1
|
Das PK, Sahoo A, Veeranki VD. Recombinant monoclonal antibody production in yeasts: Challenges and considerations. Int J Biol Macromol 2024; 266:131379. [PMID: 38580014 DOI: 10.1016/j.ijbiomac.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Monoclonal antibodies (mAbs) are laboratory-based engineered protein molecules with a monovalent affinity or multivalent avidity towards a specific target or antigen, which can mimic natural antibodies that are produced in the human immune systems to fight against detrimental pathogens. The recombinant mAb is one of the most effective classes of biopharmaceuticals produced in vitro by cloning and expressing synthetic antibody genes in a suitable host. Yeast is one of the potential hosts among others for the successful production of recombinant mAbs. However, there are very few yeast-derived mAbs that got the approval of the regulatory agencies for direct use for treatment purposes. Certain challenges encountered by yeasts for recombinant antibody productions need to be overcome and a few considerations related to antibody structure, host engineering, and culturing strategies should be followed for the improved production of mAbs in yeasts. In this review, the drawbacks related to the metabolic burden of the host, culturing conditions including induction mechanism and secretion efficiency, solubility and stability, downstream processing, and the pharmacokinetic behavior of the antibody are discussed, which will help in developing the yeast hosts for the efficient production of recombinant mAbs.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Meade E, Rowan N, Garvey M. Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines (Basel) 2023; 11:992. [PMID: 37243096 PMCID: PMC10223144 DOI: 10.3390/vaccines11050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging, re-emerging and zoonotic viral pathogens represent a serious threat to human health, resulting in morbidity, mortality and potentially economic instability at a global scale. Certainly, the recent emergence of the novel SARS-CoV-2 virus (and its variants) highlighted the impact of such pathogens, with the pandemic creating unprecedented and continued demands for the accelerated production of antiviral therapeutics. With limited effective small molecule therapies available for metaphylaxis, vaccination programs have been the mainstay against virulent viral species. Traditional vaccines remain highly effective at providing high antibody titres, but are, however, slow to manufacture in times of emergency. The limitations of traditional vaccine modalities may be overcome by novel strategies, as outlined herein. To prevent future disease outbreaks, paradigm shift changes in manufacturing and distribution are necessary to advance the production of vaccines, monoclonal antibodies, cytokines and other antiviral therapies. Accelerated paths for antivirals have been made possible due to advances in bioprocessing, leading to the production of novel antiviral agents. This review outlines the role of bioprocessing in the production of biologics and advances in mitigating viral infectious disease. In an era of emerging viral diseases and the proliferation of antimicrobial resistance, this review provides insight into a significant method of antiviral agent production which is key to protecting public health.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
3
|
Tang C, Wang L, Zang L, Wang Q, Qi D, Dai Z. On-demand biomanufacturing through synthetic biology approach. Mater Today Bio 2023; 18:100518. [PMID: 36636637 PMCID: PMC9830231 DOI: 10.1016/j.mtbio.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Biopharmaceuticals including protein therapeutics, engineered protein-based vaccines and monoclonal antibodies, are currently the mainstay products of the biotechnology industry. However, the need for specialized equipment and refrigeration during production and distribution poses challenges for the delivery of these technologies to the field and low-resource area. With the development of synthetic biology, multiple studies rewire the cell-free system or living cells to impact the portable, on-site and on-demand manufacturing of biomolecules. Here, we review these efforts and suggest future directions.
Collapse
Affiliation(s)
- Chenwang Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lin Wang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lei Zang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qing Wang
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhuojun Dai
- Materials Synthetic Biology Center, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023; 5:100102. [PMID: 36660363 PMCID: PMC9843197 DOI: 10.1016/j.bioflm.2022.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.
Collapse
Affiliation(s)
- Yo-Ann Vélez Justiniano
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA,Corresponding author.
| | - Darla M. Goeres
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Jacob S. Harris
- Biomedical and Environmental Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Stephan Warnat
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew McGlennen
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Christine M. Foreman
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Wenyan Li
- Laboratory Support Services and Operations (LASSO), NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | - Katelynn Lott
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Lauren E. HerrNeckar
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA
| |
Collapse
|
5
|
Zhang S, Yang Z, Yu H, Chen Y, Yuan F, Zhang X, Fang S. Furazolidone and Nitrofurazone Metabolic Studies in Crucian Carp by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. J Chromatogr Sci 2022; 60:963-969. [PMID: 35428881 DOI: 10.1093/chromsci/bmac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 12/16/2022]
Abstract
In this work, the detection of the furazolidone (FZD) and nitrofurazone (NFZ) metabolites residuals in crucian carp are focused. Crucian carps of identical size were exposed to the mixed nitrofuran antibiotics under optimized bath conditions at a concentration of 50 mg/L, 26 ± 0.5°C for 24 h. Then, liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MSMS) was performed after the drug exposure experiments when the nitrofuran metabolites were enriched in organisms. During the period of 0-144 h, residue levels of the 3-amino-2-oxazolidinone (AOZ) gradually decreased with a prolonged sampling time. The changing trend in semicarbazide (SEM) with the sample collection duration is divided into two stages, and its concentration showed a trend of rising first and then falling. The metabolite concentration-time curve demonstrates that 24 h was used as a sampling time, and fish muscle was selected as tissue samples in the further quantitative study. A novel crucian carp-enrichment procedure coupled to LC-ESI-MSMS quantitative method was further explored based on much metabolite data. According to the exponential curve of the SEM-to-AOZ concentration ratio at a precisely designed FZD-to-NFZ mass ratio, the final FZD content of the veterinary NFZ antibiotics was 0.069 ± 0.005% (in terms of mass).
Collapse
Affiliation(s)
- Shuai Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Haixia Yu
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Falei Yuan
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaojun Zhang
- Laboratory of aquatic product processing and quality safety, Marine Fisheries Research Institute of Zhejiang province, Zhoushan 316021, China
| | - Shuangqi Fang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
6
|
Garvey M. Non-Mammalian Eukaryotic Expression Systems Yeast and Fungi in the Production of Biologics. J Fungi (Basel) 2022; 8:1179. [PMID: 36354946 PMCID: PMC9692369 DOI: 10.3390/jof8111179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 08/26/2023] Open
Abstract
Biologics have become an important area of medical research generating therapeutics essential for the treatment of many disease states. Biologics are defined as biologically active compounds manufactured by living cells or through biological processes termed bioprocessing. Compared to small molecules which are chemically synthesised they are relatively complex and therapeutically specific molecules. Biologics include hormones, vaccines, blood products, monoclonal antibodies, recombinant therapeutic proteins, enzymes, gene and cellular therapies amongst others. For biologic production prokaryotic and eukaryotic cells (mammalian and non-mammalian) are used as expression systems. Eukaryotic expression systems offer many advantages over prokaryotic based systems. The manufacture of high-quality proteins for human clinical use via recombinant technologies has been achieved in yeast and filamentous fungal systems. Advances in bioprocessing such as genetic engineering, bioreactor design, continuous processing, and quality by design has allowed for increased productivity and higher yield in in these non-mammalian eukaryotic systems with protein translation similar to mammalian systems. The application of eukaryotic expressions systems for the manufacture of biologics of therapeutic importance are described herein.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland; ; Tel.: +353-071-9305529
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
7
|
Wade J, Rimbault C, Ali H, Ledsgaard L, Rivera-de-Torre E, Abou Hachem M, Boddum K, Mirza N, Bohn MF, Sakya SA, Ruso-Julve F, Andersen JT, Laustsen AH. Generation of Multivalent Nanobody-Based Proteins with Improved Neutralization of Long α-Neurotoxins from Elapid Snakes. Bioconjug Chem 2022; 33:1494-1504. [PMID: 35875886 PMCID: PMC9389527 DOI: 10.1021/acs.bioconjchem.2c00220] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Recombinantly produced biotherapeutics hold promise for improving the current standard of care for snakebite envenoming over conventional serotherapy. Nanobodies have performed well in the clinic, and in the context of antivenom, they have shown the ability to neutralize long α-neurotoxins in vivo. Here, we showcase a protein engineering approach to increase the valence and hydrodynamic size of neutralizing nanobodies raised against a long α-neurotoxin (α-cobratoxin) from the venom of the monocled cobraNaja kaouthia. Based on the p53 tetramerization domain, a panel of anti-α-cobratoxin nanobody-p53 fusion proteins, termed Quads, were produced with different valences, inclusion or exclusion of Fc regions for endosomal recycling purposes, hydrodynamic sizes, and spatial arrangements, comprising up to 16 binding sites. Measurements of binding affinity and stoichiometry showed that the nanobody binding affinity was retained when incorporated into the Quad scaffold, and all nanobody domains were accessible for toxin binding, subsequently displaying increased blocking potency in vitro compared to the monomeric format. Moreover, functional assessment using automated patch-clamp assays demonstrated that the nanobody and Quads displayed neutralizing effects against long α-neurotoxins from both N. kaouthia and the forest cobra N. melanoleuca. This engineering approach offers a means of altering the valence, endosomal recyclability, and hydrodynamic size of existing nanobody-based therapeutics in a simple plug-and-play fashion and can thus serve as a technology for researchers tailoring therapeutic properties for improved neutralization of soluble targets such as snake toxins.
Collapse
Affiliation(s)
- Jack Wade
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Charlotte Rimbault
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Hanif Ali
- Quadrucept
Bio Ltd., Kemp House,
152 City Road, London EC1V
2NX, United Kingdom
| | - Line Ledsgaard
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Maher Abou Hachem
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Kim Boddum
- Sophion
Bioscience, DK-2750 Ballerup, Denmark
| | - Nadia Mirza
- Fida
Biosystems ApS, DK-2860 Søborg, Copenhagen, Denmark
| | - Markus-Frederik Bohn
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Siri A. Sakya
- Department
of Immunology, Oslo University Hospital
Rikshospitalet, N-0372 Oslo, Norway
- Department
of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372 Oslo, Norway
| | - Fulgencio Ruso-Julve
- Department
of Immunology, Oslo University Hospital
Rikshospitalet, N-0372 Oslo, Norway
- Department
of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372 Oslo, Norway
| | - Jan Terje Andersen
- Department
of Immunology, Oslo University Hospital
Rikshospitalet, N-0372 Oslo, Norway
- Department
of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372 Oslo, Norway
| | - Andreas H. Laustsen
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| |
Collapse
|
8
|
Underwood DJ, Bettencourt J, Jawad Z. The manufacturing considerations of bispecific antibodies. Expert Opin Biol Ther 2022; 22:1043-1065. [PMID: 35771976 DOI: 10.1080/14712598.2022.2095900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Antibody therapies have made huge strides in providing safe and efficacious drugs for autoimmune, cancer and infectious disease. These bispecific antibodies can be assembled from the basic building blocks of IgGs, resulting in dozens of formats. AREAS COVERED It is important to consider the manufacturability of these formats early in the antibody discovery phases. Broadly categorizing bispecific antibodies into IgG-like, fragment-based, appended and hybrid formats can help in looking at early manufacturability considerations. EXPERT OPINION Ideally, bispecific antibody manufacturing should contain a minimal number of steps, with processes that give high yields of protein with no contaminants. Many of these have been determined for the fragment-based bispecific blinatumomab and the IgG-like bispecifics from hybridomas. However, for new formats, these need to be considered early in the research and development pipeline. The hybrid formats offer an unusual alternative in generating high pure yields of bispecific molecules if the engineering challenges can be deciphered.
Collapse
Affiliation(s)
| | | | - Zahra Jawad
- Agenus inc., 3 Forbes Road, Lexington, MA, 02421-7305, United States.,Creasallis ltd, Babraham Research Campus, Babraham, Cambridgeshire, CB22 3AT, United Kingdom
| |
Collapse
|
9
|
Engineering of Synthetic Transcriptional Switches in Yeast. Life (Basel) 2022; 12:life12040557. [PMID: 35455048 PMCID: PMC9030632 DOI: 10.3390/life12040557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional switches can be utilized for many purposes in synthetic biology, including the assembly of complex genetic circuits to achieve sophisticated cellular systems and the construction of biosensors for real-time monitoring of intracellular metabolite concentrations. Although to date such switches have mainly been developed in prokaryotes, those for eukaryotes are increasingly being reported as both rational and random engineering technologies mature. In this review, we describe yeast transcriptional switches with different modes of action and how to alter their properties. We also discuss directed evolution technologies for the rapid and robust construction of yeast transcriptional switches.
Collapse
|
10
|
Shenoy A, Barb AW. Recent Advances Toward Engineering Glycoproteins Using Modified Yeast Display Platforms. Methods Mol Biol 2022; 2370:185-205. [PMID: 34611870 DOI: 10.1007/978-1-0716-1685-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yeast are capable recombinant protein expression hosts that provide eukaryotic posttranslational modifications such as disulfide bond formation and N-glycosylation. This property has been used to create surface display libraries for protein engineering; however, yeast surface display (YSD) with common laboratory strains has limitations in terms of diversifying glycoproteins due to the incorporation of high levels of mannose residues which often obscure important epitopes and are immunogenic in humans. Developing new strains for efficient and appropriate display will require combining existing technologies to permit efficient glycoprotein engineering. Foundational efforts generating knockout strains lacking characteristic hypermannosylation reactions exhibited morphological defects and poor growth. Later strains with "humanized" N-glycosylation machinery surmounted these limitations by targeting a small suite of glycosylhydrolase and glycosyltransferase enzymes from other taxa to the endoplasmic reticulum and Golgi. Advanced yeast strains also provide key modifications at the glycan termini that are essential for the full function of many glycoproteins. Here we review progress toward glycoprotein engineering when glycosylation is required for full function using advanced yeast expression platforms and the suitability of each for YSD of glycoproteins.
Collapse
Affiliation(s)
- Anjali Shenoy
- Biochemistry and Molecular Biology Department, University of Georgia, Athens, GA, USA
| | - Adam W Barb
- Biochemistry and Molecular Biology Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Mejía-Pitta A, Broset E, de la Fuente-Nunez C. Probiotic engineering strategies for the heterologous production of antimicrobial peptides. Adv Drug Deliv Rev 2021; 176:113863. [PMID: 34273423 PMCID: PMC8440409 DOI: 10.1016/j.addr.2021.113863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/10/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Engineered probiotic bacteria represent an innovative approach for treating and detecting a wide range of diseases including those caused by infectious agents. Antimicrobial peptides (AMPs) are promising alternatives to conventional antibiotics for combating antibiotic-resistant infections. These molecules can be delivered orally to the gut by using engineered probiotics, which confer protection against AMP degradation, thus enabling numerous applications including treating drug-resistant enteric pathogens and remodeling the microbiota in real time. Here, we provide an update on the current state of the art on AMP-producing probiotics, discuss methods to enhance gut colonization, and end by outlining future perspectives.
Collapse
Affiliation(s)
- Adriana Mejía-Pitta
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Esther Broset
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
12
|
Carias AM, Schneider JR, Madden P, Lorenzo-Redondo R, Araínga M, Pegu A, Cianci GC, Maric D, Villinger F, Mascola JR, Veazey RS, Hope TJ. Anatomic Distribution of Intravenously Injected IgG Takes Approximately 1 Week to Achieve Stratum Corneum Saturation in Vaginal Tissues. THE JOURNAL OF IMMUNOLOGY 2021; 207:505-511. [PMID: 34162723 DOI: 10.4049/jimmunol.2100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/16/2021] [Indexed: 01/13/2023]
Abstract
i.v. injected Abs have demonstrated protection against simian HIV infection in rhesus macaques, paving the way for the Antibody Mediated Prevention trial in which at-risk individuals for HIV received an i.v. infusion of the HIV broadly neutralizing Ab VRC01. However, the time needed for these Abs to fully distribute and elicit protection at mucosal sites is still unknown. In this study, we interrogate how long it takes for Abs to achieve peak anatomical levels at the vaginal surface following i.v. injection. Fluorescently labeled VRC01 and/or Gamunex-C were i.v. injected into 24 female rhesus macaques (Macaca mulatta) with vaginal tissues and plasma acquired up to 2 wk postinjection. We found that Ab delivery to the vaginal mucosa occurs in two phases. The first phase involves delivery to the submucosa, occurring within 24 h and persisting beyond 1 wk. The second phase is the delivery through the stratified squamous epithelium, needing ∼1 wk to saturate the stratum corneum. This study has important implications for the efficacy of immunoprophylaxis targeting pathogens at the mucosa.
Collapse
Affiliation(s)
- Ann M Carias
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL
| | - Patrick Madden
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Gianguido C Cianci
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Danijela Maric
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Ronald S Veazey
- National Primate Research Center, Tulane University School of Medicine, Covington, LA
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL;
| |
Collapse
|
13
|
Byrtusová D, Szotkowski M, Kurowska K, Shapaval V, Márová I. Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites. Microorganisms 2021; 9:1280. [PMID: 34208382 PMCID: PMC8231246 DOI: 10.3390/microorganisms9061280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
Collapse
Affiliation(s)
- Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Klára Kurowska
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| |
Collapse
|
14
|
Wang XN, Niu MT, Fan JX, Chen QW, Zhang XZ. Photoelectric Bacteria Enhance the In Situ Production of Tetrodotoxin for Antitumor Therapy. NANO LETTERS 2021; 21:4270-4279. [PMID: 33955768 DOI: 10.1021/acs.nanolett.1c00408] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineered bacteria are promising bioagents to synthesize antitumor drugs at tumor sites with the advantages of avoiding drug leakage and degradation during delivery. Here, we report an optically controlled material-assisted microbial system by biosynthesizing gold nanoparticles (AuNPs) on the surface of Shewanella algae K3259 (S. algae) to obtain Bac@Au. Leveraging the dual directional electron transport mechanism of S. algae, the hybrid biosystem enhances in situ synthesis of antineoplastic tetrodotoxin (TTX) for a promising antitumor effect. Because of tumor hypoxia-targeting feature of facultative anaerobic S. algae, Bac@Au selectively target and colonize at tumor. Upon light irradiation, photoelectrons produced by AuNPs deposited on bacterial surface are transferred into bacterial cytoplasm and participate in accelerated cell metabolism to increase the production of TTX for antitumor therapy. The optically controlled material-assisted microbial system enhances the efficiency of bacterial drug synthesis in situ and provides an antitumor strategy that could broaden conventional therapy boundaries.
Collapse
Affiliation(s)
- Xia-Nan Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Mei-Ting Niu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
15
|
Kelley B, Renshaw T, Kamarck M. Process and operations strategies to enable global access to antibody therapies. Biotechnol Prog 2021; 37:e3139. [PMID: 33686779 DOI: 10.1002/btpr.3139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 01/12/2023]
Abstract
Few monoclonal antibodies are currently approved for treating infectious diseases, but multiple products are in development against a broad range of infectious diseases, including Ebola, influenza, hepatitis B, HIV, dengue, and COVID-19. The maturity of mAb technologies now allow us to identify and advance neutralizing mAb products to the clinic at "pandemic pace", as the pipeline of mAbs targeting SARS-CoV-2 has demonstrated. Ensuring global access to these products for passive immunization, however, will require both low manufacturing cost and multi-ton production capacity-particularly for those infectious diseases where the geographic burden falls mostly in low- and middle-income countries or those with pandemic potential. Analysis of process economics and manufacturing technologies for antibody and other parenteral protein therapeutics demonstrates the importance of economies of scale to reducing the cost of goods for drug substance manufacturing. There are major benefits to convergence on a standardized platform process for antibody production that is portable to most existing very large-scale facilities, carries low risk for complications during process transfer and scale-up, and has a predictable timeline and probability of technical and regulatory success. In the case of an infectious disease with pandemic potential which could be treated with an antibody, such as COVID-19 or influenza, these advantages are paramount.
Collapse
Affiliation(s)
- Brian Kelley
- Vir Biotechnology, San Francisco, California, USA
| | - Todd Renshaw
- Vir Biotechnology, San Francisco, California, USA
| | | |
Collapse
|
16
|
Torres MDT, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS NANO 2021; 15:2143-2164. [PMID: 33538585 PMCID: PMC8734659 DOI: 10.1021/acsnano.0c09509] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Antibiotic resistance is one of the greatest challenges of our time. This global health problem originated from a paucity of truly effective antibiotic classes and an increased incidence of multi-drug-resistant bacterial isolates in hospitals worldwide. Indeed, it has been recently estimated that 10 million people will die annually from drug-resistant infections by the year 2050. Therefore, the need to develop out-of-the-box strategies to combat antibiotic resistance is urgent. The biological world has provided natural templates, called antimicrobial peptides (AMPs), which exhibit multiple intrinsic medical properties including the targeting of bacteria. AMPs can be used as scaffolds and, via engineering, can be reconfigured for optimized potency and targetability toward drug-resistant pathogens. Here, we review the recent development of tools for the discovery, design, and production of AMPs and propose that the future of peptide drug discovery will involve the convergence of computational and synthetic biology principles.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jicong Cao
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
- S-inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS 79117010, Brazil
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Guo S, Dubuc E, Rave Y, Verhagen M, Twisk SAE, van der Hek T, Oerlemans GJM, van den Oetelaar MCM, van Hazendonk LS, Brüls M, Eijkens BV, Joostens PL, Keij SR, Xing W, Nijs M, Stalpers J, Sharma M, Gerth M, Boonen RJEA, Verduin K, Merkx M, Voets IK, de Greef TFA. Engineered Living Materials Based on Adhesin-Mediated Trapping of Programmable Cells. ACS Synth Biol 2020; 9:475-485. [PMID: 32105449 PMCID: PMC7091533 DOI: 10.1021/acssynbio.9b00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Engineered living materials have the potential for wide-ranging applications such as biosensing and treatment of diseases. Programmable cells provide the functional basis for living materials; however, their release into the environment raises numerous biosafety concerns. Current designs that limit the release of genetically engineered cells typically involve the fabrication of multilayer hybrid materials with submicrometer porous matrices. Nevertheless the stringent physical barriers limit the diffusion of macromolecules and therefore the repertoire of molecules available for actuation in response to communication signals between cells and their environment. Here, we engineer a novel living material entitled "Platform for Adhesin-mediated Trapping of Cells in Hydrogels" (PATCH). This technology is based on engineered E. coli that displays an adhesion protein derived from an Antarctic bacterium with a high affinity for glucose. The adhesin stably anchors E. coli in dextran-based hydrogels with large pore diameters (10-100 μm) and reduces the leakage of bacteria into the environment by up to 100-fold. As an application of PATCH, we engineered E. coli to secrete the bacteriocin lysostaphin which specifically kills Staphyloccocus aureus with low probability of raising antibiotic resistance. We demonstrated that living materials containing this lysostaphin-secreting E. coli inhibit the growth of S. aureus, including the strain resistant to methicillin (MRSA). Our tunable platform allows stable integration of programmable cells in dextran-based hydrogels without compromising free diffusion of macromolecules and could have potential applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Martijn Nijs
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | - Jitske Stalpers
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | | | | | | | - Kees Verduin
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | | | | | - Tom F. A. de Greef
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
18
|
Der Torossian Torres M, de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem Commun (Camb) 2019; 55:15020-15032. [PMID: 31782426 DOI: 10.1039/c9cc07898c] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the rapid spread of resistance among parasites and bacterial pathogens, antibiotic-resistant infections have drawn much attention worldwide. Consequently, there is an urgent need to develop new strategies to treat neglected diseases and drug-resistant infections. Here, we outline several new strategies that have been developed to counter pathogenic microorganisms by designing and constructing antimicrobial peptides (AMPs). In addition to traditional discovery and design mechanisms guided by chemical biology, synthetic biology and computationally-based approaches offer useful tools for the discovery and generation of bioactive peptides. We believe that the convergence of such fields, coupled with systematic experimentation in animal models, will help translate biological peptides into the clinic. The future of anti-infective therapeutics is headed towards specifically designed molecules whose form is driven by computer-based frameworks. These molecules are selective, stable, and active at therapeutic doses.
Collapse
Affiliation(s)
- Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Payen C, Thompson D. The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast 2019; 36:685-700. [DOI: 10.1002/yea.3439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/09/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Celia Payen
- DuPont Nutrition and Biosciences Wilmington Delaware
| | | |
Collapse
|
20
|
Tamiev D, Lantz A, Vezeau G, Salis H, Reuel NF. Controlling Heterogeneity and Increasing Titer from Riboswitch-Regulated Bacillus subtilis Spores for Time-Delayed Protein Expression Applications. ACS Synth Biol 2019; 8:2336-2346. [PMID: 31490060 DOI: 10.1021/acssynbio.9b00163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sporulated cells have potential as time-delayed expression chassis of proteins for applications such as "on-demand" biologics production, whole cell biosensors, or oral vaccines. However, the desired attributes of high expression rates and low product variances are difficult to maintain from germinated spores. In this work, we study the effect of an integrating vs theta-replicating plasmid in a wild-type Bacillus subtilis and two PolY mutants. The cells were engineered to produce a fluorescent reporter protein (RFP) under the control of a riboswitch activated by theophylline. This allowed for greater sensitivity to point mutations. The fluorescence and cell-growth curves were fit with a custom kinetic model, and a peak kinetic rate (LKPmax) was extracted for each clonal population (n = 30 for all cell, vector, and growth combinations). Plasmid-based expression yields higher (8.7×) expression rates because of an increased copy number of the expression cassette (10× over integrated). The variance of LKPmax values increased 2.1× after sporulation for the wild-type strain. This increase in variance from sporulation is very similar to what is observed with UV exposure. This effect can be partially mitigated by the use of PolY knockouts observed in suspended cell growths and adherent biofilms.
Collapse
Affiliation(s)
- Denis Tamiev
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Alyssa Lantz
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Grace Vezeau
- Department of Chemical Engineering, Agricultural and Biological Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Howard Salis
- Department of Chemical Engineering, Agricultural and Biological Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
21
|
Amann T, Schmieder V, Faustrup Kildegaard H, Borth N, Andersen MR. Genetic engineering approaches to improve posttranslational modification of biopharmaceuticals in different production platforms. Biotechnol Bioeng 2019; 116:2778-2796. [PMID: 31237682 DOI: 10.1002/bit.27101] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
The number of approved biopharmaceuticals, where product quality attributes remain of major importance, is increasing steadily. Within the available variety of expression hosts, the production of biopharmaceuticals faces diverse limitations with respect to posttranslational modifications (PTM), while different biopharmaceuticals demand different forms and specifications of PTMs for proper functionality. With the growing toolbox of genetic engineering technologies, it is now possible to address general as well as host- or biopharmaceutical-specific product quality obstacles. In this review, we present diverse expression systems derived from mammalians, bacteria, yeast, plants, and insects as well as available genetic engineering tools. We focus on genes for knockout/knockdown and overexpression for meaningful approaches to improve biopharmaceutical PTMs and discuss their applicability as well as future trends in the field.
Collapse
Affiliation(s)
- Thomas Amann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valerie Schmieder
- acib GmbH-Austrian Centre of Industrial Biotechnology, Graz, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
22
|
The Multiplanetary Future of Plant Synthetic Biology. Genes (Basel) 2018; 9:genes9070348. [PMID: 29996548 PMCID: PMC6071031 DOI: 10.3390/genes9070348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
The interest in human space journeys to distant planets and moons has been re-ignited in recent times and there are ongoing plans for sending the first manned missions to Mars in the near future. In addition to generating oxygen, fixing carbon, and recycling waste and water, plants could play a critical role in producing food and biomass feedstock for the microbial manufacture of materials, chemicals, and medicines in long-term interplanetary outposts. However, because life on Earth evolved under the conditions of the terrestrial biosphere, plants will not perform optimally in different planetary habitats. The construction or transportation of plant growth facilities and the availability of resources, such as sunlight and liquid water, may also be limiting factors, and would thus impose additional challenges to efficient farming in an extraterrestrial destination. Using the framework of the forthcoming human missions to Mars, here we discuss a series of bioengineering endeavors that will enable us to take full advantage of plants in the context of a Martian greenhouse. We also propose a roadmap for research on adapting life to Mars and outline our opinion that synthetic biology efforts towards this goal will contribute to solving some of the main agricultural and industrial challenges here on Earth.
Collapse
|
23
|
Walker RSK, Pretorius IS. Applications of Yeast Synthetic Biology Geared towards the Production of Biopharmaceuticals. Genes (Basel) 2018; 9:E340. [PMID: 29986380 PMCID: PMC6070867 DOI: 10.3390/genes9070340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Engineered yeast are an important production platform for the biosynthesis of high-value compounds with medical applications. Recent years have witnessed several new developments in this area, largely spurred by advances in the field of synthetic biology and the elucidation of natural metabolic pathways. This minireview presents an overview of synthetic biology applications for the heterologous biosynthesis of biopharmaceuticals in yeast and demonstrates the power and potential of yeast cell factories by highlighting several recent examples. In addition, an outline of emerging trends in this rapidly-developing area is discussed, hinting upon the potential state-of-the-art in the years ahead.
Collapse
Affiliation(s)
- Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | | |
Collapse
|
24
|
Nadeem T, Khan MA, Ijaz B, Ahmed N, Rahman ZU, Latif MS, Ali Q, Rana MA. Glycosylation of Recombinant Anticancer Therapeutics in Different Expression Systems with Emerging Technologies. Cancer Res 2018; 78:2787-2798. [DOI: 10.1158/0008-5472.can-18-0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|