1
|
Huang Q, Chen J, Chang Y, Yang L, Shi H, Shao X, Wu Q, Dong Y, Li W, Zhang C. Exploring covalent organic frameworks as high-capacity and long-cycling anode materials for lithium-ion batteries. J Colloid Interface Sci 2025; 683:25-35. [PMID: 39671897 DOI: 10.1016/j.jcis.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/17/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
It is essential to advance the development of lithium-ion batteries (LIBs) characterized by high specific capacity and extended cycle life. Covalent organic frameworks (COFs) have emerged as pivotal materials in achieving this objective due to their long-range ordered porous structures and ease of modification. In this work, we designed and synthesized two types of β-ketoenamine-linked COFs, namely TP-3J-COF and TP-3Q-COF, which incorporate multiple redox sites. These COFs were subsequently applied to the anode of LIBs, resulting in the successful fabrication of batteries that demonstrate both high specific capacity and prolonged cycle life. Furthermore, we prepared two composites by in situ growth of COFs on carbon nanotubes (CNTs). The synergistic interaction between the COFs and CNTs enabled the TP-3J-COF@CNT and TP-3Q-COF@CNT composites to achieve maximum specific capacities of 1020 mAh g-1 and 731 mAh g-1, respectively, along with cycle lives exceeding 1400 and 3000 cycles. This research underscores the efficacy of the strategy involving the construction of COFs with multiple redox-active units and their composite formation with CNTs as a robust approach for the development of high-performance LIBs.
Collapse
Affiliation(s)
- Qidi Huang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianai Chen
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuchen Chang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lei Yang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hongliang Shi
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiongchao Shao
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qida Wu
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yujie Dong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Weijun Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Divya D, Mishra H, Jangir R. Covalent organic frameworks and their composites as enhanced energy storage materials. Chem Commun (Camb) 2025; 61:2403-2423. [PMID: 39807040 DOI: 10.1039/d4cc04688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications. These findings are significant for meeting the demand for reliable and sustainable energy storage materials in order to save energy for a better future of mankind. As the demand for reliable and sustainable energy storage materials is increasing, the scientific community is more focussed towards the development of covalent organic frameworks (COFs). The high surface area, thermal and chemical stability, structural tunability, porosity, and low density of COFs make them appropriate for energy storage applications. Their potential to produce advanced energy storage devices with better performance and durability is further reinforced by their ability to be customized for specific applications and amplified for conductive materials. This review covers the designs and synthetic techniques of COFs and their composites specifically suitable for energy storage uses. It further highlights their use as cathode and anode materials in supercapacitors, COF based electrolytes and batteries. The review further includes the flexibility and efficiency of COFs in energy storage applications. Furthermore, it addresses the challenges and their potential solutions regarding the use of COFs in energy storage devices. By providing a comprehensive understanding of the advantages and limitations of COFs, this review aims to inform and inspire future advancements in energy storage technologies.
Collapse
Affiliation(s)
- Divya Divya
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Harshit Mishra
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
3
|
Wang H, Liu G, Zhou W, Wang Y, Dong X. High-Potential and Stable Organic Cathode for Rechargeable Batteries with Fast-Charging and Wide-Temperature Adaptability. Angew Chem Int Ed Engl 2025; 64:e202416874. [PMID: 39489693 DOI: 10.1002/anie.202416874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024]
Abstract
Organic carbonyl compounds have been recognized as promising electrodes due to multiple active sites, abundant element resources and flexible structural designability, while their practical applications are still hindered by the easy solubility and low discharge potential. Herein, a novel bipolar polymer composite (TAC) was well-designed by grafting p-type triphenylamine units onto n-type anthraquinone to form an extended π-conjugated structure and in situ growing on carbon nanotubes, which was proved not only with higher discharge potential but also effectively suppress the dissolution issues. Moreover, TAC combined the advantages of different active sites and behaved a dual-ion storage mechanism. Benefitting from the in situ polymerization process, TAC with tube-type core-shell structure exhibited enhanced electron transport and improved utilization of active sites, resulting in high capacity (193 mAh g-1), outstanding rate performance (fast charging within 17 s), long-term stability (a high capacity retention of 87 % after 1000 cycles) and high mass loading (10 mg cm-2). Additionally, TAC can well adapt to the temperature change, outputting a capacity of 72 mAh g-1 at -60 °C and 165 mAh g-1 at 80 °C. Such versatile polymer structure inspires the design of high performance organic materials for rechargeable batteries to satisfy high stability and wide temperature operations.
Collapse
Affiliation(s)
- Haotian Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Gaopan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Wen Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xiaoli Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
4
|
Wu LF, Xiao JM, Luan CZ, Xie M, Li YY, Bin DS, Zuo JL. Solubility-Limited Small Molecule for Stable High-Capacity Potassium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410973. [PMID: 39711281 DOI: 10.1002/smll.202410973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Small molecule electrode materials with superb redox activity have significant applied implications for K-ion storage, but they face significant challenges like high solubility in electrolytes and low conductivity, limiting their capacity, rate, and cycling stability. Herein, a series of Ni-bis(dithiolene) (NiS4)-based small molecules are designed with control of various redox-active substitutional groups for K-ion batteries anode materials. It is identified that bis[1,2-di(pyridine-4-yl) ethylene-1,2-dithiolate] nickel Ni[C2S2Py2]2 demonstrates a high reversible specific capacity (399 mAh g-1 at 0.03 A g-1) with an impressive rate capability and an exceptional cycling stability (over 99% capacity retention after 1600 cycles). Its extraordinary performance is attributed to the synergy between the NiS4 unit and pyridine group, providing abundant K⁺ storage sites, impressive conductivity, and low solubility. The comprehensive characterizations and theoretical simulation confirm the multistep K⁺ storage mechanism in Ni[C2S2Py2]2, enabling fast charge transfer and excellent rate performance. This work offers new perspectives in building solubility-limited and conductive small molecule electrode materials with high redox activity for non-aqueous rechargeable batteries.
Collapse
Affiliation(s)
- Lei-Feng Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Ji-Miao Xiao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Cui-Zhou Luan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Yu-Yang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - De-Shan Bin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
5
|
Song W, Ren X, Bai F, Tian Y, Li Y. General Acetal-Protected Aldehyde Strategy for Facile Synthesis of Covalent Organic Frameworks with Splendid Crystallinity and Uniform Morphology. Chemistry 2024:e202404140. [PMID: 39655772 DOI: 10.1002/chem.202404140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Crystallinity and morphology are critical factors that closely related to the properties and applications of covalent organic frameworks (COFs). However, the controlled synthesis of COFs with both high crystallinity and uniform morphology remains a significant challenge due to uncontrollable polymerization and complex reaction conditions. In this work, we present a general acetal-protected aldehyde protocol for the facile synthesis of imine-linked COFs, which enables the simultaneous optimization of crystallinity and morphology. Of the acetal-protected aldehydes explored, ethanediol-protected terephthalaldehyde (Tp-E) emerged as the most effective, balancing stability and reactivity to yield highly crystalline Py-COF-E with a well-defined hollow spherical morphology and a significantly enhanced BET surface area compared to its aldehyde-based counterpart Py-COF. This synthetic approach demonstrates broad adaptability across various framework topologies, precursor species, and synthetic solvent systems, simplifying the typically laborious solvent screening process in COF synthesis. Furthermore, Py-DBT-COF-E showed superior photocatalytic H2 evolution performance relative to Py-DBT-COF, despite their identical chemical compositions, emphasizing the critical role of crystallinity and morphology in determining functional performance. Overall, this study provides a versatile methodology for the controlled synthesis of COFs and offers valuable insights into the interconnected roles of morphology, crystallinity, and material performance.
Collapse
Affiliation(s)
- Wen Song
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanosciences and Materials Engineering
- Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xitong Ren
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanosciences and Materials Engineering
- Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Feng Bai
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanosciences and Materials Engineering
- Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yajie Tian
- School of Energy Science and Technology, Henan University, Zhengzhou, 450046, China
| | - Yusen Li
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanosciences and Materials Engineering
- Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
6
|
Yang M, Wang Y, Huang YF, Xiao JM, Zhu GY, Fang Y, Zhou XC, Long JH, Xie M, Bin DS, Li D. A Conductive Cu-Based Metal-Organic Framework Ribbon with High-Density Redox-Active Centers as Cathode for Stable High-Capacity Lithium-Ion Batteries. Angew Chem Int Ed Engl 2024:e202421008. [PMID: 39627160 DOI: 10.1002/anie.202421008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Conductive Cu-based metal-organic framework (Cu-MOF) materials hold significant potential as cathodes for lithium-ion batteries (LIBs) due to their flexible structural design, high electronic conductivity, and independence from costly resources. However, their practical application is often limited by their capacity and cyclability. In this study, we report a one-dimensional Cu-MOF (DDA-Cu, DDA=1, 5-Diamino-4, 8-dihydroxy-9, 10-anthraceneedione) featuring extended π-d conjugated coordination ribbon and high-density redox-active centers, making it a stable, high-capacity cathode for LIBs. The π-d conjugated Cu-O3N motifs embedded within the ribbon not only serve as redox-active centers for enhanced lithium-ion storage capacity but also contribute to structural robustness, enabling resistance against electrode solubility in organic electrolytes, thus ensuring superior cyclability. Furthermore, these π-d conjugated Cu-O3N units promote efficient charge transfer, leading to high electronic conductivity at room temperature. These advantageous properties allow the Cu-MOF cathode to deliver a remarkable capacity (353 mAh g-1 at 0.05 A g-1) and exceptional cyclability, achieving capacity retention of 78 % after 1000 cycles, surpassing state-of-the-art MOF electrodes. Additionally, this DDA-Cu demonstrates considerable wettability with the electrolyte, achieving outstanding performance even when tested in a lean electrolyte environment (2 μL mg-1) with a high mass loading of the MOF (6.8 mg cm-2).
Collapse
Affiliation(s)
- Menghua Yang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yan-Fang Huang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ji-Miao Xiao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Guo-Yu Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Fang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Jian-Hua Long
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - De-Shan Bin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Liu M, Kuang J, Han X, Liu Y, Gao W, Shang S, Wang X, Hong J, Guan B, Zhao X, Guo Y, Dong J, Zhao Z, Zhao Y, Liu C, Liu Y, Chen J. Diffusion limited synthesis of wafer-scale covalent organic framework films for adaptative visual device. Nat Commun 2024; 15:10487. [PMID: 39622830 PMCID: PMC11612170 DOI: 10.1038/s41467-024-54844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Synthesizing high-crystalline covalent organic framework films is highly desired to advance their applications in two-dimensional optoelectronics, but it remains a great challenge. Here, we report a diffusion-limited synthesis strategy for wafer-scale uniform covalent organic framework films, in which pre-deposited 4,4',4″,4‴-(1,3,6,8-Tetrakis(4-aminophenyl) pyrene is encapsulated on substrate surface with a layer of covalent organic framework prepolymer. The polymer not only prevents the dissolution of precursor, but limits the reaction with terephthalaldehyde dissolved in solution, thereby regulating the polymerization process. The size depends on growth substrates, and 4-inch films have been synthesized on silicon chips. Their structure, thickness, patterning and crystallization degree can be controlled by adjusting building blocks and polymerization chemistries, and molybdenum disulfide have been used as substrates to construct vertical heterostructure. The measurements reveal that using covalent organic framework as a photosensitive layer, the heterojunction displays enhanced photoelectric performance, which can be used to simulate the adaptative function of visual system.
Collapse
Affiliation(s)
- Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Kuang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaxin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
8
|
Duan J, Wang K, Teng L, Liu H, Xu L, Huang Q, Li Y, Liu M, Hu H, Chen X, Wang J, Yan W, Lyu W, Liao Y. Nanofibrous Covalent Organic Frameworks as the Cathode, Separator, and Anode for Batteries with High Energy Density and Ultrafast-Charging Performance. ACS NANO 2024; 18:29189-29202. [PMID: 39377210 DOI: 10.1021/acsnano.4c11262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
To meet the demand for longer driving ranges and shorter charging times of power equipment in electric vehicles, engineering fast-charging batteries with exceptional capacity and extended lifespan is highly desired. In this work, we have developed a stable ultrafast-charging and high-energy-density all-nanofibrous covalent organic framework (COF) battery (ANCB) by designing a series of imine-based nanofibrous COFs for the cathode, separator, and anode by Schiff-base reactions. Hierarchical porous structures enabled by nanofibrous COFs were constructed for enhanced kinetics. Rational chemical structures have been designed for the cathode, separator, and anode materials, respectively. A nanofibrous COF (AA-COF) with bipolarization active sites and a wider layer spacing has been designed using a triphenylamine group for the cathode to achieve high voltage limits with fast mass transport. For the anode, a nanofibrous COF (TT-COF) with abundant polar groups, active sites, and homogenized Li+ flux based on imine, triazine, and benzene has been synthesized to ensure stable fast-charging performance. As for the separator, a COF-based electrospun polyacrylonitrile (PAN) composite nanofibrous separator (BB-COF/PAN) with hierarchical pores and high-temperature stability has been prepared to take up more electrolyte, promote mass transport, and enable as high-temperature operation as possible. The as-assembled ANCB delivers a high energy density of 517 Wh kg-1, a high power density of 9771 W kg-1 with only 56 s of ultrafast-charging time, and high-temperature operational potential, accompanied by a 0.56% capacity fading rate per cycle at 5 A g-1 and 100 °C. This ANCB features an ultralong lifespan and distinguished ultrafast-charging performance, making it a promising candidate for powering equipment in electric vehicles.
Collapse
Affiliation(s)
- Ju Duan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Likuan Teng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Linchu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qihang Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yitao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengqi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Chen
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, the People's Republic of China, Xi'an 710000, China
| | - Jianan Wang
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, the People's Republic of China, Xi'an 710000, China
| | - Wei Yan
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, the People's Republic of China, Xi'an 710000, China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
9
|
Liu XH, Zhou ZH, Feng JR, Zheng SY, Wen TT, Zhong HK, Xue C, Zhou XT. Selective Generation of Reactive Oxygen Species in Photocatalytic Oxidation by Tuning Porphyrin-Based COFs' Dimensionality. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52550-52558. [PMID: 39300808 DOI: 10.1021/acsami.4c12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Regulating the selective generation of reactive oxygen species (ROS) is a significant challenge in the field of photocatalytic oxidation, with successful approaches still being limited. Herein, we present a strategy to selectively generate singlet oxygen (1O2) and superoxide radicals (O2•-) by tuning the dimensionality of porphyrin-based covalent organic frameworks (COFs). The transformation of COFs from three-dimensional (3D) solids to two-dimensional (2D) sheets was achieved through the reversible protonation of the imine bond. Upon irradiation, both bulk and thin-layer COF-367 can transfer energy to O2 to generate 1O2. However, thin-layer COF-367 exhibited a superior performance compared to its bulk counterpart in activating O2 to form the O2•- radicals via electron transfer. After excluding the influences of the band structure, O2 adsorption energy, and frontier orbital composition attributed to the dimensionality of the COFs, it is reasonably speculated that the variance in ROS generation arises from the differential exposure ratios of the active surfaces, leading to distinct reaction pathways between the carrier and O2. This study is the first to explore the modulation mechanism of COF dimensionality on the activation of the O2 pathway, underscoring the importance of considering COF dimensionality in photocatalytic reactions.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Zhe-Han Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Jing-Ru Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Shuo-Yun Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Tian-Tian Wen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Han-Kang Zhong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Xian-Tai Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Huizhou Research Institute Sun Yat-sen University, Huizhou 516081, P. R. China
| |
Collapse
|
10
|
Chen Q, Kang H, Gao Y, Zhang L, Wang R, Zhang S, Zhou T, Li H, Mao J, Zhang C, Guo Z. Nanostructured Porous Polymer with Low Volume Expansion, Structural Distortion, and Gradual Activation for High and Durable Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48736-48747. [PMID: 37874797 DOI: 10.1021/acsami.3c11111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Organic compounds exhibit great potential as sustainable, tailorable, and environmentally friendly electrode materials for rechargeable batteries. However, the intrinsic defects of organic electrodes, including solubility, low ionic conductivity, and restricted electroactivity sites, will inevitably decrease the cycling life and capacity. We herein designed and prepared nanostructured porous polymers (NPP) with a simple one-pot method to overcome the above defects. Theoretical calculations and experimental results demonstrate that the as-synthesized NPP exhibited low volume expansion, molecular-structural distortion, and a gradual function activation process during cycling, thus exhibiting superior, high, and durable lithium storage. The gradual molecular distortion during the lithium storage processes provides more redox-active sites for Li storage, increasing the Li-storage capacity. Ex situ spectrum studies reveal the redox reaction mechanism of Li storage and demonstrate a gradual activation process during the repeated charging/discharging until the full storage of 18 Li ions is achieved. Additionally, a real-time observation on the NPP anode by in situ transmission electron microscope reveals a slight volume expansion during the repeating lithiation and delithiation processes, ensuring its structural integrity during cycling. This quantitative work for high-durability lithium storage could be of immediate benefit for designing organic electrode materials.
Collapse
Affiliation(s)
- Qi Chen
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Hongwei Kang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China
| | - Yuchen Gao
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Shilin Zhang
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Jianfeng Mao
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei 230601, China
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
11
|
Ma D, Tang X, Niu A, Wang X, Wang M, Wang R. Cationic covalent organic framework nanosheets as the coating layer of commercial separator for high-efficiency lithium-sulfur batteries. Heliyon 2024; 10:e36083. [PMID: 39229507 PMCID: PMC11369462 DOI: 10.1016/j.heliyon.2024.e36083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Ion-selective separators, are crucial and in high demand for maximizing the performance of lithium-sulfur (Li-S) batteries, which can conduct lithium ions while efficiently blocking polysulfides. However, commercial separators cannot effectively block the shuttle of polysulfides after multiple cycles due to their large porosity and easy dissolution, resulting in a reduced battery life. Herein, a covalent organic framework nanosheets (CON) ion-coated separator is prepared on the commercial separator. Due to the smaller pore size of CON-TFSI compared to polysulfides, the CON-TFSI modified separator can effectively block the polysulfide from migrating across the separator. By incorporating this innovative functional layer, Li-S batteries demonstrate outstanding performance. In a Li-S battery featuring a sulfur loading of 0.6 mg/cm2, it attains an initial discharge specific capacity of up to 891.9 mA h g-1, and exhibits the capacity retention of 54.6 % after 500 cycles at a current density of 0.2 C. This work offers a fresh perspective on the advancement of high-performance membranes for Li-S batteries.
Collapse
Affiliation(s)
| | | | - Aimin Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Xiupeng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Mingchun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| |
Collapse
|
12
|
Chen Z, Xiong Y, Liu Y, Wang Z, Zhang B, Liang X, Chen X, Yin Y. Precisely Designed Morphology and Surface Chemical Structure of Fe-N-C Electrocatalysts for Enhanced Oxygen Reaction Reduction Activity. Molecules 2024; 29:3785. [PMID: 39202864 PMCID: PMC11357191 DOI: 10.3390/molecules29163785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Fe-N-C materials have been regarded as one of the potential candidates to replace traditional noble-metal-based electrocatalysts for the oxygen reduction reaction (ORR). It is believed that the structure of carbon support in Fe-N-C materials plays an essential role in highly efficient ORR. However, precisely designing the morphology and surface chemical structure of carbon support remains a challenge. Herein, we present a novel synthetic strategy for the preparation of porous carbon spheres (PCSs) with high specific surface area, well-defined pore structure, tunable morphology and controllable heteroatom doping. The synthesis involves Schiff-based polymerization utilizing octaaminophenyl polyhedral oligomeric silsesquioxane (POSS-NH2) and heteroatom-containing aldehydes, followed by pyrolysis and HF etching. The well-defined pore structure of PCS can provide the confinement field for ferroin and transform into Fe-N-C sites after carbonization. The tunable morphology of PCS can be easily achieved by changing the solvents. The surface chemical structure of PCS can be tailored by utilizing different heteroatom-containing aldehydes. After optimizing the structure of PCS, Fe-N-C loading on N,S-codoped porous carbon sphere (NSPCS-Fe) displays outstanding ORR activity in alkaline solution. This work paves a new path for fabrication of Fe-N-C materials with the desired morphology and well-designed surface chemical structure, demonstrating significant potential for energy-related applications.
Collapse
Affiliation(s)
- Zirun Chen
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Yuang Xiong
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Yanling Liu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Zhanghongyuan Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Binbin Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Xia Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| |
Collapse
|
13
|
Yin M, Guo K, Meng J, Wang Y, Gao H, Xue Z. Ferrocene-Based Polymer Organic Cathode for Extreme Fast Charging Lithium-Ion Batteries with Ultralong Lifespans. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405747. [PMID: 38898683 DOI: 10.1002/adma.202405747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Indexed: 06/21/2024]
Abstract
To meet the growing demand for energy storage, lithium-ion batteries (LIBs) with fast charging capabilities has emerged as a critical technology. The electrode materials affect the rate performance significantly. Organic electrodes with structural flexibility support fast lithium-ion transport and are considered promising candidates for fast-charging LIBs. However, it is a challenge to create organic electrodes that can cycle steadily and reach high energy density in a few minutes. To solve this issue, accelerating the transport of electrons and lithium ions in the electrode is the key. Here, it is demonstrated that a ferrocene-based polymer electrode (Fc-SO3Li) can be used as a fast-charging organic electrode for LIBs. Thanks to its molecular architecture, LIBs with Fc-SO3Li show exceptional cycling stability (99.99% capacity retention after 10 000 cycles) and reach an energy density of 183 Wh kg-1 in 72 seconds. Moreover, the composite material through in situ polymerization with Fc-SO3Li and 50 wt % carbon nanotube (denoted as Fc-SO3Li-CNT50) achieved optimized electron and ion transport pathways. After 10 000 cycles at a high current density of 50C, it delivered a high energy density of 304 Wh kg-1. This study provides valuable insights into designing cathode materials for LIBs that combine high power and ultralong cycle life.
Collapse
Affiliation(s)
- Mengjia Yin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kairui Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junchen Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
14
|
Zhang R, Xue H, Otitoju TA, Jin J, Zheng J, Feng Z, Zhu L, Sun T. Analogous Chelation to Boost Utilization of Sb in Sb Nanoparticles and N-doped Carbon Composites for Enhancing Potassium Storage. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39056581 DOI: 10.1021/acsami.4c06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Antimony (Sb) is an attractive anode material for potassium-ion batteries (PIBs), but it suffers from aggregation during the charging-discharging process, thus causing embedded active sites and collapsed structure. The analogous chelation refers to the reaction in which the central nanoparticle is linked to the matrix through multiple coordination bonds to form a stable composite. This strategy can inhibit aggregation and maintain the nanosized structure of Sb, thus activating the utilization of Sb active sites and structural stability. Given the special position of nitrogen (N) in the periodic table of elements and the strong bond energy of Sb-N, the N element can serve as an intermediate to connect Sb nanoparticles and an intrinsic N-doped carbon network via strong Sb-N-C/Sb-N═C covalent bonds using analogous chelation. Herein, a hybrid material of Sb@CTF-NC is fabricated via analogous chelation. The Sb atoms exposed on the surface of Sb nanoparticles are used to chelate with the N-doped carbon for high-performance PIBs. The mechanism underwent ex situ characterizations. The calculation of density functional theory reveals that the increase of adsorption energy and reduction of the K+ diffusion barrier accelerate the electrochemical reaction kinetics.
Collapse
Affiliation(s)
- Ruiying Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Huichun Xue
- Department of Physics, College of Science, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Tunmise Ayode Otitoju
- Green Carbon Research Center, Chemical & Process Technology Research, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Jiuzeng Jin
- Department of Chemistry, College of Science, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Jia Zheng
- Department of Chemistry, College of Science, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Zhongmin Feng
- Department of Chemistry, College of Science, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Lin Zhu
- Department of Physics, College of Science, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Ting Sun
- Department of Chemistry, College of Science, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| |
Collapse
|
15
|
Karak S, Singh H, Biswas A, Paul S, Manna S, Nishiyama Y, Pathak B, Banerjee A, Banerjee R. Lithiophilic Dibenzamide Linkages to Impart Lithium Storage Capacity in Porous Polybenzamides. J Am Chem Soc 2024; 146:20183-20192. [PMID: 39002137 DOI: 10.1021/jacs.4c05192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Polymer-based organic cathode materials have shown immense promise for lithium storage, owing to their structural diversity and functional group tunability. However, designing appropriate high-performance cathode materials with a high-rate capability and long cycle life remains a significant challenge. It is quintessential to design polymer-based electrodes with lithiophilic linkages. Herein, we design a bifurcated dibenzamide (DBA) linkage having lithiophilic functionalities. 1H NMR has been used as an experimental tool to understand the lithiophilic nature of the DBAs. Considering the strong Li+ affinity of DBAs, a series of polybenzamides have been designed as lithium storage systems. The design of porous polybenzamides consists of amides as only redox-active functionalities, and the rest are inactive phenyl units. Porous polybenzamides, when tested as cathodes against a Li-metal anode, displayed high capacity and rate performance, demonstrating their redox activity. The most efficient polybenzamide (TAm-TA) delivered a specific capacity of 248 mA h g-1 at 1C. TAm-TA retained 63% of its specific capacity at a very high rate of 10C (157 mA h g-1). Notably, polybenzamides displayed a capacity enhancement during long cycling, tending to achieve their theoretical capacity. Long cycling stability tests over 3000 cycles at a rate of 1.3C and over 6000 cycles at elevated rates (5C to 40C) demonstrate the electrochemical robustness of dibenzamide linkages. Finally, two full-cell experiments using TAm-TA as both cathode and anode were conducted, which delivered high capacity, demonstrating that TAm-TA is a promising candidate for Li+-ion batteries (LIBs). Furthermore, the ex situ Fourier transform infrared (FT-IR), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) studies revealed the stepwise lithiation/delithiation mechanism for polybenzamides.
Collapse
Affiliation(s)
- Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Himanshi Singh
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology, Sector V, Salt Lake, Kolkata 700091, India
| | - Arup Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Souvik Manna
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | | | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Abhik Banerjee
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology, Sector V, Salt Lake, Kolkata 700091, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- College of Science, Korea University, 145 Anam-ro Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
16
|
Chen RH, Xiao JM, Zhu NN, Xiao RH, Liu WY, Zeng X, Chen YF, Yi ZJ, Zhu GY, Liu L, Bin DS, Li D. Shell Modulation of Hollow Metal Sulfide Nanocomposite for Stable Potassium Storage at Room and High Temperature. Angew Chem Int Ed Engl 2024; 63:e202402497. [PMID: 38679571 DOI: 10.1002/anie.202402497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The large size of K-ion makes the pursuit of stable high-capacity anodes for K-ion batteries (KIBs) a formidable challenge, particularly for high temperature KIBs as the electrode instability becomes more aggravated with temperature climbing. Herein, we demonstrate that a hollow ZnS@C nanocomposite (h-ZnS@C) with a precise shell modulation can resist electrode disintegration to enable stable high-capacity potassium storage at room and high temperature. Based on a model electrode, we identify an interesting structure-function correlation of the h-ZnS@C: with an increase in the shell thickness, the cyclability increases while the rate and capacity decrease, shedding light on the design of high-performance h-ZnS@C anodes via engineering the shell thickness. Typically, the h-ZnS@C anode with a shell thickness of 60 nm can deliver an impressive comprehensive performance at room temperature; the h-ZnS@C with shell thickness increasing to 75 nm can achieve an extraordinary stability (88.6 % capacity retention over 450 cycles) with a high capacity (450 mAh g-1) and a superb rate even at an extreme temperature of 60 °C, which is much superior than those reported anodes. This contribution envisions new perspectives on rational design of functional metal sulfides composite toward high-performance KIBs with insights into the significant structure-function correlation.
Collapse
Affiliation(s)
- Run-Hang Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ji-Miao Xiao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ning-Ning Zhu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Rong-Hui Xiao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Wan-Yi Liu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xian Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Yan-Fei Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Yi
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Guo-Yu Zhu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - De-Shan Bin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
17
|
Zhang X, Kazemi SA, Xu X, Hill JP, Wang J, Li H, Alshehri SM, Ahamad T, Bando Y, Yamauchi Y, Wang Y, Pan L. 14-Electron Redox Chemistry Enabled by Salen-Based π-Conjugated Framework Polymer Boosting High-Performance Lithium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309321. [PMID: 38528424 DOI: 10.1002/smll.202309321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/12/2024] [Indexed: 03/27/2024]
Abstract
A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.
Collapse
Affiliation(s)
- Xinlu Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Seyedeh Alieh Kazemi
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Southport, 4222, Australia
| | - Xingtao Xu
- Marine Science and Technology Collage, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jiachen Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Saad M Alshehri
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tansir Ahamad
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yoshio Bando
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya University, Nagoya, 464-8601, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Southport, 4222, Australia
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
18
|
Yang L, Zhang Y, Cai W, Tan J, Hansen H, Wang H, Chen Y, Zhu M, Mu J. Electrochemically-driven actuators: from materials to mechanisms and from performance to applications. Chem Soc Rev 2024; 53:5956-6010. [PMID: 38721851 DOI: 10.1039/d3cs00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Soft actuators, pivotal for converting external energy into mechanical motion, have become increasingly vital in a wide range of applications, from the subtle engineering of soft robotics to the demanding environments of aerospace exploration. Among these, electrochemically-driven actuators (EC actuators), are particularly distinguished by their operation through ion diffusion or intercalation-induced volume changes. These actuators feature notable advantages, including precise deformation control under electrical stimuli, freedom from Carnot efficiency limitations, and the ability to maintain their actuated state with minimal energy use, akin to the latching state in skeletal muscles. This review extensively examines EC actuators, emphasizing their classification based on diverse material types, driving mechanisms, actuator configurations, and potential applications. It aims to illuminate the complicated driving mechanisms of different categories, uncover their underlying connections, and reveal the interdependencies among materials, mechanisms, and performances. We conduct an in-depth analysis of both conventional and emerging EC actuator materials, casting a forward-looking lens on their trajectories and pinpointing areas ready for innovation and performance enhancement strategies. We also navigate through the challenges and opportunities within the field, including optimizing current materials, exploring new materials, and scaling up production processes. Overall, this review aims to provide a scientifically robust narrative that captures the current state of EC actuators and sets a trajectory for future innovation in this rapidly advancing field.
Collapse
Affiliation(s)
- Lixue Yang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Yiyao Zhang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Junlong Tan
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Dianji University, 201306, Shanghai, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| |
Collapse
|
19
|
Wang Y, Zhu Y, Chen Z, Yang X, Zhang R, Wang H, Yang Y. Molecule and Microstructure Modulations of Cyano-Containing Electrodes for High-Performance Fully Organic Batteries. Angew Chem Int Ed Engl 2024; 63:e202401253. [PMID: 38491764 DOI: 10.1002/anie.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Cyano-containing electrodes usually promise high theoretical potentials while suffering from uncontrollable self-dissolution and sluggish reaction kinetics. Herein, to remedy their limitations, an unprecedented core-shell heterostructured electrode of carbon nanotubes encapsulated in poly(1,4-dicyanoperfluorobenzene sulfide) (CNT@PFDCB) is rationally crafted via molecule and microstructure modulations. Specifically, the linkage of sulfide bridges of PFDCB prevents the active cyano groups from dissolving, resulting in a robust structure. The fluorinations modulate the electronic configurations in frontier orbitals, allowing higher electrical conductivity and elevated output voltage. Combined with the core-shell architecture to unlock the sluggish diffusion kinetics for both electrons and guest ions, the CNT@PFDCB exhibits an impressive capacity (203.5 mAh g-1), remarkable rate ability (127.6 mAh g-1 at 3.0 A g-1), and exceptional cycling stability (retaining 81.1 % capacity after 3000 cycles at 1.0 A g-1). Additionally, the Li-storage mechanisms regarding PFDCB are thoroughly revealed by in situ attenuated total reflection infrared spectroscopy, in situ Raman spectroscopy, and theoretical simulations, which involve the coordination interaction between Li ions and cyano groups and the electron delocalization along the conjugated skeleton. More importantly, a practical fully organic cell based on the CNT@PFDCB is well-validated that demonstrates a tremendous potential of cyanopolymer as the cathode to replace its inorganic counterparts.
Collapse
Affiliation(s)
- Yonglin Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Zixuan Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Xu Yang
- College of Science, Shenyang Aerospace University, Shenyang, 110135, China
| | - Rongyu Zhang
- College of Science, Shenyang Aerospace University, Shenyang, 110135, China
| | - Hengguo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| |
Collapse
|
20
|
Yang C, Wang K, Lyu W, Liu H, Li J, Wang Y, Jiang R, Yuan J, Liao Y. Nanofibrous Porous Organic Polymers and Their Derivatives: From Synthesis to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400626. [PMID: 38476058 PMCID: PMC11109660 DOI: 10.1002/advs.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Engineering porous organic polymers (POPs) into 1D morphology holds significant promise for diverse applications due to their exceptional processability and increased surface contact for enhanced interactions with guest molecules. This article reviews the latest developments in nanofibrous POPs and their derivatives, encompassing porous organic polymer nanofibers, their composites, and POPs-derived carbon nanofibers. The review delves into the design and fabrication strategies, elucidates the formation mechanisms, explores their functional attributes, and highlights promising applications. The first section systematically outlines two primary fabrication approaches of nanofibrous POPs, i.e., direct bulk synthesis and electrospinning technology. Both routes are discussed and compared in terms of template utilization and post-treatments. Next, performance of nanofibrous POPs and their derivatives are reviewed for applications including water treatment, water/oil separation, gas adsorption, energy storage, heterogeneous catalysis, microwave absorption, and biomedical systems. Finally, highlighting existent challenges and offering future prospects of nanofibrous POPs and their derivatives are concluded.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kexiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Wei Lyu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - He Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiaqiang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Ruyu Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
21
|
Liang C, Cai X, Lin J, Chen Y, Xie Y, Liu Y. A Conjugated Coordination Polymer with Benzoquinone as Electrode Material for All Organic Symmetric Lithium-ion Batteries. Chempluschem 2024; 89:e202300620. [PMID: 38052722 DOI: 10.1002/cplu.202300620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Carbonyl rich conjugated polymer electrode materials for lithium-ion batteries possessed the advantages of strong molecular design ability, abundance and high theoretical capacity. In this work, a Co2+ coordinated conjugated polymer using 2,3,5,6-tetraamino-p-benzoquinone (TABQ) as building block was constructed and developed as electrode material for all organic symmetric lithium-ion batteries, outputting a specific capacity of over 100 mAh g-1 after 50 cycles at 50 mA g-1. Performances of Co-TABQ in half cells were explored. The Co-TABQ cathode delivered a capacity of 133.3 mAh g-1 after 150 cycles at 20 mA g-1. When cycled at higher current density of 500 mA g-1, the capacity gradually increased to 109.4 mAh g-1 after 4000 cycles. The Co-TABQ anode displayed a stable capacity of 568.6 mAh g-1 at 1 A g-1. The charge transfer within the electrode was greatly reduced due to the metallic centers in the extended conjugated skeleton, and the reversible Li+ storage was achieved by the active C=O and imine groups. This work showed the great potential of metal mediated conjugated polymer in Lithium-ion batteries.
Collapse
Affiliation(s)
- Chenglu Liang
- Center for Advanced Energy and Functional Materials, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Xuesong Cai
- Center for Advanced Energy and Functional Materials, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Jinghang Lin
- Center for Advanced Energy and Functional Materials, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Yuan Chen
- Center for Advanced Energy and Functional Materials, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Yuxing Xie
- Center for Advanced Energy and Functional Materials, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Yang Liu
- Center for Advanced Energy and Functional Materials, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, P. R. China
| |
Collapse
|
22
|
Ren L, Lian L, Zhang X, Liu Y, Han D, Yang S, Wang HG. .Boosting lithium storage in covalent triazine framework for symmetric all-organic lithium-ion batteries by regulating the degree of spatial distortion. J Colloid Interface Sci 2024; 660:1039-1047. [PMID: 38199891 DOI: 10.1016/j.jcis.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Covalent triazine frameworks (CTFs) with tunable structure, fine molecular design and low cost have been regarded as a class of ideal electrode materials for lithium-ion batteries (LIBs). However, the tightly layered structure possessed by the CTFs leads to partial hiding of the redox active site, resulting in their unsatisfactory electrochemical performance. Herein, two CTFs (BDMI-CTF and TCNQ-CTF) with higher degree of structural distortion, more active sites exposed, and large lattice pores were prepared by dynamic trimerization reaction of cyano. As a result, BDMI-CTF as a cathode material for LIBs exhibits high initial capacity of 186.5 mAh/g at 50 mA g-1 and superior cycling stability without capacity loss after 2000 cycles at 1000 mA g-1 compared with TCNQ-CTF counterparts. Furthermore, based on their bipolar functionality, BDMI-CTF can be used as both cathode and anode materials for symmetric all-organic batteries (SAOBs), and this work will open a new window for the rational design of high performance CTF-based LIBs.
Collapse
Affiliation(s)
- Liqiu Ren
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Liang Lian
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Xupeng Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Yuying Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, PR China.
| | - Heng-Guo Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China; Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
23
|
Wu X, Zhou W, Ye C, Zhang J, Liu Z, Yang C, Peng J, Liu J, Gao P. Porphyrin-Thiophene Based Conjugated Polymer Cathode with High Capacity for Lithium-Organic Batteries. Angew Chem Int Ed Engl 2024; 63:e202317135. [PMID: 38332748 DOI: 10.1002/anie.202317135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Organic electrode materials are promising for next-generation energy storage materials due to their environmental friendliness and sustainable renewability. However, problems such as their high solubility in electrolytes and low intrinsic conductivity have always plagued their further application. Polymerization to form conjugated organic polymers can not only inhibit the dissolution of organic electrodes in the electrolyte, but also enhance the intrinsic conductivity of organic molecules. Herein, we synthesized a new conjugated organic polymer (COPs) COP500-CuT2TP (poly [5,10,15,20-tetra(2,2'-bithiophen-5-yl) porphyrinato] copper (II)) by electrochemical polymerization method. Due to the self-exfoliation behavior, the porphyrin cathode exhibited a reversible discharge capacity of 420 mAh g-1, and a high specific energy of 900 Wh Kg-1 with a first coulombic efficiency of 96 % at 100 mA g-1. Excellent cycling stability up to 8000 cycles without capacity loss was achieved even at a high current density of 5 A g-1. This highly conjugated structure promotes COP500-CuT2TP combined high energy density, high power density, and good cycling stability, which would open new opportunity for the designable and versatile organic electrodes for electrochemical energy storage.
Collapse
Affiliation(s)
- Xing Wu
- Key laboratory of Enviromentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Wang Zhou
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy., Hunan University, Changsha, 410082, China
| | - Chao Ye
- Key laboratory of Enviromentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Jiahao Zhang
- Key laboratory of Enviromentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Zheyuan Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Chengkai Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy., Hunan University, Changsha, 410082, China
| | - Ping Gao
- Key laboratory of Enviromentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| |
Collapse
|
24
|
Cao Y, Xu Q, Sun Y, Shi J, Xu Y, Tang Y, Chen X, Yang S, Jiang Z, Um HD, Li X, Wang Y. Steering lithium and potassium storage mechanism in covalent organic frameworks by incorporating transition metal single atoms. Proc Natl Acad Sci U S A 2024; 121:e2315407121. [PMID: 38502699 PMCID: PMC10990087 DOI: 10.1073/pnas.2315407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/10/2024] [Indexed: 03/21/2024] Open
Abstract
Organic electrodes mainly consisting of C, O, H, and N are promising candidates for advanced batteries. However, the sluggish ionic and electronic conductivity limit the full play of their high theoretical capacities. Here, we integrate the idea of metal-support interaction in single-atom catalysts with π-d hybridization into the design of organic electrode materials for the applications of lithium (LIBs) and potassium-ion batteries (PIBs). Several types of transition metal single atoms (e.g., Co, Ni, Fe) with π-d hybridization are incorporated into the semiconducting covalent organic framework (COF) composite. Single atoms favorably modify the energy band structure and improve the electronic conductivity of COF. More importantly, the electronic interaction between single atoms and COF adjusts the binding affinity and modifies ion traffic between Li/K ions and the active organic units of COFs as evidenced by extensive in situ and ex situ characterizations and theoretical calculations. The corresponding LIB achieves a high reversible capacity of 1,023.0 mA h g-1 after 100 cycles at 100 mA g-1 and 501.1 mA h g-1 after 500 cycles at 1,000 mA g-1. The corresponding PIB delivers a high reversible capacity of 449.0 mA h g-1 at 100 mA g-1 after 150 cycles and stably cycled over 500 cycles at 1,000 mA g-1. This work provides a promising route to engineering organic electrodes.
Collapse
Affiliation(s)
- Yingnan Cao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, People’s Republic of China
| | - Qing Xu
- Center for Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201210, People’s Republic of China
| | - Yi Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| | - Jixin Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, People’s Republic of China
| | - Yi Xu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| | - Yongfu Tang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, People’s Republic of China
| | - Xiudong Chen
- School of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang332005, People’s Republic of China
| | - Shuai Yang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201203, People’s Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai201800, People’s Republic of China
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230029, People’s Republic of China
| | - Han-Don Um
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Gangwon24341, Republic of Korea
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, People’s Republic of China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, People’s Republic of China
| |
Collapse
|
25
|
Zhang J, Mu X, Mu Y. High-Performance Li-Organic Batteries Based on Conjugated and Nonconjugated Schiff-Base Polymer Anode Materials. ACS OMEGA 2024; 9:12967-12975. [PMID: 38524458 PMCID: PMC10956085 DOI: 10.1021/acsomega.3c09299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
In recent years, organic materials have been increasingly studied as anode materials in lithium-ion batteries (LIBs) due to their remarkable advantages, including abundant raw materials, low prices, diverse structures, and high theoretical capacity. In this paper, three types of aromatic Schiff-base polymer materials have been synthesized and examined as anode materials in LIBs. Among them, the polymer [C6H4N = CHC6H4CH=N]n (TTD-PDA) has a continuous conjugated backbone (label as conjugated polymer), while polymers [(CH2)2N=CHC6H4CH=N]n (TTD-EDA) and [C6H4N=CH(CH2)3CH=N]n (GA-PDA) have discontinuous conjugated back-bones (label as nonconjugated polymer). The organic anodes based on TTD-PDA, TTD-EDA, and GA-PDA for LIBs are discovered to represent high reversible specific capacities of 651, 492, and 416 mAh g-1 at a current density of 100 mA g-1 as well as satisfactory rate capabilities with high capacities of 210, 90, and 178 mAh g-1 and 105, 57, and 122 mAh g-1 at current densities of 2 and 10 A g-1, indicating that these Schiff-base polymers are all promising anode materials for LIBs, which broadens the design of organic anode materials with high specific capacity, superior rate performance, and stable cycling stability.
Collapse
Affiliation(s)
- Jinkai Zhang
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaoyue Mu
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying Mu
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
26
|
Wei Y, Li Z, Liu Y, Ji Z, Zou S, Zhou Y, Yan S, Chen C, Wu M. The Compatibility of COFs Cathode and Optimized Electrolyte for Ultra-Long Lifetime Rechargeable Aqueous Zinc-Ion Battery. CHEMSUSCHEM 2024:e202301851. [PMID: 38438307 DOI: 10.1002/cssc.202301851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Rechargeable aqueous zinc-ion batteries (RAZIBs) are attractive due to their affordability, safety, and eco-friendliness. However, their potential is limited by the lack of high-capacity cathodes and compatible electrolytes needed for reliable performance. Herein, we have presented a compatibility strategy for the development of a durable and long-lasting RAZIBs. The covalent organic frameworks (COFs) based on anthraquinone (DAAQ-COF) is created and utilized as the cathode, with zinc metal serving as the anode. The electrolyte is made up of an aqueous solution containing zinc salts at various concentrations. The COF cathode has been designed to be endowed with a rich array of redox-active groups, enhancing its electrochemical properties. Meanwhile, the electrolyte is formulated using triflate anions, which have exhibited superiority over sulfate anions. This strategy lead to the development of an optimized COF cathode with fast charging capability, high Coulombic efficiency (nearly 100 %) and long-term cyclability (retention rate of nearly 100 % at 1 A g-1 after 10000 cycles). Moreover, through experimental analysis, a co-insertion mechanism involving Zn2+ and H+ in this cathode is discovered for the first time. These findings represent a promising path for the advancement of organic cathode materials in high-performance and sustainable RAZIBs.
Collapse
Affiliation(s)
- Yifan Wei
- Department of Chemistry, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhonglin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yongyao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhenyu Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yuzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shuai Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
27
|
Wang C, Tian Y, Chen W, Lin X, Zou J, Fu D, Yu X, Qiu R, Qiu J, Zeng S. Recent Progress in Covalent Organic Frameworks for Cathode Materials. Polymers (Basel) 2024; 16:687. [PMID: 38475370 DOI: 10.3390/polym16050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Covalent organic frameworks (COFs) are constructed from small organic molecules through reversible covalent bonds, and are therefore considered a special type of polymer. Small organic molecules are divided into nodes and connectors based on their roles in the COF's structure. The connector generally forms reversible covalent bonds with the node through two reactive end groups. The adjustment of the length of the connector facilitates the adjustment of pore size. Due to the diversity of organic small molecules and reversible covalent bonds, COFs have formed a large family since their synthesis in 2005. Among them, a type of COF containing redox active groups such as -C=O-, -C=N-, and -N=N- has received widespread attention in the field of energy storage. The ordered crystal structure of COFs ensures the ordered arrangement and consistent size of pores, which is conducive to the formation of unobstructed ion channels, giving these COFs a high-rate performance and a long cycle life. The voltage and specific capacity jointly determine the energy density of cathode materials. For the COFs' cathode materials, the voltage plateau of their active sites' VS metallic lithium is mostly between 2 and 3 V, which has great room for improvement. However, there is currently no feasible strategy for this. Therefore, previous studies mainly improved the theoretical specific capacity of the COFs' cathode materials by increasing the number of active sites. We have summarized the progress in the research on these types of COFs in recent years and found that the redox active functional groups of these COFs can be divided into six subcategories. According to the different active functional groups, these COFs are also divided into six subcategories. Here, we summarize the structure, synthesis unit, specific surface area, specific capacity, and voltage range of these cathode COFs.
Collapse
Affiliation(s)
- Chi Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Yuchao Tian
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Wuhong Chen
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaochun Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Jizhao Zou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dongju Fu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiao Yu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Ruling Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Junwei Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Shaozhong Zeng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
28
|
Wang X, Meng R, Zhao S, Jing Z, Jin Y, Zhang J, Pi X, Du Q, Chen L, Li Y. Efficient adsorption of radioactive iodine by covalent organic framework/chitosan aerogel. Int J Biol Macromol 2024; 260:129690. [PMID: 38266855 DOI: 10.1016/j.ijbiomac.2024.129690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Radioactive iodine is considered one of the most dangerous radioactive elements in nuclear waste. Therefore, effective capture of radioactive iodine is essential for developing and using nuclear energy to solve the energy crisis. Some materials that have been developed for removing radioactive iodine still suffer from complex synthesis, low removal capacity, and non-reusability. Herein, covalent organic framework (COF)/chitosan (CS) aerogels were prepared using vacuum freeze-drying, and the COF nanoparticles were tightly attached on the green biomass material CS networks. Due to the synergistic effect of both COF and CS, the composite aerogel shows a three-dimensional porous and stable structure in the recycle usage. The COF/CS aerogel exhibits excellent iodine adsorption capacity of 2211.58 mg g-1 and 5.62 g g-1 for static iodine solution and iodine vapor, respectively, better than some common adsorbents. Furthermore, COF/CS aerogel demonstrated good recyclability performance with 87 % of the initial adsorption capacity after 5 cycles. In addition, the interaction between iodine and imine groups, amino groups, and benzene rings of aerogel are the possible adsorption mechanisms. COF/CS aerogel has excellent adsorption properties, good chemical stability, and reusable performance, which is a potential and efficient adsorbent for industrial radioactive iodine adsorption from nuclear waste.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Ruixue Meng
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Jie Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Qiuju Du
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China
| | - Long Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Institute of Marine Biobased Materials, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China.
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Rd, Qingdao 266071, PR China.
| |
Collapse
|
29
|
Bai Y, Liu T, Peng H, Zhao H, Fan Q, Pan X, Zhou L, Zhao H. Organoboron-thiophene-based polymer electrodes for high-performance lithium-ion batteries. RSC Adv 2024; 14:7215-7220. [PMID: 38419680 PMCID: PMC10901214 DOI: 10.1039/d3ra06060h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Polymer electrodes are drawing widespread attention to the future generation of lithium-ion battery materials. However, weak electrochemical performance of organic anode materials still exists, such as low capacity, low rate performance, and low cyclability. Herein, we successfully constructed a donor-acceptor thiophene-based polymer (PBT-1) by introducing an organoboron unit. The charge delocalization and lower LUMO energy level due to the unique structure enabled good performance in electrochemical tests with a reversible capacity of 405 mA h g-1 at 0.5 A g-1 and over 10 000 cycles at 1 A g-1. Moreover, electron paramagnetic resonance (EPR) spectra revealed that the unique stable spin system in the PBT-1 backbone during cycling provides a fundamental explanation for the highly stable electrochemical performance. This work offers a reliable reference for the design of organic anode materials and expands the potential application directions of organoboron chemistry.
Collapse
Affiliation(s)
- Yunfei Bai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Ting Liu
- School of Physics and Electronic Information, Yantai University Yantai 264005 People's Republic of China
| | - Huayu Peng
- New Energy (Photovoltaic) Industry Research Center, Qinghai University Xining 810006 People's Republic of China
| | - Han Zhao
- New Energy (Photovoltaic) Industry Research Center, Qinghai University Xining 810006 People's Republic of China
| | - Qingchen Fan
- New Energy (Photovoltaic) Industry Research Center, Qinghai University Xining 810006 People's Republic of China
| | - Xiaobo Pan
- New Energy (Photovoltaic) Industry Research Center, Qinghai University Xining 810006 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Lian Zhou
- New Energy (Photovoltaic) Industry Research Center, Qinghai University Xining 810006 People's Republic of China
| | - Hao Zhao
- School of Physics and Electronic Information, Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
30
|
Kim J, Kim S, Park J, Kang S, Seo DJ, Park N, Lee S, Kim JJ, Lee WB, Park J, Lee JC. Covalent-Frameworked 2D Crown Ether with Chemical Multifunctionality. J Am Chem Soc 2024; 146:4532-4541. [PMID: 38326951 DOI: 10.1021/jacs.3c11182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Here, we present the synthesis and characterization of a novel 2D crystalline framework, named C2O, which mainly consists of carbon and oxygen in a 2:1 molar ratio and features crown ether holes in its skeletal structure. The covalent-frameworked 2D crown ether can be synthesized on a gram-scale and exhibits fine chemical stability in various environments, including acid, base, and different organic solvents. The C2O efficiently activates KI through the strong coordination of K+ with crown ether holes in a rigid framework, which enhances the nucleophilicity of I- and significantly improves its catalytic activity for CO2 fixation with epoxides. The presence of C2O with KI results in remarkable increases in CO2 conversion from 5.7% to 99.9% and from 2.9% to 74.2% for epichlorohydrin and allyl glycidyl ether, respectively. Moreover, C2O possesses both electrophilic and nucleophilic sites at the edge of its framework, allowing for the customization of physicochemical properties by a diverse range of chemical modifications. Specifically, incorporating allyl glycidyl ether (AGE) as an electrophile or ethoxyethylamine (EEA) as a nucleophile into C2O enables the synthesis of C2O-AGE or C2O-EEA, respectively. These modified frameworks exhibit improved conversions of 97.2% and 99.9% for CO2 fixation with allyl glycidyl ether, outperforming unmodified C2O showing a conversion of 74.2%. This newly developed scalable, durable, and customizable covalent framework holds tremendous potential for the design and preparation of outstanding materials with versatile functionalities, rendering them highly attractive for a wide range of applications.
Collapse
Affiliation(s)
- Jinseok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungin Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jinwook Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dong Joo Seo
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Namjun Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Siyoung Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Jun Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Gyeonggi-do 16229, Republic of Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
31
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
32
|
Zhao H, Liu T, Zhang W, Wang J, Li K, Zhou Y, Liu L, Bai Y, Pan X. Organoboron flank-substituted donor-acceptor polymer anode with ultra-long cycling stability for lithium ion batteries. Phys Chem Chem Phys 2024; 26:5141-5146. [PMID: 38259223 DOI: 10.1039/d3cp05634a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The tunable structure and other properties of organic materials suggest that they can potentially solve the shortcomings of traditional anodes such as graphite. We successfully introduced an organoboron unit into the thiophene-based polymer PBT-2 to construct a donor-acceptor polymer anode. The charge delocalization and LUMO energy level resulting from the unique structure of this material enabled good redox activity and a very stable electrochemical performance in electrochemical tests, with a reversible capacity of 262 mA h g-1 at 0.5 A g-1 and >10 000 cycles at 1 A g-1 with a decay of 0.056‰ per cycle. Accordingly, targeted structural design to overcome the shortcomings of active units such as thiophene can effectively regulate their electrochemical performance, providing a solution for the development of high-performance anode materials for use in lithium ion batteries.
Collapse
Affiliation(s)
- Hao Zhao
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Ting Liu
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Wenjing Zhang
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Jiadong Wang
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Kexuan Li
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Yitong Zhou
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Luzun Liu
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Yunfei Bai
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Xiaobo Pan
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810006, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| |
Collapse
|
33
|
Ma M, Yang Y, Huang Z, Huang F, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic framework-based composites. NANOSCALE 2024; 16:1600-1632. [PMID: 38189523 DOI: 10.1039/d3nr05797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent organic frameworks (COFs) have historically been of interest to researchers in different areas due to their distinctive characteristics, including well-ordered pores, large specific surface area, and structural tunability. In the past few years, as COF synthesis techniques developed, COF-based composites fabricated by integrating COFs and other functional materials including various kinds of metal or metal oxide nanoparticles, ionic liquids, metal-organic frameworks, silica, polymers, enzymes and carbon nanomaterials have emerged as a novel kind of porous hybrid material. Herein, we first provide a thorough summary of advanced strategies for preparing COF-based composites; then, the emerging applications of COF-based composites in diverse fields due to their synergistic effects are systematically highlighted, including analytical chemistry (sensing, extraction, membrane separation, and chromatographic separation) and catalysis. Finally, the current challenges associated with future perspectives of COF-based composites are also briefly discussed to inspire the advancement of more COF-based composites with excellent properties.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yonghao Yang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
34
|
Sun B, Sun Z, Yang Y, Huang XL, Jun SC, Zhao C, Xue J, Liu S, Liu HK, Dou SX. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS NANO 2024; 18:28-66. [PMID: 38117556 DOI: 10.1021/acsnano.3c08240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.
Collapse
Affiliation(s)
- Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiang Long Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, People's Republic of China
| | - Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| |
Collapse
|
35
|
Zhu Y, Bai Q, Ouyang S, Jin Y, Zhang W. Covalent Organic Framework-based Solid-State Electrolytes, Electrode Materials, and Separators for Lithium-ion Batteries. CHEMSUSCHEM 2024; 17:e202301118. [PMID: 37706226 DOI: 10.1002/cssc.202301118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
The increasing global energy consumption has led to the rapid development of renewable energy storage technologies. Lithium-ion batteries (LIBs) have been extensively studied and utilized for reliable, efficient, and sustainable energy storage. Nevertheless, designing new materials for LIB applications with high capacity and long-term stability is highly desired but remains a challenging task. Recently, covalent organic frameworks (COFs) have emerged as superior candidates for LIB applications due to their high porosity, well-defined pores, highly customizable structure, and tunable functionalities. These merits enable the preparation of tailored COFs with predesigned redox-active moieties and suitable porous channels that can improve the lithium-ion storage and transportation. This review summarizes the recent progress in the development of COFs and their composites for a variety of LIB applications, including (quasi) solid-state electrolytes, electrode materials, and separators. Finally, the challenges and potential future directions of employing COFs for LIBs are also briefly discussed, further promoting the foundation of this class of exciting materials for future advances in energy-related applications.
Collapse
Affiliation(s)
- Youlong Zhu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, IGCME, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiaoshuang Bai
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, IGCME, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shan Ouyang
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, IGCME, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder CO, 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder CO, 80309, United States
| |
Collapse
|
36
|
Zhou A, Zheng J, Lei C, Liang J, Deng X, Wu Z, Chuangchanh P, Chen Q, Zeng R. A Two-dimensional Metal-Organic Framework as Promising Cathode for Advanced Lithium Storage. Chemistry 2024:e202303683. [PMID: 38168747 DOI: 10.1002/chem.202303683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Anthraquinone electrode materials are promising candidates for lithium-ion batteries (LIBs) due to the abundance of anthraquinone and the high theoretical capacity, and good reversibility of the anthraquinone electrodes. However, the active anthraquinone materials are soluble in organic electrolytes, resulting in a sharp decay of capacity during the charge and discharge processes. Herein, we report on a two-dimensional calcium anthraquinone 2,3-dicarboxy metal-organic framework (2D CaAQDC MOF) fabricated using a simple hydrothermal method. The 2D CaAQDC MOF not only effectively inhibits the dissolution of active electrode substances into the electrolyte, but also promotes the diffusion of lithium ion into the pores of the MOF. When used as a cathode for the LIBs, the resulting CaAQDC electrode delivers a high specific capacity of ~100 mAh g-1 at a current density of 50 mA g-1 after 200 cycles, demonstrating its good cycle stability. Even at a high current density of 200 mA g-1 , the CaAQDC electrode exhibits a specific capacity of ~60 mAh g-1 . The fabricated 2D coordination polymers effectively restrains the dissolution of anthraquinone into the organic electrolyte and enhances the structural stability, which greatly improves the electrochemical performance of anthraquinone. These research results offer a rational molecular design strategy to address the dissolution of this and other active organic electrode materials.
Collapse
Affiliation(s)
- Anna Zhou
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Guangdong Provincial International Joint Research Center for Energy Storage Materials, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Junyang Zheng
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Guangdong Provincial International Joint Research Center for Energy Storage Materials, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chengxi Lei
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Guangdong Provincial International Joint Research Center for Energy Storage Materials, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiaying Liang
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Guangdong Provincial International Joint Research Center for Energy Storage Materials, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiaotong Deng
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Guangdong Provincial International Joint Research Center for Energy Storage Materials, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Zetao Wu
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Guangdong Provincial International Joint Research Center for Energy Storage Materials, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Phaivanh Chuangchanh
- Lecturer in the Department of Electrical Engineering, Faculty of Engineering, Souphanouvong University, Luang Prabang, Province, 06000, Lao Democratic People's Republic
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering, and Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ronghua Zeng
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Guangdong Provincial International Joint Research Center for Energy Storage Materials, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
37
|
Liu M, Jiang D, Fu Y, Zheng Chen G, Bi S, Ding X, He J, Han BH, Xu Q, Zeng G. Modulating Skeletons of Covalent Organic Framework for High-Efficiency Gold Recovery. Angew Chem Int Ed Engl 2024; 63:e202317015. [PMID: 37983587 DOI: 10.1002/anie.202317015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable attention as adsorbents for capturing and separating gold from electronic wastes. To enhance the binding capture efficiency, constructing hydrogen-bond nanotraps along the pore walls was one of the most widely adopted approaches. However, the development of absorbing skeletons was ignored due to the weak binding ability of the gold salts (Au). Herein, we demonstrated skeleton engineering to construct highly efficiently absorbs for Au capture. The strong electronic donating feature of diarylamine units enhanced the electronic density of binding sites (imine-linkage) and thus resulted in high capacities over 1750 mg g-1 for all three COFs. Moreover, the absorbing performance was further improved via the ionization of diarylamine units. The ionic COF achieved 90 % of the maximal adsorption capacity, 1.63 times of that from the charge-neutral COF within ten minutes, and showed remarkable uptakes of 1834 mg g-1 , exceptional selectivity (97.45 %) and cycling stability. The theoretical calculation revealed the binding sites altering from imine bonds to ionic amine sites after ionization of the frameworks, which enabled to bind the AuCl4 - via coulomb force and contributed to enhanced absorbing kinetics. This work inspires us to design molecular/ionic capture based on COFs.
Collapse
Affiliation(s)
- Minghao Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315199, P. R. China
| | - Di Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - George Zheng Chen
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Shuai Bi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315199, P. R. China
- Nottingham Ningbo China Beacon of Excellence Research and Innovation Institute, University of Nottingham, Ningbo, 315100, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaofeng Zeng
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Zhang Q, Jiang Q, Fan F, Liu G, Chen Y, Zhang B. MoS 2 Quantum Dot-Optimized Conductive Channels for a Conjugated Polymer-Based Synaptic Memristor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59630-59642. [PMID: 38103041 DOI: 10.1021/acsami.3c12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Donor-acceptor-type conjugated polymers are widely used in memristors due to their unique push-pull electron structures and charge transfer mechanisms. However, the inherently inhomogeneous microstructure of polymer films and their low crystallinity produce randomness that destabilizes formed conductive channels, giving polymer-based memristors unstable switching behavior. In this contribution, we prepared a synaptic device based on PM6-MoS2 QD (molybdenum disulfide quantum dot) nanocomposites. In the composites, MoS2 QDs provided the active centers for forming conductive channels via electron trapping and detrapping. They also controlled the directional formation of conductive channels between PM6 and MoS2 QDs, reducing randomness and giving devices a narrow switching voltage range and cycling longevity. The device exhibited continuous multistage conductance states under a direct current voltage sweep and simulated a variety of synaptic functions, including long-term potentiation, long-term depression, short-term potentiation, short-term depression, paired-pulse facilitation, spiking-rate-dependent plasticity, and "learning experience" behavior. The memristor could also perform arithmetic, including "counting" and "subtraction" operations. This work provides a new approach to improving the performance of memristors for neuromorphic computing.
Collapse
Affiliation(s)
- Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qizhi Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Fan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai i-Reader Biotech Co., Ltd., Shanghai 201114, China
| | - Gang Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
39
|
Du J, Liu X, Li B. Facile Construction of Advanced 1D Metal-Organic Coordination Polymer for Efficient Lithium Storage. Molecules 2023; 28:7993. [PMID: 38138482 PMCID: PMC10745800 DOI: 10.3390/molecules28247993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, coordination polymers (CPs) have been frequently reported in the field of energy storage as electrode materials for lithium-ion batteries (LIBs) due to their highly adjustable architectures, which have a variety of active sites and obviously defined lithium transport routes. A well-designed redox-active organic linker with potential active sites for storing lithium ions, pyrazine-2,3-dicarboxylate (H2PDA), was applied for generating CPs by a simple hydrothermal method. When employed as anode materials in LIBs, those two one-dimensional (1D) CPs with an isomorphic composition, [M(PDA)(H2O)2]n (M = Co for Co-PDA and Ni for Ni-PDA), produced outstanding reversible capacities and stable cycling performance. The Co-PDA displays a substantial reversible capacity of 936 mAh g-1 at 200 mA g-1 after 200 cycles, as well as an excellent cycling life at high currents. According to the ex situ characterizations, the high reversible specific capacity of the post-cycled electrodes was found to be a result of both the transition metal ions and the organic ligands, and Co-PDA and Ni-PDA electrode materials show reversible insertion/extraction processes that are accompanied by crystallization to an amorphous state.
Collapse
Affiliation(s)
- Jia Du
- School of Biology and Chemical Engineering, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, China; (X.L.); (B.L.)
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xueguo Liu
- School of Biology and Chemical Engineering, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, China; (X.L.); (B.L.)
| | - Bingke Li
- School of Biology and Chemical Engineering, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang 473004, China; (X.L.); (B.L.)
| |
Collapse
|
40
|
Yang P, Wu Z, Wang S, Li M, Chen H, Qian S, Zheng M, Wang Y, Li S, Qiu J, Zhang S. Synergetic Coupling of Redox-Active Sites on Organic Electrode Material for Robust and High-Performance Sodium-Ion Storage. Angew Chem Int Ed Engl 2023; 62:e202311460. [PMID: 37707882 DOI: 10.1002/anie.202311460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Organic electrode materials (OEMs), valued for their sustainability and structural tunability, have been attracting increasing attention for wide application in sodium-ion batteries (SIBs) and other rechargeable batteries. However, most OEMs are plagued with insufficient specific capacity or poor cycling stability. Therefore, it's imperative to enhance their specific capacity and cycling stability through molecular design. Herein, we designed and synthesized a heteroaromatic molecule 2,3,8,9,14,15-hexanol hexaazatrinaphthalene (HATN-6OH) by the synergetic coupling of catechol (the precursor of ortho-quinone)/ortho-quinone functional groups and HATN conjugated core structures. The abundance of catechol/ortho-quinone and imine redox-active moieties delivers a high specific capacity of nine-electron transfer for SIBs. Most notably, the π-π interactions and intermolecular hydrogen bond forces among HATN-6OH molecules secure the stable long-term cycling performance of SIBs. Consequently, the as-prepared HATN-6OH electrode exhibited a high specific capacity (554 mAh g-1 at 0.1 A g-1 ), excellent rate capability (202 mAh g-1 at 10 A g-1 ), and stable long-term cycling performance (73 % after 3000 cycles at 10 A g-1 ) in SIBs. Additionally, the nine-electron transfer mechanism is confirmed by systematic density functional theory (DFT) calculation, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Raman analysis. The achievement of the synergetic coupling of the redox-active sites on OEMs could be an important key to the enhancement of SIBs and other metal-ion batteries.
Collapse
Affiliation(s)
- Pan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Zhenzhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Shouyue Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Meng Li
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, China
| | - Hao Chen
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, China
| | - Shangshu Qian
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Mengting Zheng
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jingxia Qiu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, China
| |
Collapse
|
41
|
Wang X, Liu M, Liu Y, Shang S, Du C, Hong J, Gao W, Hua C, Xu H, You Z, Chen J, Liu Y. Topology-Selective Manipulation of Two-Dimensional Covalent Organic Frameworks. J Am Chem Soc 2023. [PMID: 38010167 DOI: 10.1021/jacs.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The manipulation of topological architectures in two-dimensional (2D) covalent organic framework (COF) materials for different applications is promising but remains a great challenge. Here, we first report the topology-selective synthesis of two distinct varieties of 2DCOFs, imine-based HT-COFs and benzimidazole-fused BI-HT-COFs, by simply altering acid catalysts. To HT-COFs, a superlattice of 1D channel with a persistent triangular shape is formed via Schiff base reaction, while to BI-HT-COFs, a hexagonal lattice structure with a highly conjugated structure and imidazole linkages is constructed due to an imine-based cyclization reaction. The two COFs exhibited marked differences in their bandgap, chemical stability, molecular adsorption, and catalytic activity, which make them have different fields of application. This work not only diversifies the hexaaminotriphenylene-based 2DCOF topologies but also provides vivid examples of structure-property relationships, which would facilitate fundamental research and potential applications of 2DCOFs.
Collapse
Affiliation(s)
- Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Youxing Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiaxin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunyu Hua
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Helin Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zewen You
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
42
|
Xu T, Yang Y, Liu T, Jing Y. Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries. RSC Adv 2023; 13:34724-34732. [PMID: 38035235 PMCID: PMC10683046 DOI: 10.1039/d3ra07655e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Searching for electrode materials with good electrical conductivity, fast charge/discharge rates and high storage capacity is essential for the development of high-performance metal ion batteries. Here, by performing first principles calculations, we have explored the feasibility of using two dimensional (2D) covalent organic frameworks (COFs) constructed by tri-quinazoline, triquinoxalinylene and benzoquinone, and tribenzoquinoxaline-5,10-dione and benzoquinone (BQ2), as electrode materials for lithium and sodium ion batteries. All the designed 2D COFs show good structure stability and are semiconductors with a band gap of 1.63-2.93 eV because of the high electron conjugation of the skeletons. The pyrazine N and carbonyl groups are revealed to be the active sites to combine Li/Na, while the Li-/Na-binding strength can be highly enhanced when the pyrazine N and the carbonyl group are located in adjacent sites. The designed 2D COFs show a low Li and Na diffusion barrier in the range of 0.28-0.56 eV to guarantee high rate performance for LIBs/SIBs. With abundant redox active sites, 2D BQ2-COF shows a high theoretical capacity of 1030 mA h g-1 with an average open circuit voltage of 0.80 and 0.67 V for LIBs and SIBs, respectively, which is comparable to that of the most advanced inorganic anode materials. Composed of only light elements, the designed 2D COFs are predicted to be promising anode materials with high energy density, good conductivity and high-rate performance for sustainable LIBs and SIBs.
Collapse
Affiliation(s)
- Tianze Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Youchao Yang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Tianyang Liu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
43
|
Kumar V, Bharathkumar HJ, Dongre SD, Gonnade R, Krishnamoorthy K, Babu SS. Isomer Effect on Energy Storage of π-Extended S-Shaped Double[6]Heterohelicene. Angew Chem Int Ed Engl 2023; 62:e202311657. [PMID: 37782466 DOI: 10.1002/anie.202311657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
Recently, chiral and nonplanar cutouts of graphene have been the favorites due to their unique optical, electronic, and redox properties and high solubility compared with their planar counterparts. Despite the remarkable progress in helicenes, π-extended heterohelicenes have not been widely explored. As an anode in a lithium-ion battery, the racemic mixture of π-extended double heterohelical nanographene containing thienothiophene core exhibited a high lithium storage capability, attaining a specific capacity of 424 mAh g-1 at 0.1 A g-1 with excellent rate capability and superior long-term cycling performance over 6000 cycles with negligible fade. As a first report, the π-extended helicene isomer (PP and MM), with the more interlayer distance that helps faster diffusion of ions, has exhibited a high capacity of 300 mAh g-1 at 2 A g-1 with long-term cycling performance over 1500 cycles compared to the less performing MP and PM isomer and racemic mixture (150 mAh g-1 at 2 A g-1 ). As supported by single-crystal X-ray analysis, a unique molecular design of nanographenes with a fixed (helical) molecular geometry, avoiding restacking of the layers, renders better performance as an anode in lithium-ion batteries. Interestingly, the recycled nanographene anode material displayed comparable performance.
Collapse
Affiliation(s)
- Viksit Kumar
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - H J Bharathkumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Polymer Science and Engineering Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sangram D Dongre
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Rajesh Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kothandam Krishnamoorthy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Polymer Science and Engineering Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
44
|
Shreeraj G, Sah A, Sarkar S, Giri A, Sahoo A, Patra A. Structural Modulation of Nitrogen-Rich Covalent Organic Frameworks for Iodine Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16069-16078. [PMID: 37847043 DOI: 10.1021/acs.langmuir.3c02215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developing efficient adsorbent materials for iodine scavenging is essential to mitigate the threat of radioactive iodine causing adverse effects on human health and the environment. In this context, we explored N-rich two-dimensional covalent organic frameworks (COFs) with diverse functionalities for iodine capture. The pyridyl-hydroxyl-functionalized triazine-based novel 5,5',5″-(1,3,5-triazine-2,4,6-triyl)tris(pyridine-2-amine) (TTPA)-COF possesses high crystallinity (crystalline domain size: 24.4 ± 0.6 nm) and high porosity (specific BET surface area: 1000 ± 90 m2 g-1). TTPA-COF exhibits superior vapor-phase iodine adsorption (4.43 ± 0.01 g g-1) compared to analogous COF devoid of pyridinic moieties, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT)-COF. The high iodine capture by TTPA-COF is due to the enhanced binding affinity conferred by the extra pyridinic active sites. Furthermore, the crucial role of long-range order in porous adsorbents has been experimentally evidenced by comparing the performance of iodine vapor capture of TTPA-COF with an amorphous network polymer having identical functionalities. We have also demonstrated the high iodine scavenging ability of TTPA-COF from the organic and aqueous phases. The mechanism of iodine adsorption by the heteroatom-rich framework is elucidated through FTIR, XPS, and Raman spectral analyses. The present study highlights the need for structural tweaking of the building blocks toward the rational construction of advanced functional porous materials for a task-specific application.
Collapse
Affiliation(s)
- G Shreeraj
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Ajay Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Suprabhat Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
45
|
Wang M, Wang G, Naisa C, Fu Y, Gali SM, Paasch S, Wang M, Wittkaemper H, Papp C, Brunner E, Zhou S, Beljonne D, Steinrück HP, Dong R, Feng X. Poly(benzimidazobenzophenanthroline)-Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage. Angew Chem Int Ed Engl 2023; 62:e202310937. [PMID: 37691002 DOI: 10.1002/anie.202310937] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage devices, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and proton storage in COFs is rarely explored. Here, we report a perinone-based poly(benzimidazobenzophenanthroline) (BBL)-ladder-type 2D c-COF for fast proton storage in both a mild aqueous Zn-ion electrolyte and strong acid. We unveil that the discharged C-O- groups exhibit largely reduced basicity due to the considerable π-delocalization in perinone, thus affording the 2D c-COF a unique affinity for protons with fast kinetics. As a consequence, the 2D c-COF electrode presents an outstanding rate capability of up to 200 A g-1 (over 2500 C), surpassing the state-of-the-art conjugated polymers, COFs, and metal-organic frameworks. Our work reports the first example of pure proton storage among COFs and highlights the great potential of BBL-ladder-type 2D conjugated polymers in future energy devices.
Collapse
Affiliation(s)
- Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Gang Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chandrasekhar Naisa
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Silvia Paasch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Mao Wang
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Laboratory of Micro-Nano Optics, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610101, China
| | - Haiko Wittkaemper
- Institute of Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Christian Papp
- Institute of Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
- Physical Chemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Eike Brunner
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Hans-Peter Steinrück
- Institute of Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| |
Collapse
|
46
|
Li C, Wang DD, Poon Ho GSH, Zhang Z, Huang J, Bang KT, Lau CY, Leu SY, Wang Y, Kim Y. Anthraquinone-Based Silicate Covalent Organic Frameworks as Solid Electrolyte Interphase for High-Performance Lithium-Metal Batteries. J Am Chem Soc 2023. [PMID: 37916601 DOI: 10.1021/jacs.3c06723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lithium (Li)-metal batteries (LMBs) possess the highest theoretical energy density among current battery designs and thus have enormous potential for use in energy storage. However, the development of LMBs has been severely hindered by safety concerns arising from dendrite growth and unstable interphases on the Li anode. Covalent organic frameworks (COFs) incorporating either redox-active or anionic moieties on their backbones have high Li-ion (Li+) conductivities and mechanical/chemical stabilities, so are promising for solid electrolyte interphases (SEIs) in LMBs. Here, we synthesized anthraquinone-based silicate COFs (AQ-Si-COFs) that contained both redox-active and anionic sites via condensation of tetrahydroxyanthraquinone with silicon dioxide. The nine Li+-mediated charge/discharge processes enabled the AQ-Si-COF to demonstrate an ionic conductivity of 9.8 mS cm-1 at room temperature and a single-ion-conductive transference number of 0.92. Computational studies also supported the nine Li+ mechanism. We used AQ-Si-COF as the solid electrolyte interphase on the Li anode. The LMB cells with a LiCoO2 cathode attained a maximum reversible capacity of 188 mAh g-1 at 0.25 C during high-voltage operation. Moreover, this LMB cell demonstrated suppressed dendrite growth and stable cyclability, with its capacity decreasing by less than 3% up to 100 cycles. These findings demonstrate the effectiveness of our redox-active and anionic COFs and their practical utility as SEI in LMB.
Collapse
Affiliation(s)
- Chen Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - Dan-Dong Wang
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Gerald Siu Hang Poon Ho
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - Zhengyang Zhang
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Huang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - Chun Yin Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Yanming Wang
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| |
Collapse
|
47
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
48
|
Wu H, He X, Du X, Wang D, Li W, Chen H, Fang W, Zhao L. The Linkage-Moderated Covalent Organic Frameworks with C=N and NN on Charge Transfer Kinetics Towards the Robust Photocatalytic Hydrogen Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304367. [PMID: 37566780 DOI: 10.1002/smll.202304367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Indexed: 08/13/2023]
Abstract
Since the linkages structured in covalent organic frameworks (COFs) usually impact the charge transfer behavior during photocatalytic hydrogen evolution reaction (pc-HER), linkage dependence on charge transfer kinetics should be further claimed. Herein, COFs with N-based linkages and pyrene-based building nodes are constructed to enable us to obtain new clues about the charge transfer behavior and evolution tendency relevant to linkages at a molecular level for pc-HER. It is demonstrated that photo-excited electrons preferably move to the N sites in C=N linkage for pc-HER and are trapped around NN linkage as well. A high electron transfer rate does not point to high photocatalytic activity directly, while a small difference between the electron transfer rate and electron recombination rate ΔkCT - CR predicts the inefficiency of charge transfer in Azod-COFs. Contrarily, large value of ΔkCT - CR in the case of Benzd-COFs, demonstrats an unimpeded charge transfer process to result in boosted pc-HER rate (2027.3 µmol h-1 g-1 ). This work offers a prominent strategy for the reasonable design of efficient photocatalysts at the molecular level for structural regulation and achieves an efficient charge transfer process for the pc-HER process.
Collapse
Affiliation(s)
- Haiyang Wu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081, P. R. China
| | - Xuan He
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081, P. R. China
| | - Xing Du
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081, P. R. China
| | - Daheng Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081, P. R. China
| | - Weixin Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081, P. R. China
| | - Hui Chen
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081, P. R. China
| | - Wei Fang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081, P. R. China
| | - Lei Zhao
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081, P. R. China
| |
Collapse
|
49
|
Zhang L, Zhang X, Han D, Zhai L, Mi L. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries. SMALL METHODS 2023; 7:e2300687. [PMID: 37568245 DOI: 10.1002/smtd.202300687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Covalent organic frameworks (COFs) are acknowledged as a new generation of crystalline organic materials and have garnered tremendous attention owing to their unique advantages of structural tunability, frameworks diversity, functional versatility, and diverse applications in drug delivery, adsorption/separation, catalysis, optoelectronics, and sensing, etc. Recently, COFs is proven to be promising candidates for electrochemical energy storage materials. Their chemical compositions and structures can be precisely tuned and functionalized at the molecular level, allowing a comprehensive understanding of COFs that helps to make full use of their features and addresses the inherent drawback based on the components and functions of the devices. In this review, the working mechanisms and the distinguishing advantages of COFs as electrodes for rechargeable Li-ion batteries are discussed in detail. Especially, principles and strategies for the rational design of COFs as advanced electrode materials in Li-ion batteries are systematically summarized. Finally, this review is structured to cover recent explorations and applications of COF electrode materials in other rechargeable metal-ion batteries.
Collapse
Affiliation(s)
- Lin Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xiaofei Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
50
|
Zhao J, Zhou M, Chen J, Wang L, Zhang Q, Zhong S, Xie H, Li Y. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303353. [PMID: 37391276 DOI: 10.1002/smll.202303353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Indexed: 07/02/2023]
Abstract
This work reports a covalent organic framework composite structure (PMDA-NiPc-G), incorporating multiple-active carbonyls and graphene on the basis of the combination of phthalocyanine (NiPc(NH2 )4 ) containing a large π-conjugated system and pyromellitic dianhydride (PMDA) as the anode of lithium-ion batteries. Meanwhile, graphene is used as a dispersion medium to reduce the accumulation of bulk covalent organic frameworks (COFs) to obtain COFs with small-volume and few-layers, shortening the ion migration path and improving the diffusion rate of lithium ions in the two dimensional (2D) grid layered structure. PMDA-NiPc-G showed a lithium-ion diffusion coefficient (DLi + ) of 3.04 × 10-10 cm2 s-1 which is 3.6 times to that of its bulk form (0.84 × 10-10 cm2 s-1 ). Remarkably, this enables a large reversible capacity of 1290 mAh g-1 can be achieved after 300 cycles and almost no capacity fading in the next 300 cycles at 100 mA g-1 . At a high areal capacity loading of ≈3 mAh cm-2 , full batteries assembled with LiNi0.8 Co0.1 Mn0.1 O2 (NCM-811) and LiFePO4 (LFP) cathodes showed 60.2% and 74.7% capacity retention at 1 C for 200 cycles. Astonishingly, the PMDA-NiPc-G/NCM-811 full battery exhibits ≈100% capacity retention after cycling at 0.2 C. Aided by the analysis of kinetic behavior of lithium storage and theoretical calculations, the capacity-enhancing mechanism and lithium storage mechanism of covalent organic frameworks are revealed. This work may lead to more research on designable, multifunctional COFs for electrochemical energy storage.
Collapse
Affiliation(s)
- Jianjun Zhao
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
- State Key Laboratory of Chemical Resources Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Miaomiao Zhou
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
- School of Chemical&Environmental Engineering, China University of Mining and Technology(Beijing), Beijing, 100083, China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Luyi Wang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Qian Zhang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Shengwen Zhong
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province, 310003, P.R. China
| | - Yutao Li
- Institute of Physics (IOP), Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|