1
|
Yang X, Hu C, Zhang X, Wang X, Chen L, Zhang H, Ma X, Liang K, Chen C, Guo J, Li C, Yang B, Sun C, Deng X, Wang P. LTD1 plays a key role in rice tillering regulation through cooperation with CycH1;1 and TFB2 subunits of the TFIIH complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70119. [PMID: 40162875 DOI: 10.1111/tpj.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Tillering contributes greatly to grain yield in rice (Oryza sativa). At present, many genes involved in rice tillering regulation have been cloned and characterized. However, the identification of more novel genes is still necessary to fully understand the molecular mechanisms regulating rice tillering. In this study, we isolated a low-tillering and dwarf 1 (ltd1) mutant in indica rice. Map-based cloning and MutMap analysis showed that the candidate gene LTD1 (LOC_Os01g19760) encodes a putative FAM91A1 protein with an unknown function in plants. LTD1-complementation and -RNAi confirmed that LTD1 is responsible for the mutant phenotype of ltd1. The LTD1 protein is localized to the plasma membrane, endoplasmic reticulum, and multi-vesicular bodies. Furthermore, protein interaction and colocalization assays showed that LTD1 interacts with both the TFB2 subunit of the core subcomplex and the CycH1;1 subunit of the cyclin-dependent kinase-activating kinase (CAK) subcomplex of the TFIIH complex, and TFB2 also interacts with CycH1;1. qRT-PCR demonstrated that the expression levels of most genes related to the cell cycle are changed significantly in the ltd1 tiller buds, and flow cytometry assays revealed that there are more polyploid nuclei in the ltd1 leaves and roots, suggesting that LTD1 could be involved in cell cycle regulation. Taken together, our findings indicated that LTD1 plays a key role in rice tillering regulation by involvement in the cell cycle through cooperation with CycH1;1 and TFB2 subunits of TFIIH. This work also sheds light on the biological function of FAM91A1 in regulating important agronomic traits of rice.
Collapse
Affiliation(s)
- Xiaorong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Yazhouwan National Laboratory, Sanya, 572024, Hainan, China
| | - Chun Hu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiangyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaolan Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Longfei Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongshan Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinxin Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Liang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Congping Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chun Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
2
|
Wang J, Niu S, Hu X, Li T, Liu S, Tu Y, Shang Z, Zhao L, Xu P, Lin J, Chen L, Billadeau DD, Jia D. Trans-Golgi network tethering factors regulate TBK1 trafficking and promote the STING-IFN-I pathway. Cell Discov 2025; 11:23. [PMID: 40097395 PMCID: PMC11914254 DOI: 10.1038/s41421-024-00763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/22/2024] [Indexed: 03/19/2025] Open
Abstract
The cGAS-STING pathway mediates the innate immune response to cytosolic DNA, contributing to surveillance against microbial invasion or cellular damage. Once activated, STING recruits TBK1 at the trans-Golgi network (TGN), which in turn phosphorylates IRF3 to induce type I interferon (IFN-I) expression. In contrast to STING, little is known about how TBK1 is transported to the TGN for activation. Here, we show that multiple TGN tethering factors, a group of proteins involved in vesicle capturing, are indispensable for STING-IFN-I signaling. Deletion of TBC1D23, a recently reported tethering factor, in mice impairs the STING-IFN-I signaling, but with insignificant effect on STING-NF-κB signaling. Mechanistically, TBC1D23 interacts with TBK1 via the WASH complex subunit FAM21 and promotes its endosome-to-TGN translocation. Furthermore, multiple TGN tethering factors were reduced in aged mice and senescent fibroblasts. In summary, our study uncovers that TGN tethering factors are key regulators of the STING-IFN-I signaling and suggests that their reduction in senescence may produce aberrant STING signaling.
Collapse
Affiliation(s)
- Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Tianxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwen Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Cao P, Chen H, Zhang Y, Zhang Q, Shi M, Han H, Wang X, Jin L, Guo B, Hao R, Zhao X, Li Y, Gao C, Liu X, Wang Y, Yang A, Yang C, Si A, Li H, Song Q, He F, Zhou G. Genomic Amplification of TBC1D31 Promotes Hepatocellular Carcinoma Through Reducing the Rab22A-Mediated Endolysosomal Trafficking and Degradation of EGFR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405459. [PMID: 39206796 PMCID: PMC11516053 DOI: 10.1002/advs.202405459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinomas (HCCs) are characterized by a vast spectrum of somatic copy number alterations (CNAs); however, their functional relevance is largely unknown. By performing a genome-wide survey on prognosis-associated focal CNAs in 814 HCC patients by an integrative computational framework based on transcriptomic data, genomic amplification is identified at 8q24.13 as a promising candidate. Further evidence is provided that the 8q24.13 amplification-driven overexpression of Rab GTPase activating protein TBC1D31 exacerbates HCC growth and metastasis both in vitro and in vivo through activating Epidermal growth factor receptor (EGFR) signaling. Mechanistically, TBC1D31 acts as a Rab GTPase activating protein to catalyze GTP hydrolysis for Rab22A and then reduces the Rab22A-mediated endolysosomal trafficking and degradation of EGFR. Notably, overexpression of TBC1D31 markedly increases the resistance of HCC cells to lenvatinib, whereas inhibition of the TBC1D31-EGFR axis can reverse this resistance phenotype. This study highlights that TBC1D31 at 8q24.13 is a new critical oncogene, uncovers a novel mechanism of EGFR activation in HCC, and proposes the potential strategies for treating HCC patients with TBC1D31 amplification or overexpression.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Hongxia Chen
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Ying Zhang
- School of Life SciencesTsinghua UniversityBeijing100084China
| | - Qi Zhang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
- University of South ChinaHengyang421001China
| | | | - Huihui Han
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Xiaowen Wang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of LifeomicsBeijing102206China
| | - Liang Jin
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Bingqian Guo
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | | | - Xi Zhao
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Yuanfeng Li
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Chengming Gao
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Xinyi Liu
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Yahui Wang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Aiqing Yang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Chenning Yang
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
| | - Anfeng Si
- Jinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Hua Li
- Department of OncologyChengdu Military General HospitalChengdu610083China
| | - Qingfeng Song
- Affiliated Cancer Hospital of Guangxi Medical UniversityNanning530021China
| | - Fuchu He
- School of Life SciencesTsinghua UniversityBeijing100084China
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of LifeomicsBeijing102206China
| | - Gangqiao Zhou
- State Key Laboratory of Medical ProteomicsNational Center for Protein Sciences at BeijingBeijing Institute of Radiation MedicineBeijing100850China
- School of Life SciencesTsinghua UniversityBeijing100084China
- University of South ChinaHengyang421001China
- Guangxi Medical UniversityNanning530021China
- Hebei UniversityBaoding071000China
| |
Collapse
|
4
|
Deng H, Jia G, Li P, Tang Y, Zhao L, Yang Q, Zhao J, Wang J, Tu Y, Yong X, Zhang S, Mo X, Billadeau DD, Su Z, Jia D. The WDR11 complex is a receptor for acidic-cluster-containing cargo proteins. Cell 2024; 187:4272-4288.e20. [PMID: 39013469 PMCID: PMC11316641 DOI: 10.1016/j.cell.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Vesicle trafficking is a fundamental process that allows for the sorting and transport of specific proteins (i.e., "cargoes") to different compartments of eukaryotic cells. Cargo recognition primarily occurs through coats and the associated proteins at the donor membrane. However, it remains unclear whether cargoes can also be selected at other stages of vesicle trafficking to further enhance the fidelity of the process. The WDR11-FAM91A1 complex functions downstream of the clathrin-associated AP-1 complex to facilitate protein transport from endosomes to the TGN. Here, we report the cryo-EM structure of human WDR11-FAM91A1 complex. WDR11 directly and specifically recognizes a subset of acidic clusters, which we term super acidic clusters (SACs). WDR11 complex assembly and its binding to SAC-containing proteins are indispensable for the trafficking of SAC-containing proteins and proper neuronal development in zebrafish. Our studies thus uncover that cargo proteins could be recognized in a sequence-specific manner downstream of a protein coat.
Collapse
Affiliation(s)
- Huaqing Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guowen Jia
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Ping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jia Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhaoming Su
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610044, China.
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Arab M, Chen T, Lowe M. Mechanisms governing vesicle traffic at the Golgi apparatus. Curr Opin Cell Biol 2024; 88:102365. [PMID: 38705050 DOI: 10.1016/j.ceb.2024.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Vesicle transport at the Golgi apparatus is a well-described process, and the major protein components involved have been identified. This includes the coat proteins that function in cargo sorting and vesicle formation, and the proteins that mediate the downstream events of vesicle tethering and membrane fusion. However, despite this knowledge, there remain significant gaps in our mechanistic understanding of these processes which includes how they are coordinated in space and time. In this review we discuss recent advances that have provided new insights into the mechanisms of Golgi trafficking, focussing on vesicle formation and cargo sorting, and vesicle tethering and fusion. These studies point to a high degree of spatial organisation of trafficking components at the Golgi and indicate an inherent plasticity of trafficking. Going forward, further advancements in technology and more sophisticated functional assays are expected to yield greater understanding of the mechanisms that govern Golgi trafficking events.
Collapse
Affiliation(s)
- Maryam Arab
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tong Chen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
6
|
Cattin-Ortolá J, Kaufman JGG, Gillingham AK, Wagstaff JL, Peak-Chew SY, Stevens TJ, Boulanger J, Owen DJ, Munro S. Cargo selective vesicle tethering: The structural basis for binding of specific cargo proteins by the Golgi tether component TBC1D23. SCIENCE ADVANCES 2024; 10:eadl0608. [PMID: 38552021 PMCID: PMC11093223 DOI: 10.1126/sciadv.adl0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
The Golgi-localized golgins golgin-97 and golgin-245 capture transport vesicles arriving from endosomes via the protein TBC1D23. The amino-terminal domain of TBC1D23 binds to the golgins, and the carboxyl-terminal domain of TBC1D23 captures the vesicles, but how it recognizes specific vesicles was unclear. A search for binding partners of the carboxyl-terminal domain unexpectedly revealed direct binding to carboxypeptidase D and syntaxin-16, known cargo proteins of the captured vesicles. Binding is via a threonine-leucine-tyrosine (TLY) sequence present in both proteins next to an acidic cluster. A crystal structure reveals how this acidic TLY motif binds to TBC1D23. An acidic TLY motif is also present in the tails of other endosome-to-Golgi cargo, and these also bind TBC1D23. Structure-guided mutations in the carboxyl-terminal domain that disrupt motif binding in vitro also block vesicle capture in vivo. Thus, TBC1D23 attached to golgin-97 and golgin-245 captures vesicles by a previously undescribed mechanism: the recognition of a motif shared by cargo proteins carried by the vesicle.
Collapse
Affiliation(s)
- Jérôme Cattin-Ortolá
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan G. G. Kaufman
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Alison K. Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jane L. Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tim J. Stevens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David J. Owen
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
7
|
Tu Y, Yang Q, Tang M, Gao L, Wang Y, Wang J, Liu Z, Li X, Mao L, Jia RZ, Wang Y, Tang TS, Xu P, Liu Y, Dai L, Jia D. TBC1D23 mediates Golgi-specific LKB1 signaling. Nat Commun 2024; 15:1785. [PMID: 38413626 PMCID: PMC10899256 DOI: 10.1038/s41467-024-46166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Liver kinase B1 (LKB1), an evolutionarily conserved serine/threonine kinase, is a master regulator of the AMPK subfamily and controls cellular events such as polarity, proliferation, and energy homeostasis. Functions and mechanisms of the LKB1-AMPK axis at specific subcellular compartments, such as lysosome and mitochondria, have been established. AMPK is known to be activated at the Golgi; however, functions and regulatory mechanisms of the LKB1-AMPK axis at the Golgi apparatus remain elusive. Here, we show that TBC1D23, a Golgi-localized protein that is frequently mutated in the neurodevelopment disorder pontocerebellar hypoplasia (PCH), is specifically required for the LKB1 signaling at the Golgi. TBC1D23 directly interacts with LKB1 and recruits LKB1 to Golgi, promoting Golgi-specific activation of AMPK upon energy stress. Notably, Golgi-targeted expression of LKB1 rescues TBC1D23 deficiency in zebrafish models. Furthermore, the loss of LKB1 causes neurodevelopmental abnormalities in zebrafish, which partially recapitulates defects in TBC1D23-deficient zebrafish, and LKB1 sustains normal neuronal development via TBC1D23 interaction. Our study uncovers a regulatory mechanism of the LKB1 signaling, and reveals that a disrupted Golgi-LKB1 signaling underlies the pathogenesis of PCH.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Li Gao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanhao Wang
- State Key Laboratory of Reproductive Medicine, Interdisciplinary InnoCenter for Organoids, Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jiuqiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Binzhou Medical University, Yantai, 264003, China
| | - Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Rui Zhen Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, Interdisciplinary InnoCenter for Organoids, Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Zhao L, Deng H, Yang Q, Tang Y, Zhao J, Li P, Zhang S, Yong X, Li T, Billadeau DD, Jia D. FAM91A1-TBC1D23 complex structure reveals human genetic variations susceptible for PCH. Proc Natl Acad Sci U S A 2023; 120:e2309910120. [PMID: 37903274 PMCID: PMC10636324 DOI: 10.1073/pnas.2309910120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) is a group of rare neurodevelopmental disorders with limited diagnostic and therapeutic options. Mutations in WDR11, a subunit of the FAM91A1 complex, have been found in patients with PCH-like symptoms; however, definitive evidence that the mutations are causal is still lacking. Here, we show that depletion of FAM91A1 results in developmental defects in zebrafish similar to that of TBC1D23, an established PCH gene. FAM91A1 and TBC1D23 directly interact with each other and cooperate to regulate endosome-to-Golgi trafficking of KIAA0319L, a protein known to regulate axonal growth. Crystal structure of the FAM91A1-TBC1D23 complex reveals that TBC1D23 binds to a conserved surface on FAM91A1 by assuming a Z-shaped conformation. More importantly, the interaction between FAM91A1 and TBC1D23 can be used to predict the risk of certain TBC1D23-associated mutations to PCH. Collectively, our study provides a molecular basis for the interaction between TBC1D23 and FAM91A1 and suggests that disrupted endosomal trafficking underlies multiple PCH subtypes.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Huaqing Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Qing Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Jia Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Ping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Tianxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN55905
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| |
Collapse
|
9
|
Lee J, Kim Y, Ataliotis P, Kim HG, Kim DW, Bennett DC, Brown NA, Layman LC, Kim SH. Coordination of canonical and noncanonical Hedgehog signalling pathways mediated by WDR11 during primordial germ cell development. Sci Rep 2023; 13:12309. [PMID: 37516749 PMCID: PMC10387110 DOI: 10.1038/s41598-023-38017-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023] Open
Abstract
WDR11, a gene associated with Kallmann syndrome, is important in reproductive system development but molecular understanding of its action remains incomplete. We previously reported that Wdr11-deficient embryos exhibit defective ciliogenesis and developmental defects associated with Hedgehog (HH) signalling. Here we demonstrate that WDR11 is required for primordial germ cell (PGC) development, regulating canonical and noncanonical HH signalling in parallel. Loss of WDR11 disrupts PGC motility and proliferation driven by the cilia-independent, PTCH2/GAS1-dependent noncanonical HH pathway. WDR11 modulates the growth of somatic cells surrounding PGCs by regulating the cilia-dependent, PTCH1/BOC-dependent canonical HH pathway. We reveal that PTCH1/BOC or PTCH2/GAS1 receptor context dictates SMO localisation inside or outside of cilia, respectively, and loss of WDR11 affects the signalling responses of SMO in both situations. We show that GAS1 is induced by PTCH2-specific HH signalling, which is lost in the absence of WDR11. We also provide evidence supporting a role for WDR11 in ciliogenesis through regulation of anterograde intraflagellar transport potentially via its interaction with IFT20. Since WDR11 is a target of noncanonical SMO signalling, WDR11 represents a novel mechanism by which noncanonical and canonical HH signals communicate and cooperate.
Collapse
Affiliation(s)
- Jiyoung Lee
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Kernel Diagnostic Laboratories LTD, London, UK
| | - Yeonjoo Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- The Babraham Institute, Cambridge, UK
| | - Paris Ataliotis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Institute for Medical and Biomedical Education, St. George's, University of London, London, UK
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Dae-Won Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Nigel A Brown
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Department of Neuroscience and Regenerative Medicine, Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.
| |
Collapse
|
10
|
Schaeffer RD, Zhang J, Kinch LN, Pei J, Cong Q, Grishin NV. Classification of domains in predicted structures of the human proteome. Proc Natl Acad Sci U S A 2023; 120:e2214069120. [PMID: 36917664 PMCID: PMC10041065 DOI: 10.1073/pnas.2214069120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
Recent advances in protein structure prediction have generated accurate structures of previously uncharacterized human proteins. Identifying domains in these predicted structures and classifying them into an evolutionary hierarchy can reveal biological insights. Here, we describe the detection and classification of domains from the human proteome. Our classification indicates that only 62% of residues are located in globular domains. We further classify these globular domains and observe that the majority (65%) can be classified among known folds by sequence, with a smaller fraction (33%) requiring structural data to refine the domain boundaries and/or to support their homology. A relatively small number (966 domains) cannot be confidently assigned using our automatic pipelines, thus demanding manual inspection. We classify 47,576 domains, of which only 23% have been included in experimental structures. A portion (6.3%) of these classified globular domains lack sequence-based annotation in InterPro. A quarter (23%) have not been structurally modeled by homology, and they contain 2,540 known disease-causing single amino acid variations whose pathogenesis can now be inferred using AF models. A comparison of classified domains from a series of model organisms revealed expansions of several immune response-related domains in humans and a depletion of olfactory receptors. Finally, we use this classification to expand well-known protein families of biological significance. These classifications are presented on the ECOD website (http://prodata.swmed.edu/ecod/index_human.php).
Collapse
Affiliation(s)
- R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
11
|
Durán A, Priestman DA, Las Heras M, Rebolledo-Jaramillo B, Olguín V, Calderón JF, Zanlungo S, Gutiérrez J, Platt FM, Klein AD. A Mouse Systems Genetics Approach Reveals Common and Uncommon Genetic Modifiers of Hepatic Lysosomal Enzyme Activities and Glycosphingolipids. Int J Mol Sci 2023; 24:4915. [PMID: 36902345 PMCID: PMC10002577 DOI: 10.3390/ijms24054915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Identification of genetic modulators of lysosomal enzyme activities and glycosphingolipids (GSLs) may facilitate the development of therapeutics for diseases in which they participate, including Lysosomal Storage Disorders (LSDs). To this end, we used a systems genetics approach: we measured 11 hepatic lysosomal enzymes and many of their natural substrates (GSLs), followed by modifier gene mapping by GWAS and transcriptomics associations in a panel of inbred strains. Unexpectedly, most GSLs showed no association between their levels and the enzyme activity that catabolizes them. Genomic mapping identified 30 shared predicted modifier genes between the enzymes and GSLs, which are clustered in three pathways and are associated with other diseases. Surprisingly, they are regulated by ten common transcription factors, and their majority by miRNA-340p. In conclusion, we have identified novel regulators of GSL metabolism, which may serve as therapeutic targets for LSDs and may suggest the involvement of GSL metabolism in other pathologies.
Collapse
Affiliation(s)
- Anyelo Durán
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | | | - Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Valeria Olguín
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan F. Calderón
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330033, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory, School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510602, Chile
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Andrés D. Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
12
|
Iturrate A, Rivera-Barahona A, Flores CL, Otaify GA, Elhossini R, Perez-Sanz ML, Nevado J, Tenorio-Castano J, Triviño JC, Garcia-Gonzalo FR, Piceci-Sparascio F, De Luca A, Martínez L, Kalaycı T, Lapunzina P, Altunoglu U, Aglan M, Abdalla E, Ruiz-Perez VL. Mutations in SCNM1 cause orofaciodigital syndrome due to minor intron splicing defects affecting primary cilia. Am J Hum Genet 2022; 109:1828-1849. [PMID: 36084634 PMCID: PMC9606384 DOI: 10.1016/j.ajhg.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/12/2022] [Indexed: 01/25/2023] Open
Abstract
Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.
Collapse
Affiliation(s)
- Asier Iturrate
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ana Rivera-Barahona
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen-Lisset Flores
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Ghada A. Otaify
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Rasha Elhossini
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Marina L. Perez-Sanz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Julián Nevado
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Jair Tenorio-Castano
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | | | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain,Área de Cáncer y Genética Molecular Humana, Instituto de Investigaciones del Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Francesca Piceci-Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy,Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Leopoldo Martínez
- Departamento de Cirugía Pediátrica. Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Tugba Kalaycı
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul 34093, Turkey
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain
| | - Umut Altunoglu
- Medical Genetics Department, Koç University School of Medicine, Istanbul 34450, Turkey
| | - Mona Aglan
- Department of Clinical Genetics, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt,Genetics Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain,Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz-IdiPAZ, ITHACA-ERN, 28046 Madrid, Spain,Corresponding author
| |
Collapse
|
13
|
Duncan MC. New directions for the clathrin adaptor AP-1 in cell biology and human disease. Curr Opin Cell Biol 2022; 76:102079. [DOI: 10.1016/j.ceb.2022.102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
|
14
|
Plooster M, Brennwald P, Gupton SL. Endosomal trafficking in schizophrenia. Curr Opin Neurobiol 2022; 74:102539. [PMID: 35405628 PMCID: PMC9167700 DOI: 10.1016/j.conb.2022.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Schizophrenia is a severe and heritable neuropsychiatric disorder, which arises due to a combination of common genetic variation, rare loss of function variation, and copy number variation. Functional genomic evidence has been used to identify candidate genes affected by this variation, which revealed biological pathways that may be disrupted in schizophrenia. Understanding the contributions of these pathways are critical next steps in understanding schizophrenia pathogenesis. A number of genes involved in endocytosis are implicated in schizophrenia. In this review, we explore the history of endosomal trafficking in schizophrenia and highlight new endosomal candidate genes. We explore the function of these candidate genes and hypothesize how their dysfunction may contribute to schizophrenia.
Collapse
Affiliation(s)
- Melissa Plooster
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, United States.
| | - Patrick Brennwald
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, United States
| | - Stephanie L Gupton
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
15
|
Busch DJ, Zhang Y, Kumar A, Huhn SC, Du Z, Liu R. Identification of RNA Content of CHO-derived Extracellular Vesicles from a Production Process. J Biotechnol 2022; 348:36-46. [DOI: 10.1016/j.jbiotec.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023]
|
16
|
Human Cytomegalovirus Hijacks WD Repeat Domain 11 for Virion Assembly Compartment Formation and Virion Morphogenesis. J Virol 2022; 96:e0182721. [PMID: 35020472 DOI: 10.1128/jvi.01827-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 200 predicted open reading frames and exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was up-regulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and co-localized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside of the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. Importance During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for anti-viral treatment.
Collapse
|
17
|
Biallelic loss-of-function variants in WDR11 are associated with microcephaly and intellectual disability. Eur J Hum Genet 2021; 29:1663-1668. [PMID: 34413497 PMCID: PMC8560748 DOI: 10.1038/s41431-021-00943-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
Heterozygous missense variants in the WD repeat domain 11 (WDR11) gene are associated with hypogonadotropic hypogonadism in humans. In contrast, knockout of both alleles of Wdr11 in mice results in a more severe phenotype with growth and developmental delay, features of holoprosencephaly, heart defects and reproductive disorders. Similar developmental defects known to be associated with aberrant hedgehog signaling and ciliogenesis have been found in zebrafish after Wdr11 knockdown. We here report biallelic loss-of-function variants in the WDR11 gene in six patients from three independent families with intellectual disability, microcephaly and short stature. The findings suggest that biallelic WDR11 variants in humans result in an overlapping but milder phenotype compared to Wdr11-deficient animals. However, the observed human phenotype differs significantly from dominantly inherited variants leading to hypogonadotropic hypogonadism, suggesting that recessive WDR11 variants result in a clinically distinct entity.
Collapse
|
18
|
More K, Klinger CM, Barlow LD, Dacks JB. Evolution and Natural History of Membrane Trafficking in Eukaryotes. Curr Biol 2021; 30:R553-R564. [PMID: 32428497 DOI: 10.1016/j.cub.2020.03.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The membrane-trafficking system is a defining facet of eukaryotic cells. The best-known organelles and major protein families of this system are largely conserved across the vast diversity of eukaryotes, implying both ancient organization and functional unity. Nonetheless, intriguing variation exists that speaks to the evolutionary forces that have shaped the endomembrane system in eukaryotes and highlights ways in which membrane trafficking in protists differs from that in our well-understood models of mammalian and yeast cells. Both parasites and free-living protists possess specialized trafficking organelles, some lineage specific, others more widely distributed - the evolution and function of these organelles begs exploration. Novel members of protein families are present across eukaryotes but have been lost in humans. These proteins may well hold clues to understanding differences in cellular function in organisms that are of pressing importance for planetary health.
Collapse
Affiliation(s)
- Kira More
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Biological Sciences, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| | - Christen M Klinger
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Biological Sciences, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
19
|
Zhang Y, Su H, Wudu M, Ren H, Xu Y, Zhang Q, Jiang J, Wang Q, Jiang X, Zhang B, Liu Z, Zou Z, Qiu X. TBC1 domain family member 23 interacts with Ras-related protein Rab-11A to promote poor prognosis of non-small-cell lung cancer via β1-integrin. J Cell Mol Med 2021; 25:8821-8835. [PMID: 34363324 PMCID: PMC8435452 DOI: 10.1111/jcmm.16841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022] Open
Abstract
Non‐small‐cell lung cancer (NSCLC) accounts for approximately 80% of lung cancer cases. TBC1D23, a member of the TBC/RABGAP family, is widely expressed in human tissues; however, its role in NSCLC is currently unknown. Immunohistochemical analysis was conducted on 173 paraffin‐embedded lung tissue sections from patients with NSCLC from 2014 to 2018 at the First Affiliated Hospital of China Medical University. MTT, colony formation assay, cell cycle assay, scratch assay, transwell assay, Western blotting and real‐time PCR were employed on multiple NSCLC cell lines modified to knock down or overexpress TBC1D23/RAB11A. Immunoprecipitation, immunoprecipitation‐mass spectrometry, immunofluorescence and flow cytometry were performed to explore the interaction between TBC1D23 and RAB11A and TBC1D23 involvement in the interaction between RAB11A and β1 integrin in the para‐nucleus. TBC1D23 was correlated with tumour size, differentiation degree, metastasis, TNM stage and poor prognosis. TBC1D23 was involved in the interaction between RAB11A and β1 integrin in the para‐nucleus, thus activating the β1 integrin/FAK/ERK signalling pathway to promote NSCLC. Furthermore, TBC1D23 promoted NSCLC progression by inducing cell proliferation, migration and invasion. This study indicated the relationship between TBC1D23 expression and the adverse clinicopathological characteristics of patients with NSCLC, suggesting that TBC1D23 may be an important target for NSCLC treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Hongbo Su
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Muli Wudu
- Department of Pathology, Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Hongjiu Ren
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Qingfu Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| | - Zongang Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zifang Zou
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, First Affiliated Hospital College and of Basic Medical Sciences China Medical University, Shenyang, China
| |
Collapse
|
20
|
Tarbeeva S, Lyamtseva E, Lisitsa A, Kozlova A, Ponomarenko E, Ilgisonis E. ScanBious: Survey for Obesity Genes Using PubMed Abstracts and DisGeNET. J Pers Med 2021; 11:246. [PMID: 33805313 PMCID: PMC8065449 DOI: 10.3390/jpm11040246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
We used automatic text-mining of PubMed abstracts of papers related to obesity, with the aim of revealing that the information used in abstracts reflects the current understanding and key concepts of this widely explored problem. We compared expert data from DisGeNET to the results of an automated MeSH (Medical Subject Heading) search, which was performed by the ScanBious web tool. The analysis provided an overview of the obesity field, highlighting major trends such as physiological conditions, age, and diet, as well as key well-studied genes, such as adiponectin and its receptor. By intersecting the DisGeNET knowledge with the ScanBious results, we deciphered four clusters of obesity-related genes. An initial set of 100+ thousand abstracts and 622 genes was reduced to 19 genes, distributed among just a few groups: heredity, inflammation, intercellular signaling, and cancer. Rapid profiling of articles could drive personalized medicine: if the disease signs of a particular person were superimposed on a general network, then it would be possible to understand which are non-specific (observed in cohorts and, therefore, most likely have known treatment solutions) and which are less investigated, and probably represent a personalized case.
Collapse
Affiliation(s)
- Svetlana Tarbeeva
- International School “Medicine of the Future”, Sechenov University, 119991 Moscow, Russia
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
| | | | - Andrey Lisitsa
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
| | - Anna Kozlova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
- Laboratory of Molecular Design and Synthesis, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elena Ponomarenko
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
| | - Ekaterina Ilgisonis
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (A.K.); (E.P.); (E.I.)
| |
Collapse
|
21
|
Shin JJH, Crook OM, Borgeaud AC, Cattin-Ortolá J, Peak-Chew SY, Breckels LM, Gillingham AK, Chadwick J, Lilley KS, Munro S. Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. Nat Commun 2020; 11:5987. [PMID: 33239640 PMCID: PMC7689464 DOI: 10.1038/s41467-020-19840-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intracellular traffic between compartments of the secretory and endocytic pathways is mediated by vesicle-based carriers. The proteomes of carriers destined for many organelles are ill-defined because the vesicular intermediates are transient, low-abundance and difficult to purify. Here, we combine vesicle relocalisation with organelle proteomics and Bayesian analysis to define the content of different endosome-derived vesicles destined for the trans-Golgi network (TGN). The golgin coiled-coil proteins golgin-97 and GCC88, shown previously to capture endosome-derived vesicles at the TGN, were individually relocalised to mitochondria and the content of the subsequently re-routed vesicles was determined by organelle proteomics. Our findings reveal 45 integral and 51 peripheral membrane proteins re-routed by golgin-97, evidence for a distinct class of vesicles shared by golgin-97 and GCC88, and various cargoes specific to individual golgins. These results illustrate a general strategy for analysing intracellular sub-proteomes by combining acute cellular re-wiring with high-resolution spatial proteomics.
Collapse
Affiliation(s)
- John J H Shin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Oliver M Crook
- The Milner Therapeutics Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Alicia C Borgeaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jérôme Cattin-Ortolá
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kathryn S Lilley
- The Milner Therapeutics Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
22
|
Genome-Wide Association Study of Weaning Traits in Lori-Bakhtiari Sheep. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Weaning traits, including preweaning daily gain (PWDG) and weaning weight (WW) are important economic traits, especially for meat type mammals, with high impacts on growth performance and survival rate in higher ages. This study was conducted to perform a genome-wide association study (GWAS) on weaning traits in a meat type breed of sheep. Body weight records of 7557 Lori-Bakhtiari sheep with PWDG and WW records were used to estimate breeding values (EBVs) using an animal mixed model. A total of 132 animals were selected by two-tailed selection strategy, based on EBVs for body weight and then were genotyped using Illumina 50k Ovine SNP chip. After quality control, a total of 130 animals and 41323 SNPs were remained for further analyses. De-regressed estimates of breeding values were used as a pseudo-phenotype in GWAS analysis. Based on Bonferroni-adjusted p-values, five SNPs, located on chromosomes 2, 3, 4, 12 and 22 were significantly (p < 0.05) associated with weaning traits and accounted for 5.06% and 0.37% of total genetic variations of PWDG and WW, respectively. Two SNPs on chromosomes 2 and 3 were located near to previously reported QTLs for weaning traits. Three genes, including ANGPTL7, mTOR and WDR11, were found within 50 kbp distances from the significant SNPs and thus could be considered as candidate genes for weaning traits. The detected QTLs and candidate genes could be studied for construction of breeding programs for genetic improvement of growth performance in meat type sheep.
Collapse
|
23
|
Liu D, Yang F, Liu Z, Wang J, Huang W, Meng W, Billadeau DD, Sun Q, Mo X, Jia D. Structure of TBC1D23 N-terminus reveals a novel role for rhodanese domain. PLoS Biol 2020; 18:e3000746. [PMID: 32453802 PMCID: PMC7274447 DOI: 10.1371/journal.pbio.3000746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/05/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023] Open
Abstract
Members of the Tre2-Bub2-Cdc16 (TBC) family often function to regulate membrane trafficking and to control signaling transductions pathways. As a member of the TBC family, TBC1D23 is critical for endosome-to-Golgi cargo trafficking by serving as a bridge between Golgi-bound golgin-97/245 and the WASH/FAM21 complex on endosomal vesicles. However, the exact mechanisms by which TBC1D23 regulates cargo transport are poorly understood. Here, we present the crystal structure of the N-terminus of TBC1D23 (D23N), which consists of both the TBC and rhodanese domains. We show that the rhodanese domain is unlikely to be an active sulfurtransferase or phosphatase, despite containing a putative catalytic site. Instead, it packs against the TBC domain and forms part of the platform to interact with golgin-97/245. Using the zebrafish model, we show that impacting golgin-97/245-binding, but not the putative catalytic site, impairs neuronal growth and brain development. Altogether, our studies provide structural and functional insights into an essential protein that is required for organelle-specific trafficking and brain development.
Collapse
Affiliation(s)
- Dingdong Liu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhe Liu
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinrui Wang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenjie Huang
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wentong Meng
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Qingxiang Sun
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- * E-mail: (DJ); (XM); (QS)
| | - Xianming Mo
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- * E-mail: (DJ); (XM); (QS)
| | - Da Jia
- Department of Pediatric Surgery and Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (DJ); (XM); (QS)
| |
Collapse
|
24
|
Tu Y, Zhao L, Billadeau DD, Jia D. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Front Cell Dev Biol 2020; 8:163. [PMID: 32258039 PMCID: PMC7093645 DOI: 10.3389/fcell.2020.00163] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network (TGN) diverts proteins and lipids away from lysosomal degradation. It is essential for maintaining cellular homeostasis and signaling. In recent years, significant advancements have been made in understanding this classical pathway, revealing new insights into multiple steps of vesicular trafficking as well as critical roles of ER-endosome contacts for endosomal trafficking. In this review, we summarize up-to-date knowledge about this trafficking pathway, in particular, mechanisms of cargo recognition at endosomes and vesicle tethering at the TGN, and contributions of ER-endosome contacts.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Zengel J, Carette JE. Structural and cellular biology of adeno-associated virus attachment and entry. Adv Virus Res 2020; 106:39-84. [PMID: 32327148 DOI: 10.1016/bs.aivir.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV) is a nonenveloped, ssDNA virus in the parvovirus family, which has become one of the leading candidate vectors for human gene therapy. AAV has been studied extensively to identify host cellular factors involved in infection, as well as to identify capsid variants that confer clinically favorable transduction profiles ex vivo and in vivo. Recent advances in technology have allowed for direct genetic approaches to be used to more comprehensively characterize host factors required for AAV infection and allowed for identification of a critical multi-serotype receptor, adeno-associated virus receptor (AAVR). In this chapter, we will discuss the interactions of AAV with its glycan and proteinaceous receptors and describe the host and viral components involved in AAV entry, which requires cellular attachment, endocytosis, trafficking to the trans-Golgi network and nuclear import. AAV serves as a paradigm for entry of nonenveloped viruses. Furthermore, we will discuss the potential of utilizing our increased understanding of virus-host interactions during AAV entry to develop better AAV-based therapeutics, with a focus on host factors and capsid interactions involved in in vivo tropism.
Collapse
|
26
|
Manna PT, Davis LJ, Robinson MS. Fast and cloning-free CRISPR/Cas9-mediated genomic editing in mammalian cells. Traffic 2019; 20:974-982. [PMID: 31503392 PMCID: PMC6899835 DOI: 10.1111/tra.12696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
CHoP-In (CRISPR/Cas9-mediated Homology-independent PCR-product integration) is a fast, non-homologous end-joining based, strategy for genomic editing in mammalian cells. There is no requirement for cloning in generation of the integration donor, instead the desired integration donor is produced as a polymerase chain reaction (PCR) product, flanked by the Cas9 recognition sequences of the target locus. When co-transfected with the cognate Cas9 and guide RNA, double strand breaks are introduced at the target genomic locus and at both ends of the PCR product. This allows incorporation into the genomic locus via hon-homologous end joining. The approach is versatile, allowing N-terminal, C-terminal or internal tag integration and gives predictable genomic integrations, as demonstrated for a selection of well characterised membrane trafficking proteins. The lack of donor vectors offers advantages over existing methods in terms of both speed and hands-on time. As such this approach will be a useful addition to the genome editing toolkit of those working in mammalian cell systems.
Collapse
Affiliation(s)
- Paul T. Manna
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Luther J. Davis
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
27
|
Structural and functional studies of TBC1D23 C-terminal domain provide a link between endosomal trafficking and PCH. Proc Natl Acad Sci U S A 2019; 116:22598-22608. [PMID: 31624125 DOI: 10.1073/pnas.1909316116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) is a group of neurological disorders that affect the development of the brain, in particular, the pons and cerebellum. Homozygous mutations of TBC1D23 have been found recently to lead to PCH; however, the underlying molecular mechanisms remain unclear. Here, we show that the crystal structure of the TBC1D23 C-terminal domain adopts a Pleckstrin homology domain fold and selectively binds to phosphoinositides, in particular, PtdIns(4)P, through one surface while binding FAM21 via the opposite surface. Mutation of key residues of TBC1D23 or FAM21 selectively disrupts the endosomal vesicular trafficking toward the Trans-Golgi Network. Finally, using the zebrafish model, we show that PCH patient-derived mutants, impacting either phosphoinositide binding or FAM21 binding, lead to abnormal neuronal growth and brain development. Taken together, our data provide a molecular basis for the interaction between TBC1D23 and FAM21, and suggest a plausible role for PtdIns(4)P in the TBC1D23-mediating endosome-to-TGN trafficking pathway. Defects in this trafficking pathway are, at least partially, responsible for the pathogenesis of certain types of PCH.
Collapse
|
28
|
Lamber EP, Siedenburg AC, Barr FA. Rab regulation by GEFs and GAPs during membrane traffic. Curr Opin Cell Biol 2019; 59:34-39. [PMID: 30981180 DOI: 10.1016/j.ceb.2019.03.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
Rab GTPases and their regulatory proteins play a crucial role in vesicle-mediated membrane trafficking. During vesicle membrane tethering Rab GTPases are activated by GEFs (guanine nucleotide exchange factors) and then inactivated by GAPs (GTPase activating proteins). Recent evidence shows that in addition to activating and inactivating Rab GTPases, both Rab GEFs and GAPs directly contribute to membrane tethering events during vesicle traffic. Other studies have extended the range of processes, in which Rabs function, and revealed roles for Rabs and their GAPs in the regulation of autophagy. Here, we will discuss these advances and the emerging relationship between the domain architectures of Rab GEFs and vesicle coat protein complexes linked with GTPases of the Sar, ARF and Arl families in animal cells.
Collapse
Affiliation(s)
- Ekaterina P Lamber
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
29
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
30
|
Wang J, Fedoseienko A, Chen B, Burstein E, Jia D, Billadeau DD. Endosomal receptor trafficking: Retromer and beyond. Traffic 2018; 19:578-590. [PMID: 29667289 PMCID: PMC6043395 DOI: 10.1111/tra.12574] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
The tubular endolysosomal network is a quality control system that ensures the proper delivery of internalized receptors to specific subcellular destinations in order to maintain cellular homeostasis. Although retromer was originally described in yeast as a regulator of endosome-to-Golgi receptor recycling, mammalian retromer has emerged as a central player in endosome-to-plasma membrane recycling of a variety of receptors. Over the past decade, information regarding the mechanism by which retromer facilitates receptor trafficking has emerged, as has the identification of numerous retromer-associated molecules including the WASH complex, sorting nexins (SNXs) and TBC1d5. Moreover, the recent demonstration that several SNXs can directly interact with retromer cargo to facilitate endosome-to-Golgi retrieval has provided new insight into how these receptors are trafficked in cells. The mechanism by which SNX17 cargoes are recycled out of the endosomal system was demonstrated to involve a retromer-like complex termed the retriever, which is recruited to WASH positive endosomes through an interaction with the COMMD/CCDC22/CCDC93 (CCC) complex. Lastly, the mechanisms by which bacterial and viral pathogens highjack this complex sorting machinery in order to escape the endolysosomal system or remain hidden within the cells are beginning to emerge. In this review, we will highlight recent studies that have begun to unravel the intricacies by which the retromer and associated molecules contribute to receptor trafficking and how deregulation at this sorting domain can contribute to disease or facilitate pathogen infection.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Alina Fedoseienko
- Division of Oncology Research, Department of Biochemistry and Molecular Biology, and Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bayou Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ezra Burstein
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Department of Biochemistry and Molecular Biology, and Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Chang F, Li N, Yan K, Huang Y, Xu H, Liu Y. Luminal/extracellular domains of chimeric CI-M6PR-C proteins interfere with their retrograde endosome-to-TGN trafficking in the transient expression system. J Biomed Res 2018; 32:245-256. [PMID: 29988026 PMCID: PMC6117607 DOI: 10.7555/jbr.32.20180044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The membrane trafficking of cation-independent mannose 6-phosphate receptor (CI-M6PR) between the trans-Golgi network (TGN) and endosomal compartments is not only critical for maintaining lysosomal function but also a well-known event for understanding molecular and cellular mechanisms in retrograde endosome-to-TGN trafficking. Although it has been well established in literature that the C-terminus of bovine CI-M6PR determines its retrograde trafficking, it remains unclear whether the luminal domain of the protein plays a role on these sorting events. In this study, we found that partial deletion of luminal domain of human CI-M6PR mistargeted the mutant protein to non-TGN compartments. Moreover, replacing the luminal domain of both bovine and human CI-M6PR with that from irrelevant membrane proteins such as CD8 or Tac also altered the TGN targeting of the chimeric proteins. On the other hand, only short sequence from HA fused with the transmembrane domain and C-terminus of the receptor, HA-hCI-M6PR-tail, resulted in its preferential targeting to TGN as for the full length receptor, strongly suggesting that sorting of the receptor may be influenced by luminal sequence. Furthermore, using this luminal truncated form of HA-hCI-M6PR as a model cargo, we found that the trafficking of the chimeric protein was regulated by the retromer complex through interacting with SNX5. In conclusion, our study strongly suggested that the disrupted luminal domain from hCI-M6PR or other irrelevant membrane proteins interfere with the process of membrane trafficking and TGN targeting of CI-M6PR.
Collapse
Affiliation(s)
- Fei Chang
- . Jiangsu Key Laboratory of Xenotransplanation, Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Na Li
- . Jiangsu Key Laboratory of Xenotransplanation, Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kang Yan
- . Jiangsu Key Laboratory of Xenotransplanation, Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yumin Huang
- . Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hongfei Xu
- . Jiangsu Key Laboratory of Xenotransplanation, Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongjian Liu
- . Jiangsu Key Laboratory of Xenotransplanation, Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
,. Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
,Corresponding author: Dr. Yongjian Liu, Jiangsu Key Laboratory of Xenotransplanation, Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA, Tel: +86-25-86869442,
| |
Collapse
|