six representative Ig domains in titin and added nine glycine residues (9G) as an artificial interdomain linker between these Ig domains. We measured their mechanical stabilities using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) and compared them to the natural sequence. The AFM results showed that the linker affected the mechanical stability of Ig domains. The linker mostly reduces its mechanical stability to a moderate extent, but the opposite situation can happen. Thus, this effect is very complex and may depend on each particular domain’s property.
Collapse
|
12
|
Shi J, Watanabe D, Wada M. Eccentric muscle contraction potentiates titin stiffness-related contractile properties in rat fast-twitch muscles. J Appl Physiol (1985) 2022; 133:710-720. [PMID: 35981734 DOI: 10.1152/japplphysiol.00327.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to examine the effects of an acute bout of eccentric muscle contraction (ECC) on titin stiffness-related contractile properties in rat fast-twitch skeletal muscles. Intact gastrocnemius muscles were electrically stimulated in situ to undergo 200-repeated ECCs. Immediately after cessation of the stimulation, the superficial regions of the muscles were dissected and subjected to biochemical and skinned fiber analyses. Small heat shock protein αB-crystallin in the muscle fraction enriched for myofibrillar proteins was increased by ECC. ECC resulted in an increase in the titin-based passive force. Protein kinase A-treatment decreased the passive force only in ECC-subjected but not in rested fibers. ECC decreased the maximum Ca2+-activated force at a sarcomere length (SL) of 2.4 μm and had no effect on myofibrillar-Ca2+ sensitivity at 2.6-μm SL. In both rested and ECC-subjected fibers, these two variables were higher at 3.0-μm SL than at 2.4- or 2.6-μm SL. The differences in the two variables between the short and long SLs were greater in ECC-subjected than in rested fibers. These results indicate that an acute bout of ECC potentiates titin-based passive force, maximum active force at long SLs, and length-dependent activation and suggest that this potentiation may resist muscle fatigue in the muscles of the exercising body.
Collapse
Affiliation(s)
- Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.,Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Herrero-Galán E, Martínez-Martín I, Sánchez-González C, Vicente N, Bonzón-Kulichenko E, Calvo E, Suay-Corredera C, Pricolo MR, Fernández-Trasancos Á, Velázquez-Carreras D, Careaga CB, Abdellatif M, Sedej S, Rainer PP, Giganti D, Pérez-Jiménez R, Vázquez J, Alegre-Cebollada J. Basal oxidation of conserved cysteines modulates cardiac titin stiffness and dynamics. Redox Biol 2022; 52:102306. [PMID: 35367810 PMCID: PMC8971355 DOI: 10.1016/j.redox.2022.102306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023] Open
Abstract
Titin, as the main protein responsible for the passive stiffness of the sarcomere, plays a key role in diastolic function and is a determinant factor in the etiology of heart disease. Titin stiffness depends on unfolding and folding transitions of immunoglobulin-like (Ig) domains of the I-band, and recent studies have shown that oxidative modifications of cryptic cysteines belonging to these Ig domains modulate their mechanical properties in vitro. However, the relevance of this mode of titin mechanical modulation in vivo remains largely unknown. Here, we describe the high evolutionary conservation of titin mechanical cysteines and show that they are remarkably oxidized in murine cardiac tissue. Mass spectrometry analyses indicate a similar landscape of basal oxidation in murine and human myocardium. Monte Carlo simulations illustrate how disulfides and S-thiolations on these cysteines increase the dynamics of the protein at physiological forces, while enabling load- and isoform-dependent regulation of titin stiffness. Our results demonstrate the role of conserved cysteines in the modulation of titin mechanical properties in vivo and point to potential redox-based pathomechanisms in heart disease.
Collapse
Affiliation(s)
| | | | | | - Natalia Vicente
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Elena Bonzón-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | | | | | | | | | - Simon Sedej
- Division of Cardiology, Medical University of Graz, Graz, Austria; Faculty of Medicine, University of Maribor, Maribor, Slovenia; BioTechMed Graz, Graz, Austria
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - David Giganti
- Department of Biochemistry & Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, NY, United States
| | - Raúl Pérez-Jiménez
- CIC NanoGUNE BRTA, San Sebastian, Spain; Ikerbasque Foundation for Science, Bilbao, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | |
Collapse
|
14
|
The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0008422. [PMID: 35612303 PMCID: PMC9210963 DOI: 10.1128/jb.00084-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins’ relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.
Collapse
|
15
|
Mora M, Board S, Languin-Cattoën O, Masino L, Stirnemann G, Garcia-Manyes S. A Single-Molecule Strategy to Capture Non-native Intramolecular and Intermolecular Protein Disulfide Bridges. NANO LETTERS 2022; 22:3922-3930. [PMID: 35549281 PMCID: PMC9136921 DOI: 10.1021/acs.nanolett.2c00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Indexed: 05/04/2023]
Abstract
Non-native disulfide bonds are dynamic covalent bridges that form post-translationally between two cysteines within the same protein (intramolecular) or with a neighboring protein (intermolecular), frequently due to changes in the cellular redox potential. The reversible formation of non-native disulfides is intimately linked to alterations in protein function; while they can provide a mechanism to protect against cysteine overoxidation, they are also involved in the early stages of protein multimerization, a hallmark of several protein aggregation diseases. Yet their identification using current protein chemistry technology remains challenging, mainly because of their fleeting reactivity. Here, we use single-molecule spectroscopy AFM and molecular dynamics simulations to capture both intra- and intermolecular disulfide bonds in γD-crystallin, a cysteine-rich, structural human lens protein involved in age-related eye cataracts. Our approach showcases the power of mechanical force as a conformational probe in dynamically evolving proteins and presents a platform to detect non-native disulfide bridges with single-molecule resolution.
Collapse
Affiliation(s)
- Marc Mora
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Stephanie Board
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| | - Olivier Languin-Cattoën
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura Masino
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, 1 Midland Road London, NW1 1AT, United Kingdom
| | - Guillaume Stirnemann
- CNRS
Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Diderot,
Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sergi Garcia-Manyes
- Department
of Physics, Randall Centre for Cell and Molecular Biophysics and London
Centre for Nanotechnology, King’s
College London, Strand, WC2R 2LS London, United Kingdom
- Single
Molecule Mechanobiology Laboratory, The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, London United
Kingdom
| |
Collapse
|
16
|
Shi J, Watanabe D, Wada M. Effects of vigorous isometric muscle contraction on titin stiffness-related contractile properties in rat fast-twitch muscles. Am J Physiol Regul Integr Comp Physiol 2021; 321:R858-R868. [PMID: 34668430 DOI: 10.1152/ajpregu.00189.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
This study was conducted to examine the effects of an acute bout of vigorous isometric contractions on titin stiffness-related contractile properties in rat fast-twitch skeletal muscles. Intact gastrocnemius muscles were electrically stimulated in situ until the force was reduced to ∼50% of the initial force. Immediately after cessation of the stimulation, the superficial regions of the muscles were dissected and subjected to biochemical and skinned fiber analyses. The stimulation resulted in a decrease in the titin-based passive force. The amounts of fragmented titin were unchanged by the stimulation. Protein kinase Cα-treatment increased the passive force in stimulated fibers to resting levels. The stimulation had no effect on the maximum Ca2+-activated force (max Ca2+ force) at a sarcomere length (SL) of 2.4 μm and decreased myofibrillar (my)-Ca2+ sensitivity at 2.6-μm SL. Stretching the SL to 3.0 μm led to the augmentation of the max Ca2+ force and my-Ca2+ sensitivity in both rested and stimulated fibers. For the max Ca2+ force, the extent of the increase was smaller in stimulated than in rested fibers, whereas for my-Ca2+ sensitivity, it was higher in stimulated than in rested fibers. These results suggest that vigorous isometric contractions decrease the titin-based passive force, possibly because of a reduction in phosphorylation by protein kinase Cα, and that the decreased titin stiffness may contribute, at least in part, to muscle fatigue.
Collapse
Affiliation(s)
- Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima-shi, Japan
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| |
Collapse
|
17
|
Wang Z, Nie J, Shi S, Li G, Zheng P. Transforming de novo protein α 3D into a mechanically stable protein by zinc binding. Chem Commun (Camb) 2021; 57:11489-11492. [PMID: 34651619 DOI: 10.1039/d1cc04908a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
α3D is a de novo designed three-helix bundle protein. Like most naturally occurring helical proteins, it is mechanically labile with an unfolding force of <15 pN, revealed by atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). This protein has been further designed with a tri-cysteine metal-binding site, named α3DIV, which can bind heavy transition metals. Here, we demonstrate that incorporating such a metal-binding site can transform this mechanically labile protein into a stable one. We show that zinc binds to the tri-cysteine site and increases the unfolding force to ∼160 pN. This force is one order of magnitude higher than that of the apo-protein (<15 pN). Moreover, the unfolding mechanism of Zn-α3DIV indicates the correct zinc binding with the tri-cysteine site, forming three mechanostable Zn-thiolate bonds. Thus, α3DIV could be a potential α-helical structure-based building block for synthesizing biomaterials with tunable mechanical properties.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Shengcao Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Loescher CM, Hobbach AJ, Linke WA. Titin (TTN): from molecule to modifications, mechanics and medical significance. Cardiovasc Res 2021; 118:2903-2918. [PMID: 34662387 PMCID: PMC9648829 DOI: 10.1093/cvr/cvab328] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocardial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease, with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac conditions, such as HFpEF or TTN-truncation cardiomyopathy.
Collapse
Affiliation(s)
- Christine M Loescher
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| |
Collapse
|
19
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
20
|
Huerta-López C, Alegre-Cebollada J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1656. [PMID: 34202469 PMCID: PMC8307158 DOI: 10.3390/nano11071656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | |
Collapse
|
21
|
Song G, Tian F, Liu H, Li G, Zheng P. Pioglitazone Inhibits Metal Cluster Transfer of mitoNEET by Stabilizing the Labile Fe-N Bond Revealed at Single-Bond Level. J Phys Chem Lett 2021; 12:3860-3867. [PMID: 33856229 DOI: 10.1021/acs.jpclett.0c03852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Outer mitochondrial membrane protein mitoNEET (mNT) is a target of the type 2 diabetes drug pioglitazone. It contains a labile Fe2S2(His)1(Cys)3 metal cluster with a single Fe-N(His87) coordinating bond and can transfer its cluster to acceptor proteins. Previous ensemble studies showed that pioglitazone's binding inhibited the transfer by stabilizing the cluster, and histidine 87 may be the key mediator. Here we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to study the unfolding process of mNT dimer in the absence and presence of pioglitazone, which can distinguish the binding effect for different regions of a protein. By developing a two-step strategy using different mNT monomers with respective purification tags, we solve the problem that the classic polyprotein formation disables the mNT to dimerize. As a result, a polyprotein including a stable, naturally noncovalently bound mNT homodimer is obtained, which is required for reliable AFM measurement and pioglitazone binding. Then, the dissociation rate (koff) of the metal cluster was measured, showing a 10-fold decrease upon pioglitazone binding, while the other parts decreased only 3-fold, verifying that pioglitazone mainly stabilizes the cluster. Moreover, when the Fe(III)-N(His87) bond was ruptured, this effect for the remaining Fe2S2(Cys)3 intermediate largely disappeared. Consequently, AFM results revealed that pioglitazone inhibited the metal cluster transfer of mNT by stabilizing the labile Fe(III)-N(His87) bond. In addition, an alternative method to build a natural, noncovalently bound protein dimer or complex for reliable single-molecule measurement was developed.
Collapse
Affiliation(s)
- Guobin Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Huaxing Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
22
|
Banerjee S, Chakraborty S, Sreepada A, Banerji D, Goyal S, Khurana Y, Haldar S. Cutting-Edge Single-Molecule Technologies Unveil New Mechanics in Cellular Biochemistry. Annu Rev Biophys 2021; 50:419-445. [PMID: 33646813 DOI: 10.1146/annurev-biophys-090420-083836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule technologies have expanded our ability to detect biological events individually, in contrast to ensemble biophysical technologies, where the result provides averaged information. Recent developments in atomic force microscopy have not only enabled us to distinguish the heterogeneous phenomena of individual molecules, but also allowed us to view up to the resolution of a single covalent bond. Similarly, optical tweezers, due to their versatility and precision, have emerged as a potent technique to dissect a diverse range of complex biological processes, from the nanomechanics of ClpXP protease-dependent degradation to force-dependent processivity of motor proteins. Despite the advantages of optical tweezers, the time scales used in this technology were inconsistent with physiological scenarios, which led to the development of magnetic tweezers, where proteins are covalently linked with the glass surface, which in turn increases the observation window of a single biomolecule from minutes to weeks. Unlike optical tweezers, magnetic tweezers use magnetic fields to impose torque, which makes them convenient for studying DNA topology and topoisomerase functioning. Using modified magnetic tweezers, researchers were able to discover the mechanical role of chaperones, which support their substrate proteinsby pulling them during translocation and assist their native folding as a mechanical foldase. In this article, we provide a focused review of many of these new roles of single-molecule technologies, ranging from single bond breaking to complex chaperone machinery, along with the potential to design mechanomedicine, which would be a breakthrough in pharmacological interventions against many diseases.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Abhijit Sreepada
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Devshuvam Banerji
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shashwat Goyal
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Yajushi Khurana
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonipat, Haryana 131029, India;
| |
Collapse
|
23
|
Rees M, Nikoopour R, Fukuzawa A, Kho AL, Fernandez-Garcia MA, Wraige E, Bodi I, Deshpande C, Özdemir Ö, Daimagüler HS, Pfuhl M, Holt M, Brandmeier B, Grover S, Fluss J, Longman C, Farrugia ME, Matthews E, Hanna M, Muntoni F, Sarkozy A, Phadke R, Quinlivan R, Oates EC, Schröder R, Thiel C, Reimann J, Voermans N, Erasmus C, Kamsteeg EJ, Konersman C, Grosmann C, McKee S, Tirupathi S, Moore SA, Wilichowski E, Hobbiebrunken E, Dekomien G, Richard I, Van den Bergh P, Domínguez-González C, Cirak S, Ferreiro A, Jungbluth H, Gautel M. Making sense of missense variants in TTN-related congenital myopathies. Acta Neuropathol 2021; 141:431-453. [PMID: 33449170 PMCID: PMC7882473 DOI: 10.1007/s00401-020-02257-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Mutations in the sarcomeric protein titin, encoded by TTN, are emerging as a common cause of myopathies. The diagnosis of a TTN-related myopathy is, however, often not straightforward due to clinico-pathological overlap with other myopathies and the prevalence of TTN variants in control populations. Here, we present a combined clinico-pathological, genetic and biophysical approach to the diagnosis of TTN-related myopathies and the pathogenicity ascertainment of TTN missense variants. We identified 30 patients with a primary TTN-related congenital myopathy (CM) and two truncating variants, or one truncating and one missense TTN variant, or homozygous for one TTN missense variant. We found that TTN-related myopathies show considerable overlap with other myopathies but are strongly suggested by a combination of certain clinico-pathological features. Presentation was typically at birth with the clinical course characterized by variable progression of weakness, contractures, scoliosis and respiratory symptoms but sparing of extraocular muscles. Cardiac involvement depended on the variant position. Our biophysical analyses demonstrated that missense mutations associated with CMs are strongly destabilizing and exert their effect when expressed on a truncating background or in homozygosity. We hypothesise that destabilizing TTN missense mutations phenocopy truncating variants and are a key pathogenic feature of recessive titinopathies that might be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Martin Rees
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Roksana Nikoopour
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Atsushi Fukuzawa
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Miguel A Fernandez-Garcia
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Elizabeth Wraige
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Istvan Bodi
- Department of Clinical Neuropathology, King's College Hospital, London, UK
| | | | - Özkan Özdemir
- Centre for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hülya-Sevcan Daimagüler
- Centre for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mark Pfuhl
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | - Mark Holt
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre of Research Excellence, London, UK
| | - Birgit Brandmeier
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Sarah Grover
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
| | - Joël Fluss
- Pediatric Neurology Unit, Paediatrics Subspecialties Service, Geneva Children's Hospital, Geneva, Switzerland
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Emma Matthews
- MRC Neuromuscular Centre, National Hospital for Neurology and Neurosurgery, Queen's Square, London, UK
| | - Michael Hanna
- MRC Neuromuscular Centre, National Hospital for Neurology and Neurosurgery, Queen's Square, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital Trust, London, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
| | - Ros Quinlivan
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
| | - Emily C Oates
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children, London, UK
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sidney, Australia
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Thiel
- Department of Genetics, University of Erlangen, Erlangen, Germany
| | - Jens Reimann
- Muscle Laboratory, Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Corrie Erasmus
- Department of Paediatric Neurology, Radboud University, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chaminda Konersman
- UCSD, Rady Children's Hospital, and VA San Diego Healthcare System, San Diego, USA
| | | | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Sandya Tirupathi
- Department of Paediatric Neurology, Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Steven A Moore
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | | | - Elke Hobbiebrunken
- Department of Paediatric Neurology, University of Göttingen, Göttingen, Germany
| | | | - Isabelle Richard
- Genethon and UMR_S951, INSERM, Université Evry, Université Paris Saclay, Evry, 91002, Evry, France
| | - Peter Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | | | - Sebahattin Cirak
- Centre for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Centre for Rare Diseases (ZSEK), University of Cologne, Cologne, Germany
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, Université de Paris, Paris, France
- Centre de Référence Des Maladies Neuromusculaires, APHP, Institut of Myology, GHU Pitié Salpêtrière- Charles Foix, Paris, France
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
- Department of Clinical and Basic Neuroscience, IoPPN, King's College London, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, Muscle Biophysics, King's College London BHF Centre of Research Excellence, London, UK.
| |
Collapse
|
24
|
Abstract
During biofilm formation, the opportunistic pathogen Pseudomonas aeruginosa uses its type IV pili (TFP) to sense a surface, eliciting increased second-messenger production and regulating target pathways required to adapt to a surface lifestyle. The mechanisms whereby TFP detect surface contact are still poorly understood, although mechanosensing is often invoked, with few data supporting this claim. Using a combination of molecular genetics and single-cell analysis, with biophysical, biochemical, and genomics techniques, we show that force-induced changes mediated by the von Willebrand A (vWA) domain-containing, TFP tip-associated protein PilY1 are required for surface sensing. Atomic force microscopy shows that TFP/PilY1 can undergo force-induced, sustained conformational changes akin to those observed for mechanosensitive proteins like titin. We show that mutation of a single cysteine residue in the vWA domain of PilY1 results in modestly lower surface adhesion forces, reduced sustained conformational changes, and increased nanospring-like properties, as well as reduced c-di-GMP signaling and biofilm formation. Mutating this cysteine has allowed us to genetically separate a role for TFP in twitching motility from surface-sensing signaling. The conservation of this Cys residue in all P. aeruginosa PA14 strains and its absence in the ∼720 sequenced strains of P. aeruginosa PAO1 may contribute to explaining the observed differences in surface colonization strategies observed for PA14 versus PAO1. IMPORTANCE Most bacteria live on abiotic and biotic surfaces in surface-attached communities known as biofilms. Surface sensing and increased levels of the second-messenger molecule c-di-GMP are crucial to the transition from planktonic to biofilm growth. The mechanism(s) underlying TFP-mediated surface detection that triggers this c-di-GMP signaling cascade is unclear. Here, we provide key insight into this question; we show that the eukaryote-like vWA domain of the TFP tip-associated protein PilY1 responds to mechanical force, which in turn drives the production of a key second messenger needed to regulate surface behaviors. Our studies highlight a potential mechanism that may account for differing surface colonization strategies.
Collapse
|
25
|
Tomin T, Schittmayer M, Sedej S, Bugger H, Gollmer J, Honeder S, Darnhofer B, Liesinger L, Zuckermann A, Rainer PP, Birner-Gruenberger R. Mass Spectrometry-Based Redox and Protein Profiling of Failing Human Hearts. Int J Mol Sci 2021; 22:1787. [PMID: 33670142 PMCID: PMC7916846 DOI: 10.3390/ijms22041787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress contributes to detrimental functional decline of the myocardium, leading to the impairment of the antioxidative defense, dysregulation of redox signaling, and protein damage. In order to precisely dissect the changes of the myocardial redox state correlated with oxidative stress and heart failure, we subjected left-ventricular tissue specimens collected from control or failing human hearts to comprehensive mass spectrometry-based redox and quantitative proteomics, as well as glutathione status analyses. As a result, we report that failing hearts have lower glutathione to glutathione disulfide ratios and increased oxidation of a number of different proteins, including constituents of the contractile machinery as well as glycolytic enzymes. Furthermore, quantitative proteomics of failing hearts revealed a higher abundance of proteins responsible for extracellular matrix remodeling and reduced abundance of several ion transporters, corroborating contractile impairment. Similar effects were recapitulated by an in vitro cell culture model under a controlled oxygen atmosphere. Together, this study provides to our knowledge the most comprehensive report integrating analyses of protein abundance and global and peptide-level redox state in end-stage failing human hearts as well as oxygen-dependent redox and global proteome profiles of cultured human cardiomyocytes.
Collapse
Affiliation(s)
- Tamara Tomin
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Matthias Schittmayer
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Simon Sedej
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Johannes Gollmer
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Andreas Zuckermann
- Cardiac Transplantation, Department of Cardiac Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
| | - Peter P. Rainer
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Ruth Birner-Gruenberger
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| |
Collapse
|
26
|
Bobyleva LG, Shumeyko SA, Yakupova EI, Surin AK, Galzitskaya OV, Kihara H, Timchenko AA, Timchenko MA, Penkov NV, Nikulin AD, Suvorina MY, Molochkov NV, Lobanov MY, Fadeev RS, Vikhlyantsev IM, Bobylev AG. Myosin Binding Protein-C Forms Amyloid-Like Aggregates In Vitro. Int J Mol Sci 2021; 22:ijms22020731. [PMID: 33450960 PMCID: PMC7828380 DOI: 10.3390/ijms22020731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022] Open
Abstract
This work investigated in vitro aggregation and amyloid properties of skeletal myosin binding protein-C (sMyBP-C) interacting in vivo with proteins of thick and thin filaments in the sarcomeric A-disc. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) found a rapid (5–10 min) formation of large (>2 μm) aggregates. sMyBP-C oligomers formed both at the initial 5–10 min and after 16 h of aggregation. Small angle X-ray scattering (SAXS) and DLS revealed sMyBP-C oligomers to consist of 7–10 monomers. TEM and atomic force microscopy (AFM) showed sMyBP-C to form amorphous aggregates (and, to a lesser degree, fibrillar structures) exhibiting no toxicity on cell culture. X-ray diffraction of sMyBP-C aggregates registered reflections attributed to a cross-β quaternary structure. Circular dichroism (CD) showed the formation of the amyloid-like structure to occur without changes in the sMyBP-C secondary structure. The obtained results indicating a high in vitro aggregability of sMyBP-C are, apparently, a consequence of structural features of the domain organization of proteins of this family. Formation of pathological amyloid or amyloid-like sMyBP-C aggregates in vivo is little probable due to amino-acid sequence low identity (<26%), alternating ordered/disordered regions in the protein molecule, and S–S bonds providing for general stability.
Collapse
Affiliation(s)
- Liya G. Bobyleva
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
| | - Sergey A. Shumeyko
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
| | - Elmira I. Yakupova
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
| | - Alexey K. Surin
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.K.S.); (M.Y.S.); (M.Y.L.)
- Biological Testing Laboratory, Branch of the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of the Biochemistry of Pathogenic Microorganisms, State Research Centre for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov District, Russia
| | - Oxana V. Galzitskaya
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.K.S.); (M.Y.S.); (M.Y.L.)
| | - Hiroshi Kihara
- Department of Early Childhood Education, Himeji-Hinomoto College, 890 Koro, Kodera-cho, Himeji 679-2151, Japan;
| | - Alexander A. Timchenko
- Group of Experimental Research and Engineering of Oligomeric Structures, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Maria A. Timchenko
- Laboratory of Applied Enzymology, FRC PSCBR, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikita V. Penkov
- Laboratory of the Methods of Optical Spectral Analysis, Institute of Cell Biophysics, Russian Academy of Sciences, FRC PSCBR RAS, 142290 Pushchino, Russia;
| | - Alexey D. Nikulin
- Laboratory for Structural Studies of the Translational Apparatus, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Mariya Yu. Suvorina
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.K.S.); (M.Y.S.); (M.Y.L.)
| | - Nikolay V. Molochkov
- Laboratory of NMR Investigations of Biosystems, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Mikhail Yu. Lobanov
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.K.S.); (M.Y.S.); (M.Y.L.)
| | - Roman S. Fadeev
- Laboratory of Pharmacological Regulation of Cell Resistance, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Ivan M. Vikhlyantsev
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
- Correspondence: (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Laboratory of the Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (L.G.B.); (S.A.S.); (E.I.Y.); (O.V.G.)
- Correspondence: (I.M.V.); (A.G.B.)
| |
Collapse
|
27
|
Ding Y, Apostolidou D, Marszalek P. Mechanical Stability of a Small, Highly-Luminescent Engineered Protein NanoLuc. Int J Mol Sci 2020; 22:E55. [PMID: 33374567 PMCID: PMC7801952 DOI: 10.3390/ijms22010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022] Open
Abstract
NanoLuc is a bioluminescent protein recently engineered for applications in molecular imaging and cellular reporter assays. Compared to other bioluminescent proteins used for these applications, like Firefly Luciferase and Renilla Luciferase, it is ~150 times brighter, more thermally stable, and smaller. Yet, no information is known with regards to its mechanical properties, which could introduce a new set of applications for this unique protein, such as a novel biomaterial or as a substrate for protein activity/refolding assays. Here, we generated a synthetic NanoLuc derivative protein that consists of three connected NanoLuc proteins flanked by two human titin I91 domains on each side and present our mechanical studies at the single molecule level by performing Single Molecule Force Spectroscopy (SMFS) measurements. Our results show each NanoLuc repeat in the derivative behaves as a single domain protein, with a single unfolding event occurring on average when approximately 72 pN is applied to the protein. Additionally, we performed cyclic measurements, where the forces applied to a single protein were cyclically raised then lowered to allow the protein the opportunity to refold: we observed the protein was able to refold to its correct structure after mechanical denaturation only 16.9% of the time, while another 26.9% of the time there was evidence of protein misfolding to a potentially non-functional conformation. These results show that NanoLuc is a mechanically moderately weak protein that is unable to robustly refold itself correctly when stretch-denatured, which makes it an attractive model for future protein folding and misfolding studies.
Collapse
Affiliation(s)
- Yue Ding
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; (Y.D.); (D.A.)
- Department of Engineering Mechanics, SVL, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; (Y.D.); (D.A.)
| | - Piotr Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; (Y.D.); (D.A.)
| |
Collapse
|
28
|
Papanikolaou K, Veskoukis AS, Draganidis D, Baloyiannis I, Deli CK, Poulios A, Jamurtas AZ, Fatouros IG. Redox-dependent regulation of satellite cells following aseptic muscle trauma: Implications for sports performance and nutrition. Free Radic Biol Med 2020; 161:125-138. [PMID: 33039652 DOI: 10.1016/j.freeradbiomed.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle satellite cells (SCs) are indispensable for tissue regeneration, remodeling and growth. Following myotrauma, SCs are activated, and assist in tissue repair. Exercise-induced muscle damage (EIMD) is characterized by a pronounced inflammatory response and the production of reactive oxygen species (ROS). Experimental evidence suggests that SCs kinetics (the propagation from a quiescent to an activated/proliferative state) following EIMD is redox-dependent and interconnected with changes in the SCs microenvironment (niche). Animal studies have shown that following aseptic myotrauma, antioxidant and/or anti-inflammatory supplementation leads to an improved recovery and skeletal muscle regeneration through enhanced SCs kinetics, suggesting a redox-dependent molecular mechanism. Although evidence suggests that antioxidant/anti-inflammatory compounds may prevent performance deterioration and enhance recovery, there is lack of information regarding the redox-dependent regulation of SCs responses following EIMD in humans. In this review, SCs kinetics following aseptic myotrauma, as well as the intrinsic redox-sensitive molecular mechanisms responsible for SCs responses are discussed. The role of redox status on SCs function should be further investigated in the future with human clinical trials in an attempt to elucidate the molecular pathways responsible for muscle recovery and provide information for potential nutritional strategies aiming at performance recovery.
Collapse
Affiliation(s)
- Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, University of Thessaly, Argonafton 1, 42132, Trikala, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis Baloyiannis
- Department of Surgery, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Chariklia K Deli
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Z Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece.
| |
Collapse
|
29
|
Song G, Ding X, Liu H, Yuan G, Tian F, Shi S, Yang Y, Li G, Zheng P. Single-Molecule Force Spectroscopy Reveals that the Fe-N Bond Enables Multiple Rupture Pathways of the 2Fe2S Cluster in a MitoNEET Monomer. Anal Chem 2020; 92:14783-14789. [PMID: 33048522 DOI: 10.1021/acs.analchem.0c03536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mitochondrial outer membrane protein, mitoNEET (mNT), is an iron-sulfur protein containing an Fe2S2(His)1(Cys)3 cluster with a unique single Fe-N bond. Previous studies have shown that this Fe(III)-N(His) bond is essential for metal cluster transfer and protein function. To further understand the effect of this unique Fe-N bond on the metal cluster and protein, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to investigate the mechanical unfolding mechanism of an mNT monomer, focusing on the rupture pathway and kinetic stability of the cluster. We found that the Fe-N bond was the weakest point of the cluster, the rupture of which occurred first, and could be independent of the cluster break. Moreover, this Fe-N bond enabled a dynamic and labile iron-sulfur cluster, as multiple unfolding pathways of mNT with a unique Fe2S2(Cys)3 intermediate were observed accordingly.
Collapse
Affiliation(s)
- Guobin Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xuan Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Huaxing Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Guodong Yuan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
30
|
Loescher CM, Breitkreuz M, Li Y, Nickel A, Unger A, Dietl A, Schmidt A, Mohamed BA, Kötter S, Schmitt JP, Krüger M, Krüger M, Toischer K, Maack C, Leichert LI, Hamdani N, Linke WA. Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx). Proc Natl Acad Sci U S A 2020; 117:24545-24556. [PMID: 32929035 PMCID: PMC7533878 DOI: 10.1073/pnas.2004900117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relationship between oxidative stress and cardiac stiffness is thought to involve modifications to the giant muscle protein titin, which in turn can determine the progression of heart disease. In vitro studies have shown that S-glutathionylation and disulfide bonding of titin fragments could alter the elastic properties of titin; however, whether and where titin becomes oxidized in vivo is less certain. Here we demonstrate, using multiple models of oxidative stress in conjunction with mechanical loading, that immunoglobulin domains preferentially from the distal titin spring region become oxidized in vivo through the mechanism of unfolded domain oxidation (UnDOx). Via oxidation type-specific modification of titin, UnDOx modulates human cardiomyocyte passive force bidirectionally. UnDOx also enhances titin phosphorylation and, importantly, promotes nonconstitutive folding and aggregation of unfolded domains. We propose a mechanism whereby UnDOx enables the controlled homotypic interactions within the distal titin spring to stabilize this segment and regulate myocardial passive stiffness.
Collapse
Affiliation(s)
| | - Martin Breitkreuz
- Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yong Li
- Institute of Physiology II, University of Munster, 48149 Munster, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center Wuerzburg, University Clinic Wuerzburg, 97078 Wuerzburg, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Munster, 48149 Munster, Germany
| | - Alexander Dietl
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Andreas Schmidt
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Joachim P Schmitt
- Department of Pharmacology and Clinical Pharmacology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center Wuerzburg, University Clinic Wuerzburg, 97078 Wuerzburg, Germany
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Munster, 48149 Munster, Germany;
| |
Collapse
|
31
|
Bobylev AG, Yakupova EI, Bobyleva LG, Galzitskaya OV, Nikulin AD, Shumeyko SA, Yurshenas DA, Vikhlyantsev IM. Changes in Titin Structure during Its Aggregation. Mol Biol 2020. [DOI: 10.1134/s0026893320040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Sharma S, Subramani S, Popa I. Does protein unfolding play a functional role in vivo? FEBS J 2020; 288:1742-1758. [PMID: 32761965 DOI: 10.1111/febs.15508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics.
Collapse
Affiliation(s)
- Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Smrithika Subramani
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
33
|
The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophys Rev 2020; 12:947-968. [PMID: 32691301 PMCID: PMC7429613 DOI: 10.1007/s12551-020-00742-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of cardiovascular pathologies. These signaling networks contribute to the development of age-related diseases, suggesting crosstalk between the development of aging and cardiovascular disease. Inhibition and/or attenuation of these signaling networks also delays the onset of disease. Therefore, a concept of targeting the signaling networks that are involved in inflammation and oxidative stress may represent a novel treatment paradigm for many types of heart disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress especially in heart failure with preserved ejection fraction and emphasize the nature of the crosstalk of these signaling processes as well as possible therapeutic implications for cardiovascular medicine.
Collapse
|
34
|
The Mechanical Power of Titin Folding. Cell Rep 2020; 27:1836-1847.e4. [PMID: 31067467 PMCID: PMC6937205 DOI: 10.1016/j.celrep.2019.04.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/09/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
The delivery of mechanical power, a crucial component of animal motion, is constrained by the universal compromise between the force and the velocity of its constituent molecular systems. While the mechanisms of force generation have been studied at the single molecular motor level, there is little understanding of the magnitude of power that can be generated by folding proteins. Here, we use single-molecule force spectroscopy techniques to measure the force-velocity relation of folding titin domains that contain single internal disulfide bonds, a common feature throughout the titin I-band. We find that formation of the disulfide regulates the peak power output of protein folding in an all-or-none manner, providing at 6.0 pN, for example, a boost from 0 to 6,000 zW upon oxidation. This mechanism of power generation from protein folding is of great importance for muscle, where titin domains may unfold and refold with each extension and contraction of the sarcomere. Eckels et al. use single-molecule magnetic tweezers to simultaneously probe the folding dynamics of titin Ig domains and monitor the redox status of single disulfides within the Ig fold. Oxidation of the disulfide bond greatly increases both the folding force and the magnitude of power delivered by protein folding.
Collapse
|
35
|
Kolijn D, Kovács Á, Herwig M, Lódi M, Sieme M, Alhaj A, Sandner P, Papp Z, Reusch PH, Haldenwang P, Falcão-Pires I, Linke WA, Jaquet K, Van Linthout S, Mügge A, Tschöpe C, Hamdani N. Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Front Physiol 2020; 11:345. [PMID: 32523538 PMCID: PMC7261855 DOI: 10.3389/fphys.2020.00345] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Aims Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF). Methods Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated in vivo with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (Fpassive) was determined in rats and human myocardium biopsies before and after acute treatment. Titin phosphorylation, activation of the NO/sGC/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade, as well as hypertrophic pathways including NO/sGC/cGMP/PKG, PKA, calcium–calmodulin kinase II (CaMKII), extracellular signal-regulated kinase 2 (ERK2), and PKC were assessed. In addition, we explored the contribution of pro-inflammatory cytokines and oxidative stress levels to the modulation of cardiomyocyte function. Immunohistochemistry and electron microscopy were used to assess the translocation of sGC and connexin 43 proteins in the rat model before and after treatment. Results High cardiomyocyte Fpassive was found in rats and human myocardial biopsies compared to control groups, which was attributed to hypophosphorylation of total titin and to deranged site-specific phosphorylation of elastic titin regions. This was accompanied by lower levels of PKG and PKA activity, along with dysregulation of hypertrophic pathway markers such as CaMKII, PKC, and ERK2. Furthermore, DSS rats and human myocardium biopsies showed higher pro-inflammatory cytokines and oxidative stress compared to controls. DSS animals benefited from treatment with the sGC activator, as Fpassive, titin phosphorylation, PKG and the hypertrophic pathway kinases, pro-inflammatory cytokines, and oxidative stress markers all significantly improved to the level observed in controls. Immunohistochemistry and electron microscopy revealed a translocation of sGC protein toward the intercalated disc and t-tubuli following treatment in both control and DSS samples. This translocation was confirmed by staining for the gap junction protein connexin 43 at the intercalated disk. DSS rats showed a disrupted connexin 43 pattern, and sGC activator was able to partially reduce disruption and increase expression of connexin 43. In human HFpEF biopsies, the high Fpassive, reduced titin phosphorylation, dysregulation of the NO–sGC–cGMP–PKG pathway and PKA activity level, and activity of kinases involved in hypertrophic pathways CaMKII, PKC, and ERK2 were all significantly improved by sGC treatment and accompanied by a reduction in pro-inflammatory cytokines and oxidative stress markers. Conclusion Our data show that sGC activator improves cardiomyocyte function, reduces inflammation and oxidative stress, improves sGC–PKG signaling, and normalizes hypertrophic kinases, indicating that it is a potential treatment option for HFpEF patients and perhaps also for cases with increased hypertrophic signaling.
Collapse
Affiliation(s)
- Detmar Kolijn
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Melissa Herwig
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Mária Lódi
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,University of Debrecen, Kálmán Laki Doctoral School, Debrecen, Hungary
| | - Marcel Sieme
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Abdulatif Alhaj
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Peter Sandner
- Bayer AG, Drug Discovery Cardiology, Wuppertal, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter H Reusch
- Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany
| | - Peter Haldenwang
- Department of Cardiothoracic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Ines Falcão-Pires
- Department of Surgery and Physiology and Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, University of Münster, Münster, Germany
| | - Kornelia Jaquet
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Sophie Van Linthout
- Department of Medicine and Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Mügge
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany
| | - Carsten Tschöpe
- Department of Medicine and Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Clinical Pharmacology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Joseph Hospital, Ruhr University Bochum, Bochum, Germany.,Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
37
|
Rivas-Pardo JA, Li Y, Mártonfalvi Z, Tapia-Rojo R, Unger A, Fernández-Trasancos Á, Herrero-Galán E, Velázquez-Carreras D, Fernández JM, Linke WA, Alegre-Cebollada J. A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nat Commun 2020; 11:2060. [PMID: 32345978 PMCID: PMC7189229 DOI: 10.1038/s41467-020-15465-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022] Open
Abstract
Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Jaime Andrés Rivas-Pardo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
- Center for Genomics and Bioinformatics, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Yong Li
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Andreas Unger
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | | | | | | | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany.
| | | |
Collapse
|
38
|
Deng Y, Shi S, Zheng B, Wu T, Zheng P. Enzymatic Construction of Protein Polymer/Polyprotein Using OaAEP1 and TEV Protease. Bio Protoc 2020; 10:e3596. [PMID: 33659562 PMCID: PMC7842765 DOI: 10.21769/bioprotoc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 04/01/2024] Open
Abstract
The development of chemical and biological coupling technologies in recent years has made possible of protein polymers engineering. We have developed an enzymatic method for building polyproteins using a protein ligase OaAEP1 (asparagine endopeptidase 1) and protease TEV (tobacco etching virus). Using a mobile TEV protease site compatible with the OaAEP1 ligation, we achieved a stepwise polymerization of the protein on the surface. The produced polyprotein can be verified by protein unfolding scenario using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). Thus, this study provides an alternative method for polyprotein engineering and immobilization.
Collapse
Affiliation(s)
- Yibing Deng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Tao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| |
Collapse
|
39
|
Wang F, Diesendruck CE. Effect of disulphide loop length on mechanochemical structural stability of macromolecules. Chem Commun (Camb) 2020; 56:2143-2146. [DOI: 10.1039/c9cc07439b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polymer chains folded with a single disulphide loop are shown to present distinct rates of mechanochemical fragmentation.
Collapse
Affiliation(s)
- Feng Wang
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa
- Israel
- School of Chemical Engineering
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and Russell-Berrie Nanotechnology Institute
- Technion – Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|
40
|
Dopieralski P, Zoloff Michoff ME, Marx D. Mechanochemical disulfide reduction reveals imprints of noncovalent sulfur⋯oxygen chalcogen bonds in protein-inspired mimics in aqueous solution. Phys Chem Chem Phys 2020; 22:25112-25117. [DOI: 10.1039/d0cp04026f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chalcogen bonds in proteins are found to impact on the mechanochemical reduction of disulfide bridges in aqueous environments.
Collapse
Affiliation(s)
| | | | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
41
|
Tian F, Li G, Zheng B, Liu Y, Shi S, Deng Y, Zheng P. Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations. Chem Commun (Camb) 2020; 56:3943-3946. [DOI: 10.1039/d0cc00714e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SMFS and MD simulations revealed a closed conformation and a decreased stability of sortase-mediated polyprotein I27 when a linker with a high content of glycine is used.
Collapse
Affiliation(s)
- Fang Tian
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yutong Liu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
42
|
Echarri A, Pavón DM, Sánchez S, García-García M, Calvo E, Huerta-López C, Velázquez-Carreras D, Viaris de Lesegno C, Ariotti N, Lázaro-Carrillo A, Strippoli R, De Sancho D, Alegre-Cebollada J, Lamaze C, Parton RG, Del Pozo MA. An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat Commun 2019; 10:5828. [PMID: 31862885 PMCID: PMC6925243 DOI: 10.1038/s41467-019-13782-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling. Mechanical forces are sensed by cells and can alter plasma membrane properties, but biochemical changes underlying this are not clear. Here the authors show tension is sensed by c-Abl and FBP17, which couples changes in mechanical tension to remodelling of the plasma membrane and actin cytoskeleton.
Collapse
Affiliation(s)
- Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Dácil M Pavón
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - María García-García
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Carla Huerta-López
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Diana Velázquez-Carreras
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Nicholas Ariotti
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Lázaro-Carrillo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | - David De Sancho
- Departamento de Ciencia y Tecnología de Polímeros, Euskal Herriko Unibertsitatea, 20018, Donostia-San Sebastián, Spain.,Donostia International Physics Center, Manuel Lardizabal Ibilbidea, 4, 20018, Donostia-San Sebastián, Spain
| | - Jorge Alegre-Cebollada
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Robert G Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
43
|
Chatziefthimiou SD, Hornburg P, Sauer F, Mueller S, Ugurlar D, Xu ER, Wilmanns M. Structural diversity in the atomic resolution 3D fingerprint of the titin M-band segment. PLoS One 2019; 14:e0226693. [PMID: 31856237 PMCID: PMC6922384 DOI: 10.1371/journal.pone.0226693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 11/18/2022] Open
Abstract
In striated muscles, molecular filaments are largely composed of long protein chains with extensive arrays of identically folded domains, referred to as “beads-on-a-string”. It remains a largely unresolved question how these domains have developed a unique molecular profile such that each carries out a distinct function without false-positive readout. This study focuses on the M-band segment of the sarcomeric protein titin, which comprises ten identically folded immunoglobulin domains. Comparative analysis of high-resolution structures of six of these domains ‒ M1, M3, M4, M5, M7, and M10 ‒ reveals considerable structural diversity within three distinct loops and a non-conserved pattern of exposed cysteines. Our data allow to structurally interpreting distinct pathological readouts that result from titinopathy-associated variants. Our findings support general principles that could be used to identify individual structural/functional profiles of hundreds of identically folded protein domains within the sarcomere and other densely crowded cellular environments.
Collapse
Affiliation(s)
| | - Philipp Hornburg
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Florian Sauer
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Simone Mueller
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Deniz Ugurlar
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Emma-Ruoqi Xu
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- University Hamburg Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
44
|
Bobyleva LG, Yakupova EI, Ulanova AD, Udaltsov SN, Shumeyko SA, Salmov NN, Bobylev AG, Vikhlyantsev IM. On the Peculiarities of the Aggregation of Multidomain Muscle Proteins. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Siitonen A, Kytövuori L, Nalls MA, Gibbs R, Hernandez DG, Ylikotila P, Peltonen M, Singleton AB, Majamaa K. Finnish Parkinson's disease study integrating protein-protein interaction network data with exome sequencing analysis. Sci Rep 2019; 9:18865. [PMID: 31827228 PMCID: PMC6906405 DOI: 10.1038/s41598-019-55479-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
Variants associated with Parkinson's disease (PD) have generally a small effect size and, therefore, large sample sizes or targeted analyses are required to detect significant associations in a whole exome sequencing (WES) study. Here, we used protein-protein interaction (PPI) information on 36 genes with established or suggested associations with PD to target the analysis of the WES data. We performed an association analysis on WES data from 439 Finnish PD subjects and 855 controls, and included a Finnish population cohort as the replication dataset with 60 PD subjects and 8214 controls. Single variant association (SVA) test in the discovery dataset yielded 11 candidate variants in seven genes, but the associations were not significant in the replication cohort after correction for multiple testing. Polygenic risk score using variants rs2230288 and rs2291312, however, was associated to PD with odds ratio of 2.7 (95% confidence interval 1.4-5.2; p < 2.56e-03). Furthermore, an analysis of the PPI network revealed enriched clusters of biological processes among established and candidate genes, and these functional networks were visualized in the study. We identified novel candidate variants for PD using a gene prioritization based on PPI information, and described why these variants may be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ari Siitonen
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland.
- Department of Neurology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mike A Nalls
- Laboratory for Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, 20812, USA
| | - Raphael Gibbs
- Laboratory for Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dena G Hernandez
- Laboratory for Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Pauli Ylikotila
- Institute of Clinical Medicine, Department of Neurology, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | | | - Andrew B Singleton
- Laboratory for Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
46
|
Fukutani A, Herzog W. Current Understanding of Residual Force Enhancement: Cross-Bridge Component and Non-Cross-Bridge Component. Int J Mol Sci 2019; 20:ijms20215479. [PMID: 31689920 PMCID: PMC6862632 DOI: 10.3390/ijms20215479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Muscle contraction is initiated by the interaction between actin and myosin filaments. The sliding of actin filaments relative to myosin filaments is produced by cross-bridge cycling, which is governed by the theoretical framework of the cross-bridge theory. The cross-bridge theory explains well a number of mechanical responses, such as isometric and concentric contractions. However, some experimental observations cannot be explained with the cross-bridge theory; for example, the increased isometric force after eccentric contractions. The steady-state, isometric force after an eccentric contraction is greater than that attained in a purely isometric contraction at the same muscle length and same activation level. This well-acknowledged and universally observed property is referred to as residual force enhancement (rFE). Since rFE cannot be explained by the cross-bridge theory, alternative mechanisms for explaining this force response have been proposed. In this review, we introduce the basic concepts of sarcomere length non-uniformity and titin elasticity, which are the primary candidates that have been used for explaining rFE, and discuss unresolved problems regarding these mechanisms, and how to proceed with future experiments in this exciting area of research.
Collapse
Affiliation(s)
- Atsuki Fukutani
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| | - Walter Herzog
- Faculty of Kinesiology, The University of Calgary, 2500 University Drive, NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
47
|
Yuan G, Liu H, Ma Q, Li X, Nie J, Zuo J, Zheng P. Single-Molecule Force Spectroscopy Reveals that Iron-Ligand Bonds Modulate Proteins in Different Modes. J Phys Chem Lett 2019; 10:5428-5433. [PMID: 31433648 DOI: 10.1021/acs.jpclett.9b01573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The iron-amino acid interactions Fe-O(Glu/Asp), Fe-N(His), and Fe-S(Cys) are the three major iron-ligand bonds in proteins. To compare their properties in proteins, we used atomic force microscopy (AFM)-based single-molecule force spectroscopy to investigate a superoxide reductase (Fe(III)-SOR) with all three types of bonds forming an Fe(His)4CysGlu center. We first found that Apo-SOR without bound iron showed multiple unfolding pathways only from the β-barrel core. Then, using Holo-SOR with a ferric ion, we found that a single Fe-O(Glu) bond can tightly connect the flexible N-terminal fragment to the β-barrel and stabilize the whole protein, showing a complete protein unfolding scenario, while the single Fe-N(His) bond was weak and unable to provide such a stabilization. Moreover, when multiple Fe-N bonds are present, a similar stabilization effect can be achieved. Our results showed that the iron-ligand bond modulates protein structure and stability in different modes at the single-bond level.
Collapse
Affiliation(s)
- Guodong Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , People's Republic of China
| | - Huaxing Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , People's Republic of China
| | - Qun Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , People's Republic of China
| | - Xi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , People's Republic of China
| | - Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , People's Republic of China
| | - Jinglin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , People's Republic of China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , People's Republic of China
| |
Collapse
|
48
|
Salcan S, Bongardt S, Monteiro Barbosa D, Efimov IR, Rassaf T, Krüger M, Kötter S. Elastic titin properties and protein quality control in the aging heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118532. [PMID: 31421188 DOI: 10.1016/j.bbamcr.2019.118532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Cardiac aging affects the heart on the functional, structural, and molecular level and shares characteristic hallmarks with the development of chronic heart failure. Apart from age-dependent left ventricular hypertrophy and fibrosis that impairs diastolic function, diminished activity of cardiac protein-quality-control systems increases the risk of cytotoxic accumulation of defective proteins. Here, we studied the impact of cardiac aging on the sarcomeric protein titin by analyzing titin-based cardiomyocyte passive tension, titin modification and proteasomal titin turnover. We analyzed left ventricular samples from young (6 months) and old (20 months) wild-type mice and healthy human donor patients grouped according to age in young (17-50 years) and aged hearts (51-73 years). We found no age-dependent differences in titin isoform composition of mouse or human hearts. In aged hearts from mice and human we determined altered titin phosphorylation at serine residues S4010 and S4099 in the elastic N2B domain, but no significant changes in phosphorylation of S11878 and S12022 in the elastic PEVK region. Importantly, overall titin-based cardiomyocyte passive tension remained unchanged. In aged hearts, the calcium-activated protease calpain-1, which provides accessibility to ubiquitination by releasing titin from the sarcomere, showed decreased proteolytic activity. In addition, we observed a reduction in the proteasomal activities. Taken together, our data indicate that cardiac aging does not affect titin-based passive properties of the cardiomyocytes, but impairs protein-quality control, including titin, which may result in a diminished adaptive capacity of the aged myocardium.
Collapse
Affiliation(s)
- Senem Salcan
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sabine Bongardt
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - David Monteiro Barbosa
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Igor R Efimov
- George Washington University, Department of Biomedical Engineering, Science and Engineering Hall, Washington DC-20052, USA
| | - Tienush Rassaf
- University Hospital Essen, Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, 45147 Essen, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
49
|
Liu H, Schittny V, Nash MA. Removal of a Conserved Disulfide Bond Does Not Compromise Mechanical Stability of a VHH Antibody Complex. NANO LETTERS 2019; 19:5524-5529. [PMID: 31257893 PMCID: PMC6975629 DOI: 10.1021/acs.nanolett.9b02062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/28/2019] [Indexed: 05/28/2023]
Abstract
Single-domain VHH antibodies are promising reagents for medical therapy. A conserved disulfide bond within the VHH framework region is known to be critical for thermal stability, however, no prior studies have investigated its influence on the stability of VHH antibody-antigen complexes under mechanical load. Here, we used single-molecule force spectroscopy to test the influence of a VHH domain's conserved disulfide bond on the mechanical strength of the interaction with its antigen mCherry. We found that although removal of the disulfide bond through cysteine-to-alanine mutagenesis significantly lowered VHH domain denaturation temperature, it had no significant impact on the mechanical strength of the VHH:mCherry interaction with complex rupture occurring at ∼60 pN at 103-104 pN/sec regardless of disulfide bond state. These results demonstrate that mechanostable binding interactions can be built on molecular scaffolds that may be thermodynamically compromised at equilibrium.
Collapse
Affiliation(s)
- Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Valentin Schittny
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
50
|
Yuan G, Ma Q, Wu T, Wang M, Li X, Zuo J, Zheng P. Multistep Protein Unfolding Scenarios from the Rupture of a Complex Metal Cluster Cd 3S 9. Sci Rep 2019; 9:10518. [PMID: 31324867 PMCID: PMC6642161 DOI: 10.1038/s41598-019-47004-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Protein (un)folding is a complex and essential process. With the rapid development of single-molecule techniques, we can detect multiple and transient proteins (un)folding pathways/intermediates. However, the observation of multiple multistep (>2) unfolding scenarios for a single protein domain remains limited. Here, we chose metalloprotein with relatively stable and multiple metal-ligand coordination bonds as a system for such a purpose. Using AFM-based single-molecule force spectroscopy (SMFS), we successfully demonstrated the complex and multistep protein unfolding scenarios of the β-domain of a human protein metallothionein-3 (MT). MT is a protein of ~60 amino acids (aa) in length with 20 cysteines for various metal binding, and the β-domain (βMT) is of ~30 aa with an M3S9 metal cluster. We detected four different types of three-step protein unfolding scenarios from the Cd-βMT, which can be possibly explained by the rupture of Cd-S bonds in the complex Cd3S9 metal cluster. In addition, complex unfolding scenarios with four rupture peaks were observed. The Cd-S bonds ruptured in both single bond and multiple bonds modes. Our results provide not only evidence for multistep protein unfolding phenomena but also reveal unique properties of metalloprotein system using single-molecule AFM.
Collapse
Affiliation(s)
- Guodong Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Qun Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Tao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Mengdi Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Xi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Jinglin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 21002, China.
| |
Collapse
|