1
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 PMCID: PMC11565580 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
2
|
Iwasaki T, Suehisa G, Mandai R, Nozaki K. Sequence-Controlled Copolymerization of Structurally Well-Defined Multinuclear Zinc Acrylate Complexes and Styrene. Macromol Rapid Commun 2024:e2400742. [PMID: 39520319 DOI: 10.1002/marc.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The copolymerization of two or more monomers produces polymeric materials with unique properties that cannot be achieved with homopolymers. However, precise control over the polymer sequence remains challenging because the sequence is determined by the inherent reactivity of comonomers. Therefore, only limited methods using modified monomers or supramolecular interactions are reported. In this study, the sequence control of acrylate-styrene copolymerization using multinuclear zinc complexes is reported. The copolymerization of the zinc acrylate complex with a polymeric sheet-like structure and styrene in benzene affords a copolymer with a higher content of acrylate triad than calculated for the statistical random model, whereas tetranuclear zinc acrylate (TZA) affords a copolymer with fewer adjacent acrylate sequences. The copolymer with a higher content of acrylate triad exhibits a lower glass transition temperature because of the higher mobility of the longer polystyrene segments. These results highlight the promise of multinuclear zinc acrylate complexes as monomers for sequence-controlled copolymerization.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Gaito Suehisa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ryo Mandai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Anan S, Kokado K, Sada K. Predictable Synthesis of 3D Polymer Networks Using Crystal Component-Linking. Macromol Rapid Commun 2024; 45:e2400058. [PMID: 38555523 DOI: 10.1002/marc.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Controlled synthesis of 3D polymer networks presents a significant challenge because of the complexity of the polymerization reaction in solution. In this study, a polymerization system that facilitates the prediction of a polymer network structure via percolation simulations is realized. The most significant difference between general percolation simulations and experimental polymerization systems is the mobility of the molecules during the reaction. A crystal component-linking method that connects the precisely arranged monomer as a supramolecular crystalline state to imitate the simple percolation theory is adopted. The percolation simulation based on the crystal structure of the arranged monomers is used to accurately calculate the gelation point, gel fraction, degree of swelling, and atomic formula, which correspond with the experimental results. This suggests that the network structures polymerized via the crystal component-linking method can be predicted precisely by a simple percolation simulation. Further, the percolation simulation predicts the structures of the loop, branched polymer, and crosslinking point, which are difficult to measure experimentally. The polymerization of precisely-arranged immobilized monomers in supramolecular structures is promising in synthesizing precisely controlled polymer networks.
Collapse
Affiliation(s)
- Shizuka Anan
- Department of Advanced Science and Technology, Faculty of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan
| | - Kenta Kokado
- Department of Advanced Science and Technology, Faculty of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan
| | - Kazuki Sada
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita13 Nishi8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
4
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
5
|
Abe M, Kametani Y, Uemura T. Fabrication of Double-Stranded Vinyl Polymers Mediated by Coordination Nanochannels. J Am Chem Soc 2023; 145:2448-2454. [PMID: 36656961 DOI: 10.1021/jacs.2c11723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although double-stranded structures are commonly found in biopolymers, a general and versatile methodology for fabricating double-stranded synthetic polymers has not yet been developed. Here, we report a new approach for synthesizing double-stranded polymers composed of polystyrene and poly(methyl methacrylate). We conducted crosslinking radical polymerization inside a metal-organic framework (MOF), which had one-dimensional channels with diameters similar to the thickness of two polymer chains. Effective spatial constraint within the MOF pores facilitated highly regulated crosslinking reactions between two polymer chains with extended conformations. Remarkably, the obtained double-stranded polymers were soluble in many organic solvents, even at a high crosslinking ratio (20%), unlike conventional crosslinked polymers. Notably, this stable duplex topology, which was inaccessible using previous methods, endowed the double-stranded vinyl polymers with unusual properties in the solution and bulk states. By designing the properties of the MOF nanochannels, the proposed technique can contribute to the development of a wide range of synthetic polymer duplexes.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Kametani
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Mijangos C, Martin J. Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey. Polymers (Basel) 2023; 15:polym15030525. [PMID: 36771824 PMCID: PMC9919978 DOI: 10.3390/polym15030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
In the last few years, the polymerization of monomers within the nanocavities of porous materials has been thoroughly studied and developed, allowing for the synthesis of polymers with tailored morphologies, chemical architectures and functionalities. This is thus a subject of paramount scientific and technological relevance, which, however, has not previously been analyzed from a general perspective. The present overview reports the state of the art on polymerization reactions in spatial confinement within porous materials, focusing on the use of anodized aluminum oxide (AAO) templates. It includes the description of the AAO templates used as nanoreactors. The polymerization reactions are categorized based on the polymerization mechanism. Amongst others, this includes electrochemical polymerization, free radical polymerization, step polymerization and atom transfer radical polymerization (ATRP). For each polymerization mechanism, a further subdivision is made based on the nature of the monomer used. Other aspects of "in situ" polymerization reactions in restricted AAO geometries include: conversion monitoring, kinetic studies, modeling and polymer characterization. In addition to the description of the polymerization process itself, the use of polymer materials derived from polymerization in AAO templates in nanotechnology applications, is also highlighted. Finally, the review is concluded with a general discussion outlining the challenges that remain in the field.
Collapse
Affiliation(s)
- Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Donostia International Physics Center, DIPC, Paseo de Manuel Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Correspondence:
| | - Jaime Martin
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Grupo de Polímeros, Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, 15471 Ferrol, Spain
| |
Collapse
|
7
|
|
8
|
Kitao T. Controlled assemblies of conjugated polymers in metal−organic frameworks. Polym J 2022. [DOI: 10.1038/s41428-022-00657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Cassin SR, Flynn S, Chambon P, Rannard SP. Accessing new and scalable high molecular weight branched copolymer structures using transfer-dominated branching radical telomerisation (TBRT). Polym Chem 2022. [DOI: 10.1039/d2py00174h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three new synthesis strategies for branched statistical copolymers containing analogues of step-growth backbones are shown using free radical chemistries and transfer-dominated branching radical polymerisation (TBRT) conditions.
Collapse
Affiliation(s)
- Savannah R. Cassin
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, UK
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
| | - Sean Flynn
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, UK
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
| | - Pierre Chambon
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, UK
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
| | - Steve P. Rannard
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, UK
- Materials Innovation Factory, University of Liverpool, Crown Street, L69 7ZD, UK
| |
Collapse
|
10
|
Kitao T, Zhang X, Uemura T. Nanoconfined synthesis of conjugated ladder polymers. Polym Chem 2022. [DOI: 10.1039/d2py00809b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in controlled synthesis of conjugated ladder polymers using templates.
Collapse
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Mineeva KO, Medentseva EI, Plutalova AV, Serkhacheva NS, Bol’shakova AV, Lysenko EA, Chernikova EV. Block Random Copolymers of Styrene and Acrylic Acid: Synthesis and Properties. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s156009042106018x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hosono N, Uemura T. Metal-Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Acc Chem Res 2021; 54:3593-3603. [PMID: 34506124 DOI: 10.1021/acs.accounts.1c00377] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular recognition is of paramount importance for modern chemical processes and has now been achieved for small molecules using well-established host-guest chemistry and adsorption-science principles. In contrast, technologies for recognizing polymer structure are relatively undeveloped. Conventional polymer separation methods, which are mostly limited in practice to size-exclusion chromatography and reprecipitation, find it difficult to recognize minute structural differences in polymer structures as such small structural alterations barely influence the polymer characteristics, including molecular size, polarity, and solubility. Therefore, most of the polymeric products being used today contain mixtures of polymers with different structures as it is challenging to completely control polymer structures during synthesis even with state-of-the-art substitution and polymerization techniques. In this context, development of novel techniques that can resolve the challenges of polymer recognition and separation is in great demand, as these techniques hold the promise of a new paradigm in polymer synthesis, impacting not only materials chemistry but also analytical and biological chemistry.In biological systems, precise recognition and translation of base monomer sequences of mRNA are achieved by threading them through small ribosome tunnels. This principle of introducing polymers into nanosized channels can possibly help us design powerful polymer recognition and separation technologies using metal-organic frameworks (MOFs) as ideal and highly designable recognition media. MOFs are porous materials comprising organic ligands and metal ions and have been extensively studied as porous beds for gas separation and storage. Recently, we found that MOFs can accommodate large polymeric chains in their nanopores. Polymer chains can spontaneously infiltrate MOFs from neat molten and solution phases by threading their terminals into MOF nanochannels. Polymer structures can be recognized and differentiated due to such insertion processes, resulting in the selective adsorption of polymers on MOFs. This enables the precise recognition of the polymer terminus structure, resulting in the perfect separation of a variety of terminal-functionalized polymers that are otherwise difficult to separate by conventional polymer separation methods. Furthermore, the MOFs can recognize polymer shapes, thus enabling the large-scale separation of high purity cyclic polymers from the complex crude mixtures of linear polymers, which are used as precursor materials in common cyclization reactions. In solution-phase adsorption, many factors, including molecular weight, terminal groups, polymer shape, polymer-MOF interaction, and coexisting solvent molecules, influence the selective adsorption behavior; this yields a new liquid chromatography-based polymer separation technology using an MOF as the stationary phase. MOF-packed columns, in which a novel separation mode based on polymer insertion into the MOF operates under a dynamic insertion/rejection equilibrium at the liquid/solid interface, exhibited excellent polymer separation capability. The polymer recognition principle described in this study thus has a high probability for realizing previously unfeasible polymer separations based on monomer composition and sequences, stereoregularity, regioregularity, helicity, and block sequences in synthetic polymers and biomacromolecules.
Collapse
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
13
|
Hosono N, Uemura T. Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
León-Boigues L, Navarro R, Mijangos C. Free radical nanocopolymerization in AAO porous materials: Kinetic, copolymer composition and monomer reactivity ratios. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Jin F, Liu J, Chen Y, Zhang Z. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fazheng Jin
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Jinjin Liu
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Jin F, Liu J, Chen Y, Zhang Z. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angew Chem Int Ed Engl 2021; 60:14222-14235. [DOI: 10.1002/anie.202011213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Fazheng Jin
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Jinjin Liu
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
17
|
Takashima Y, Sato Y, Kubo N, Tsuruoka T, Akamatsu K. Precisely Controlled Reproducible Synthesis of Palladium Nanoparticles inside Metal-Organic Frameworks with H 2 Gas as Reductant: Effects of Framework Crystallinity and H 2 Gas Pressure. CHEM LETT 2021. [DOI: 10.1246/cl.200683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yohei Takashima
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasushi Sato
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Neo Kubo
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takaaki Tsuruoka
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kensuke Akamatsu
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
18
|
Zhou HQ, He Y, Hu JY, Chung LH, Gu Q, Liao WM, Zeller M, Xu Z, He J. Conjugated crosslinks boost the conductivity and stability of a single crystalline metal-organic framework. Chem Commun (Camb) 2021; 57:187-190. [PMID: 33313631 DOI: 10.1039/d0cc06765b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A linker molecule with four pendant thiophene functions was crystallized with Zr(iv) ions to form a semiconductive porous coordination solid (1.1 × 10-5 S cm-1). Oxidative treatment with FeCl3 guests then coupled the thiophene units to form conjugated bridges as covalent crosslinks. The resulting hybrid of a metal-organic framework and conjugated polymer featured robust crystalline order that withstood long-term air exposure and broad pH (from 0 to 12) conditions. Moreover, the homocoupled thiophene units, conjugated through sulfide links (-S-) with the linker backbone, afforded higher electronic conductivity (e.g., >2.2 × 10-3 S cm-1), which is characteristic of conductive polymer prototypes of polythiophene and polyphenylene sulfide. The crosslinked solid also exhibited proton conductivity that could be increased broadly upon H2SO4 treatment (e.g., from 5.0 × 10-7 to 1.6 × 10-3 S cm-1).
Collapse
Affiliation(s)
- Hua-Qun Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang S, Karve VV, Justin A, Kochetygov I, Espín J, Asgari M, Trukhina O, Sun DT, Peng L, Queen WL. Enhancing MOF performance through the introduction of polymer guests. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213525] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Okuno Y, Shibata T, Ohyou A, Suzuki R, Takegami M, Kato S, Isomura S, Aoki S, Kanno J, Sato Y. Synthesis of Bi‐functional Immobilized Polymer Catalysts via a Two‐step Radiation‐induced Graft Polymerization Process. ChemCatChem 2020. [DOI: 10.1002/cctc.202001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yoshinori Okuno
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Takako Shibata
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Akie Ohyou
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Rie Suzuki
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Mayuko Takegami
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Satoshi Kato
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Shigeki Isomura
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Shoji Aoki
- ECE Co. Ltd. Technical Development Group 4-2-1 Honfujisawa Fujisawa 251-8502 Japan
| | - Junichi Kanno
- ECE Co. Ltd. Technical Development Group 4-2-1 Honfujisawa Fujisawa 251-8502 Japan
| | - Yasuo Sato
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| |
Collapse
|
21
|
Recent Advances in the Application of Metal–Organic Frameworks for Polymerization and Oligomerization Reactions. Catalysts 2020. [DOI: 10.3390/catal10121441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Polymers have become one of the major types of materials that are essential in our daily life. The controlled synthesis of value-added polymers with unique mechanical and chemical properties have attracted broad research interest. Metal–organic framework (MOF) is a class of porous material with immense structural diversity which offers unique advantages for catalyzing polymerization and oligomerization reactions including the uniformity of the catalytic active site, and the templating effect of the nano-sized channels. We summarized in this review the important recent progress in the field of MOF-catalyzed and MOF-templated polymerizations, to reveal the chemical principle and structural aspects of these systems and hope to inspire the future design of novel polymerization systems with improved activity and specificity.
Collapse
|
22
|
Begum S, Hassan Z, Bräse S, Tsotsalas M. Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10657-10673. [PMID: 32787055 DOI: 10.1021/acs.langmuir.0c01832] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This feature article describes recent trends and advances in structuring network polymers using a coordination-driven metal-organic framework (MOF)-based template approach to demonstrate the concept of crystal-controlled polymerization in confined nanospaces, forming tailored architectures ranging from simple linear one-dimensional macromolecules to tunable three-dimensional cross-linked network polymers and interwoven molecular architectures. MOF-templated network polymers combine the characteristics and advantages of crystalline MOFs (high porosity, structural regularity, and designability) with the intrinsic behaviors of soft polymers (flexibility, processability, stability, or biocompatibility) with widespread application possibilities and tunable properties. The article ends with a summary of the remaining challenges to be addressed, and future research opportunities in this field are discussed.
Collapse
Affiliation(s)
- Salma Begum
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Zahid Hassan
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
23
|
Mileo PGM, Yuan S, Ayala S, Duan P, Semino R, Cohen SM, Schmidt-Rohr K, Maurin G. Structure of the Polymer Backbones in polyMOF Materials. J Am Chem Soc 2020; 142:10863-10868. [PMID: 32449618 DOI: 10.1021/jacs.0c04546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The molecular connectivity of polymer-metal-organic framework (polyMOF) hybrid materials was investigated using density functional theory calculations and solid-state NMR spectroscopy. The architectural constraints that dictate the formation of polyMOFs were assessed by examining poly(1,4-benzenedicarboxylic acid) (pbdc) polymers in two archetypical MOF lattices (UiO-66 and IRMOF-1). Modeling of the polyMOFs showed that in the IRMOF-1-type lattice, six, seven, and eight methylene (-CH2-) groups between 1,4-benzenedicarboxylate (terephthalate, bdc2-) units can be accommodated without significant distortions, while in the UiO-66-type lattice, an optimal spacing of seven methylene groups between bdc2- units is needed to minimize strain. Solid-state NMR supports these predictions and reveals pronounced spectral differences for the same polymer in the two polyMOF lattices. With seven methylene groups, polyUiO-66-7a shows 7 ± 3% of uncoordinated terephthalate linkers, while these are undetectable (<4%) in the corresponding polyIRMOF-1-7a. In addition, NMR-detected backbone mobility is significantly higher in the polyIRMOF-1-7a than in the corresponding polyUiO-66-7a, again indicative of taut chains in the latter.
Collapse
Affiliation(s)
- Paulo G M Mileo
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
| | - Shichen Yuan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Sergio Ayala
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Rocio Semino
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095 Cedex 5, France
| |
Collapse
|
24
|
Kitao T, Uemura T. Polymers in Metal–Organic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. CHEM LETT 2020. [DOI: 10.1246/cl.200106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
25
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Li HZ, Du DY, Sun Y, Wang F, Zhang J. Adjustment of the performance and stability of isostructural zeolitic tetrazolate-imidazolate frameworks. Dalton Trans 2020; 49:4690-4693. [PMID: 32232241 DOI: 10.1039/d0dt00791a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented here are two isostructural SOD-type zeolitic tetrazolate-imidazolate frameworks (ZTIFs), Zn(etz)0.86(mim)1.14 (ZTIF-9, Hetz = 5-ethyltetrazole, Hmim = 2-methylimidazole) and Zn(vtz)0.63(mim)1.37 (ZTIF-10, Hvtz = 5-vinyltetrazole). The adjustment of the ligand ratios within these ZTIFs was realized through changing the substituent groups of tetrazole ligands. Remarkably, ZTIF-9 with a suitable ligand ratio perfectly balances gas uptake and stability, exhibiting 6-fold improvement of C2H2 uptake compared to the prototype ZIF-8 (Zn(mim)2).
Collapse
Affiliation(s)
- Hai-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Dong-Ying Du
- National & Local United Engineering Lab for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
27
|
Kametani Y, Tournilhac F, Sawamoto M, Ouchi M. Unprecedented Sequence Control and Sequence‐Driven Properties in a Series of AB‐Alternating Copolymers Consisting Solely of Acrylamide Units. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuki Kametani
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials CNRS, ESPCI-Paris PSL Research University 10 rue Vauquelin 75005 Paris France
| | - Mitsuo Sawamoto
- Institute of Science and Technology Research Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
28
|
Kametani Y, Tournilhac F, Sawamoto M, Ouchi M. Unprecedented Sequence Control and Sequence-Driven Properties in a Series of AB-Alternating Copolymers Consisting Solely of Acrylamide Units. Angew Chem Int Ed Engl 2020; 59:5193-5201. [PMID: 31943523 DOI: 10.1002/anie.201915075] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Herein, we report a method to synthesize a series of alternating copolymers that consist exclusively of acrylamide units. Crucial to realizing this polymer synthesis is the design of a divinyl monomer that contains acrylate and acrylamide moieties connected by two activated ester bonds. This design, which is based on the reactivity ratio of the embedded vinyl groups, allows a "selective" cyclopolymerization, wherein the intramolecular and intermolecular propagation are repeated alternately under dilute conditions. The addition of an amine to the resulting cyclopolymers afforded two different acryl amide units, i.e., an amine-substituted acryl amide and a 2-hydroxy-ethyl-substituted acryl amide in alternating sequence. Using this method, we could furnish ten types of alternating copolymers; some of these exhibit unique properties in solution and in the bulk, which are different from those of the corresponding random copolymers, and we attributed the differences to the alternating sequence.
Collapse
Affiliation(s)
- Yuki Kametani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - François Tournilhac
- Molecular, Macromolecular Chemistry, and Materials, CNRS, ESPCI-Paris, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Mitsuo Sawamoto
- Institute of Science and Technology Research, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
29
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
30
|
Ogiwara N, Kobayashi H, Inukai M, Nishiyama Y, Concepción P, Rey F, Kitagawa H. Ligand-Functionalization-Controlled Activity of Metal-Organic Framework-Encapsulated Pt Nanocatalyst toward Activation of Water. NANO LETTERS 2020; 20:426-432. [PMID: 31833371 DOI: 10.1021/acs.nanolett.9b04124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We first report the systematic control of the reactivity of H2O vapor in metal-organic frameworks (MOFs) with Pt nanocrystals (NCs) through ligand functionalization. We successfully synthesized Pt NCs covered with a water-stable MOF, UiO-66 (Pt@UiO-66), having different metal ions or functionalized ligands. The ligand functionalization of UiO-66 significantly affected the catalytic performance of the water-gas shift reaction, and the replacement of Zr4+ ions with Hf4+ ions in UiO-66 had no impact on the catalytic activity. The introduction of a -Br group lowered the reactivity of Pt@UiO-66 by nearly half, whereas the substitution of -Br with a -Me2 group triply enhanced the activity. The origin of the enhanced catalytic activity was found to be the change in H2O activity in the UiO-66 pores by the ligand functionalization, which was investigated using H2O sorption, solid-state NMR, X-ray photoelectron spectroscopy, and in situ IR measurements. This work opens a new prospect to develop MOFs as a platform to activate H2O.
Collapse
Affiliation(s)
- Naoki Ogiwara
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 , Japan
| | - Hirokazu Kobayashi
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 , Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Munehiro Inukai
- Graduate School of Science and Technology , Tokushima University , 2-1 minami-Josanjima-Cho , Tokushima 770-8506 , Japan
| | - Yusuke Nishiyama
- JEOL Resonance Inc. , 3-1-2 Musashino , Akishima , Tokyo 196-8558 , Japan
- RIKEN CLST-JEOL Collaboration Center , Yokohama , Kanagawa 230-0045 , Japan
| | - Patricia Concepción
- Instituto Universitario de Tecnología Química CSIC-UPV, Universitat Politècnica de València , Av. de los Naranjos s/n , 46022 Valencia , Spain
| | - Fernando Rey
- Instituto Universitario de Tecnología Química CSIC-UPV, Universitat Politècnica de València , Av. de los Naranjos s/n , 46022 Valencia , Spain
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 , Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study , Kyoto University , Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
31
|
Kalaj M, Bentz KC, Ayala S, Palomba JM, Barcus KS, Katayama Y, Cohen SM. MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chem Rev 2020; 120:8267-8302. [PMID: 31895556 DOI: 10.1021/acs.chemrev.9b00575] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-organic frameworks (MOFs) are inherently crystalline, brittle porous solids. Conversely, polymers are flexible, malleable, and processable solids that are used for a broad range of commonly used technologies. The stark differences between the nature of MOFs and polymers has motivated efforts to hybridize crystalline MOFs and flexible polymers to produce composites that retain the desired properties of these disparate materials. Importantly, studies have shown that MOFs can be used to influence polymer structure, and polymers can be used to modulate MOF growth and characteristics. In this Review, we highlight the development and recent advances in the synthesis of MOF-polymer mixed-matrix membranes (MMMs) and applications of these MMMs in gas and liquid separations and purifications, including aqueous applications such as dye removal, toxic heavy metal sequestration, and desalination. Other elegant ways of synthesizing MOF-polymer hybrid materials, such as grafting polymers to and from MOFs, polymerization of polymers within MOFs, using polymers to template MOFs, and the bottom-up synthesis of polyMOFs and polyMOPs are also discussed. This review highlights recent papers in the advancement of MOF-polymer hybrid materials, as well as seminal reports that significantly advanced the field.
Collapse
Affiliation(s)
- Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Kyle C Bentz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Sergio Ayala
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Joseph M Palomba
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Kyle S Barcus
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuji Katayama
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States.,Asahi Kasei Corporation, 2-1 Samejima, Fuji-city, Shizuoka 416-8501, Japan
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
32
|
Kitao T, Nagasaka Y, Karasawa M, Eguchi T, Kimizuka N, Ishii K, Yamada T, Uemura T. Transcription of Chirality from Metal–Organic Framework to Polythiophene. J Am Chem Soc 2019; 141:19565-19569. [DOI: 10.1021/jacs.9b10880] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yujiro Nagasaka
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masanobu Karasawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Toshiki Eguchi
- Department of Chemistry and Biochiemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochiemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Teppei Yamada
- Department of Chemistry and Biochiemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
33
|
Schué E, Kopyshev A, Lutz J, Börner HG. Molecular Bottle Brushes with Positioned Selenols: Extending the Toolbox of Oxidative Single Polymer Chain Folding with Conformation Analysis by Atomic Force Microscopy. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Emmanuelle Schué
- Laboratory for Organic Synthesis of Functional Systems, Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Strasse 2 12489 Berlin Germany
| | - Alexey Kopyshev
- Institute of Physics and AstronomyUniversity of Potsdam 14476 Potsdam Germany
| | - Jean‐François Lutz
- Universiteć de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess Strasbourg 67034 Cedex 2 France
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Strasse 2 12489 Berlin Germany
| |
Collapse
|
34
|
Shiraogawa T, Ehara M. Theoretical Study on the Optical Properties of Multichromophoric Systems Based on an Exciton Approach: Modification Guidelines. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takafumi Shiraogawa
- SOKENDAIThe Graduate University for Advanced Studies Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
| | - Masahiro Ehara
- SOKENDAIThe Graduate University for Advanced Studies Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
- Institute for Molecular Science and Research Center for Computational Science Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto 615-8245 Japan
| |
Collapse
|
35
|
Schmidt BVKJ. Metal-Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromol Rapid Commun 2019; 41:e1900333. [PMID: 31469204 DOI: 10.1002/marc.201900333] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Indexed: 12/23/2022]
Abstract
The development of metal-organic frameworks (MOFs) has had a significant impact on various fields of chemistry and materials science. Naturally, polymer science also exploited this novel type of material for various purposes, which is due to the defined porosity, high surface area, and catalytic activity of MOFs. The present review covers various topics of MOF/polymer research beginning with MOF-based polymerization catalysis. Furthermore, polymerization inside MOF pores as well as polymerization of MOF ligands is described, which have a significant effect on polymer structures. Finally, MOF/polymer hybrid and composite materials are highlighted, encompassing a range of material classes, like bulk materials, membranes, and dispersed materials. In the course of the review, various applications of MOF/polymer combinations are discussed (e.g., adsorption, gas separation, drug delivery, catalysis, organic electronics, and stimuli-responsive materials). Finally, past research is concluded and an outlook toward future development is provided.
Collapse
Affiliation(s)
- Bernhard V K J Schmidt
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
36
|
Anan S, Mochizuki Y, Kokado K, Sada K. Step‐Growth Copolymerization Between an Immobilized Monomer and a Mobile Monomer in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shizuka Anan
- Department of Chemistry Faculty of Science Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo Hokkaido 060-0810 Japan
| | - Yumi Mochizuki
- Graduate School of Chemical Sciences and Engineering Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo Hokkaido 060-0810 Japan
| | - Kenta Kokado
- Department of Chemistry Faculty of Science Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo Hokkaido 060-0810 Japan
- Graduate School of Chemical Sciences and Engineering Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo Hokkaido 060-0810 Japan
| | - Kazuki Sada
- Department of Chemistry Faculty of Science Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo Hokkaido 060-0810 Japan
- Graduate School of Chemical Sciences and Engineering Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
37
|
Anan S, Mochizuki Y, Kokado K, Sada K. Step-Growth Copolymerization Between an Immobilized Monomer and a Mobile Monomer in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2019; 58:8018-8023. [PMID: 30963673 DOI: 10.1002/anie.201901308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Indexed: 11/12/2022]
Abstract
The A-A/B-B step-growth copolymerization between a monomer immobilized in the crystalline state and a monomer mobile in the solution state is demonstrated. One of the two monomers was immobilized as organic ligands of the metal-organic framework (MOF) and polymerized with the mobile guest monomer, resulting in the formation of linear polymers. The polymerization behavior was completely different from that of the solution polymerizations. In particular, the degrees of polymerization (DP) converged to a specific value depending on the MOF structures. The inevitable termination is caused not by imperfectness of the polymerization reaction, but by the selection of the two polymerization partners among the several adjacent immobilized monomers. This is fully supported by the Monte Carlo simulation on the basis of the polymerization mechanism. Precise immobilization of monomers in the supramolecular assemblies is a promising way for the controlled A-A/B-B step-growth polymerization.
Collapse
Affiliation(s)
- Shizuka Anan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Yumi Mochizuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Kenta Kokado
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Kazuki Sada
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
38
|
Gebka K, Jarosz T, Stolarczyk A. The Different Outcomes of Electrochemical Copolymerisation: 3-Hexylthiophene with Indole, Carbazole or Fluorene. Polymers (Basel) 2019; 11:E355. [PMID: 30960339 PMCID: PMC6419181 DOI: 10.3390/polym11020355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/05/2022] Open
Abstract
Electrochemical polymerisation is reported to be a method for readily producing copolymers of various conjugated molecules. We employed this method for mixtures of indole, carbazole or fluorene with 3-hexylthiophene (HT), in order to obtain their soluble copolymers. Although polymer films were obtained, infrared (IR) and Raman investigations showed that instead of the expected linear copolymers, polyindole and polycarbazole N-substituted with HT, as well as a poly(3-hexylthiophene) (PHT)/polyfluorene blend were produced instead. Boron trifluoride diethyl etherate was also used in an attempt to promote copolymerisation, but the produced deposits were found to be highly degraded.
Collapse
Affiliation(s)
- Karolina Gebka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| | - Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 6 Krzywoustego Street, 44-100 Gliwice, Poland.
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| |
Collapse
|
39
|
Jarosz T, Gebka K, Stolarczyk A, Domagala W. Transparent to Black Electrochromism-The "Holy Grail" of Organic Optoelectronics. Polymers (Basel) 2019; 11:E273. [PMID: 30960257 PMCID: PMC6419085 DOI: 10.3390/polym11020273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
In the rapidly developing field of conjugated polymer science, the attribute of electrochromism these materials exhibit provides for a multitude of innovative application opportunities. Featuring low electric potential driven colour change, complemented by favourable mechanical and processing properties, an array of non-emissive electrochromic device (ECD) applications lays open ahead of them. Building up from the simplest two-colour cell, multielectrochromic arrangements are being devised, taking advantage of new electrochromic materials emerging at a fast pace. The ultimate device goal encompasses full control over the intensity and spectrum of passing light, including the two extremes of complete and null transmittance. With numerous electrochromic device architectures being explored and their operating parameters constantly ameliorated to pursue this target, a summary and overview of developments in the field is presented. Discussing the attributes of reported electrochromic systems, key research points and challenges are identified, providing an outlook for this exciting topic of polymer material science.
Collapse
Affiliation(s)
- Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 6 Krzywoustego Street, 44-100 Gliwice, Poland.
| | - Karolina Gebka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| | - Wojciech Domagala
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| |
Collapse
|
40
|
Toyoda R, Sakamoto R, Fukui N, Matsuoka R, Tsuchiya M, Nishihara H. A single-stranded coordination copolymer affords heterostructure observation and photoluminescence intensification. SCIENCE ADVANCES 2019; 5:eaau0637. [PMID: 30613768 PMCID: PMC6314875 DOI: 10.1126/sciadv.aau0637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands. Sonication of the bulk solid copolymer in organic solvent exfoliates single strands with lengths of 1.4 to 3.0 μm. Atomic force microscopy at ambient conditions visualizes the copolymer structure as height distributions. The copolymer structure improves its photoluminescence (up to 32%) relative to that of the corresponding homopolymers (3 and 10%). Numerical simulation based on a restricted random walk model reproduces the photoluminescence intensification, suggesting at the same time the existence of fast intrawire exciton hopping.
Collapse
Affiliation(s)
- Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Naoya Fukui
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryota Matsuoka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mizuho Tsuchiya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Shao P, Li J, Chen F, Ma L, Li Q, Zhang M, Zhou J, Yin A, Feng X, Wang B. Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angew Chem Int Ed Engl 2018; 57:16501-16505. [DOI: 10.1002/anie.201811250] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Pengpeng Shao
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Jie Li
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Fan Chen
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Li Ma
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Qingbin Li
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Mengxi Zhang
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Junwen Zhou
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Anxiang Yin
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Xiao Feng
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Bo Wang
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| |
Collapse
|
42
|
Shao P, Li J, Chen F, Ma L, Li Q, Zhang M, Zhou J, Yin A, Feng X, Wang B. Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811250] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengpeng Shao
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Jie Li
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Fan Chen
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Li Ma
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Qingbin Li
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Mengxi Zhang
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Junwen Zhou
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Anxiang Yin
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Xiao Feng
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Bo Wang
- Department Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; Key Laboratory of Cluster Science; Ministry of Education; School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| |
Collapse
|
43
|
Mochizuki S, Kitao T, Uemura T. Controlled polymerizations using metal-organic frameworks. Chem Commun (Camb) 2018; 54:11843-11856. [PMID: 30259030 DOI: 10.1039/c8cc06415f] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This short review focuses on recent developments in polymerization reactions using metal-organic frameworks (MOFs). MOFs are crystalline porous materials that are able to tune their frameworks, enabling their use as promising media for polymerization. The precise design of the MOF structure is key to controlling polymerizations, allowing for the regulation of not only primary but also higher-order structures.
Collapse
Affiliation(s)
- Shuto Mochizuki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan. and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
44
|
Le Ouay B, Uemura T. Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Isr J Chem 2018. [DOI: 10.1002/ijch.201800074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benjamin Le Ouay
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
- CREST, Japan Science and Technology Agency 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
- Department of Applied Chemistry, Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| |
Collapse
|
45
|
Short AL, Fang C, Nowalk JA, Weiss RM, Liu P, Meyer TY. Cis-Selective Metathesis to Enhance the Living Character of Ring-Opening Polymerization: An Approach to Sequenced Copolymers. ACS Macro Lett 2018; 7:858-862. [PMID: 35650760 DOI: 10.1021/acsmacrolett.8b00460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hydrolytic behavior and physical properties of a polymer are directly related to its constituent monomer sequence, yet the scalable and controllable synthesis of sequenced copolymers remains scarcely realized. To address this need, an enhanced version of entropy-driven ring-opening metathesis polymerization (ED-ROMP) has been developed. An unprecedented level of control is obtained by exploiting the kinetic and thermodynamic differences in the metathesis activity of cis- and trans-olefins embedded in large, unstrained macrocycles. First-order rate kinetics were observed, and polymer molecular weights were found to be proportional to catalyst loading. Computational analysis suggests that incorporation of a cis-olefin into the monomer backbone both introduces a thermodynamic driving force and increases the population of metathesis-active conformers. This approach offers a generally applicable method for enhancing living character in ED-ROMP.
Collapse
Affiliation(s)
- Amy L. Short
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Cheng Fang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jamie A. Nowalk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan M. Weiss
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tara Y. Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|