1
|
Andrini O, Ben Soussia I, Tardy P, Walker DS, Peña-Varas C, Ramírez D, Gendrel M, Mercier M, El Mouridi S, Leclercq-Blondel A, González W, Schafer WR, Jospin M, Boulin T. Constitutive sodium permeability in a C. elegans two-pore domain potassium channel. Proc Natl Acad Sci U S A 2024; 121:e2400650121. [PMID: 39405352 PMCID: PMC11513965 DOI: 10.1073/pnas.2400650121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.
Collapse
Affiliation(s)
- Olga Andrini
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Ismail Ben Soussia
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Philippe Tardy
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Denise S. Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion4070386, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion4070386, Chile
| | - Marie Gendrel
- Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, CNRS UMR 8197, INSERM U1024, Université Paris Sciences et Lettres, Paris75005, France
| | - Marine Mercier
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Sonia El Mouridi
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | | | - Wendy González
- Center for Bioinformatics, Simulation and Modelling, University of Talca, Talca3460000, Chile
| | - William R. Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Department of Biology, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Maelle Jospin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| | - Thomas Boulin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, Lyon69008, France
| |
Collapse
|
2
|
Seiferth D, Biggin PC. Exploring the influence of pore shape on conductance and permeation. Biophys J 2024; 123:3107-3119. [PMID: 38973159 PMCID: PMC11427812 DOI: 10.1016/j.bpj.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024] Open
Abstract
There are increasing numbers of ion channel structures featuring heteromeric subunit assembly, exemplified by synaptic α1βB glycine and α4β2 nicotinic receptors. These structures exhibit inherent pore asymmetry, but the relevance of this to function is unknown. Furthermore, molecular dynamics simulations performed on symmetrical homomeric channels often lead to thermal distortion whereby conformations of the resulting ensemble are also asymmetrical. When functionally annotating ion channels, researchers often rely on minimal constrictions determined via radius-profile calculations performed with computer programs, such as HOLE or CHAP, coupled with an assessment of pore hydrophobicity. However, such tools typically employ spherical probe particles, limiting their ability to accurately capture pore asymmetry. Here, we introduce an algorithm that employs ellipsoidal probe particles, enabling a more comprehensive representation of the pore geometry. Our analysis reveals that the use of nonspherical ellipsoids for pore characterization provides a more accurate and easily interpretable depiction of conductance. To quantify the implications of pore asymmetry on conductance, we systematically investigated carbon nanotubes with varying degrees of pore asymmetry as model systems. The conductance through these channels shows surprising effects that would otherwise not be predicted with spherical probes. The results have broad implications not only for the functional annotation of biological ion channels but also for the design of synthetic channel systems for use in areas such as water filtration. Furthermore, we make use of the more accurate characterization of channel pores to refine a physical conductance model to obtain a heuristic estimate for single-channel conductance. The code is freely available, obtainable as pip-installable python package and provided as a web service.
Collapse
Affiliation(s)
- David Seiferth
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom; Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Liang J, Zhang X, Li H, Wen C, Tian L, Chen X, Li Z. Constructing Two-Dimensional (2D) Heterostructure Channels with Engineered Biomembrane and Graphene for Precise Scandium Sieving. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404629. [PMID: 38805571 DOI: 10.1002/adma.202404629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The special properties of rare earth elements (REE) have effectively broadened their application fields. How to accurately recognize and efficiently separate target rare earth ions with similar radii and chemical properties remains a formidable challenge. Here, precise two-dimensional (2D) heterogeneous channels are constructed using engineered E. coli membranes between graphene oxide (GO) layers. The difference in binding ability and corresponding conformational change between Lanmodulin (LanM) and rare earth ions in the heterogeneous channel allows for precisely recognizing and sieving of scandium ions (Sc3+). The engineered E. coli membranes not only can protect the integrity of structure and functionality of LanM, the rich lipids and sugars, but also help the Escherichia coli (E. coli) membranes closely tile on the GO nanosheets through interaction, preventing swelling and controlling interlayer spacing accurately down to the sub-nanometer. Apparently, the 2D heterogeneous channels showcase excellent selectivity for trivalent ions (SFFe /Sc≈3), especially for Sc3+ ions in REE with high selectivity (SFCe/Sc≈167, SFLa/Sc≈103). The long-term stability and tensile strain tests verify the membrane's outstanding stability. Thus, this simple, efficient, and cost-effective work provides a suggestion for constructing 2D interlayer heterogeneous channels for precise sieving, and this valuable strategy is proposed for the efficient extraction of Sc.
Collapse
Affiliation(s)
- Jing Liang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Xin Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Haidong Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Chuanxi Wen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Ximeng Chen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Qinghai Nationalities University, 3 Bayi Middle Road, Xining, 810007, China
| |
Collapse
|
4
|
Dai L, Zhang WQ, Ding D, Luo C, Jiang L, Huang Y, Xia F. Outer-Surface Functionalized Solid-State Nanochannels for Enhanced Sensing Properties: Progress and Perspective. ACS NANO 2024; 18:7677-7687. [PMID: 38450654 DOI: 10.1021/acsnano.3c12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Solid-state nanochannel-based sensing systems have been established as vigorous tools for sensing plentiful biomarkers due to their label-free, highly sensitive, and high-throughput screening. However, research on solid-state nanochannels has predominantly centered on the functional groups modified on the inner wall, neglecting investigations into the outer surface. Actually, the outer surface, as a part of the nanochannels, also plays a key role in regulating ionic current. When the target nears the entrance of the nanochannel and prepares to pass through, it would also interact with functional groups located on the nanochannel's outer surface, leading to subsequent alterations in the ionic current. Recently, the probes on the outer surface have experimentally demonstrated their ability to independently regulate ionic current, unveiling advantages in in situ target detection, especially for targets larger than the diameter of the nanochannels that cannot pass through them. Here, we review the progress over the past decade in nanochannels featuring diverse outer-surface functionalization aimed at enhanced sensing performance, including charge modification, wettability adjustment, and probe immobilization. In addition, we present the promises and challenges posed by outer-surface functionalized nanochannels and discuss possible directions for their future deployments.
Collapse
Affiliation(s)
- Li Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Wei-Qi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Lei Jiang
- China Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
5
|
Öster C, Lange S, Hendriks K, Lange A. Detecting Bound Ions in Ion Channels by Solid-State NMR Experiments on 15N-Labelled Ammonium Ions. Methods Mol Biol 2024; 2796:23-34. [PMID: 38856893 DOI: 10.1007/978-1-0716-3818-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Solid-state NMR allows for the study of membrane proteins under physiological conditions. Here we describe a method for detection of bound ions in the selectivity filter of ion channels using solid-state NMR. This method employs standard 1H-detected solid-state NMR setup and experiment types, which is enabled by using 15N-labelled ammonium ions to mimic potassium ions.
Collapse
Affiliation(s)
- Carl Öster
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Sascha Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Kitty Hendriks
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Xu R, Kang Y, Zhang W, Pan B, Zhang X. Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving. Nat Commun 2023; 14:4907. [PMID: 37582789 PMCID: PMC10427654 DOI: 10.1038/s41467-023-40742-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Membranes with high ion permeability and selectivity are of considerable interest for sustainable water treatment, resource extraction and energy storage. Herein, inspired by K+ channel of streptomyces A (KcsA K+), we have constructed cation sieving membranes using MXene nanosheets and Ethylenediaminetetraacetic acid (EDTA) molecules as building blocks. Numerous negatively charged oxygen atoms of EDTA molecules and 6.0 Å two-dimensional (2D) sub-nanochannel of MXene nanosheets enable biomimetic channel size, chemical groups and tunable charge density for the resulting membranes. The membranes show the capability to recognize monovalent/divalent cations, achieving excellent K+/Mg2+ selectivity of 121.2 using mixed salt solution as the feed, which outperforms other reported membranes under similar testing conditions and transcends the current upper limit. Characterization and simulations indicate that the cation recognition effect of EDTA and partial dehydration effects play critical roles in cations selective sieving and increasing the local charge density within the sub-nanochannel significantly improves cation selectivity. Our findings provide a theoretical basis for ions transport in sub-nanochannels and an alternative strategy for design ions separation membranes.
Collapse
Affiliation(s)
- Rongming Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 210023, Nanjing, China
| | - Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China.
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 210023, Nanjing, China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China.
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 210023, Nanjing, China.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
7
|
Minniberger S, Abdolvand S, Braunbeck S, Sun H, Plested AJR. Asymmetry and Ion Selectivity Properties of Bacterial Channel NaK Mutants Derived from Ionotropic Glutamate Receptors. J Mol Biol 2023; 435:167970. [PMID: 36682679 DOI: 10.1016/j.jmb.2023.167970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Ionotropic glutamate receptors are ligand-gated cation channels that play essential roles in the excitatory synaptic transmission throughout the central nervous system. A number of open-pore structures of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid (AMPA)-type glutamate receptors became available recently by cryo-electron microscopy (cryo-EM). These structures provide valuable insights into the conformation of the selectivity filter (SF), the part of the ion channel that determines the ion selectivity. Nonetheless, due to the moderate resolution of the cryo-EM structures, detailed information such as ion occupancy of monovalent and divalent cations as well as positioning of the side-chains in the SF is still missing. Here, in an attempt to obtain high-resolution information about glutamate receptor SFs, we incorporated partial SF sequences of the AMPA and kainate receptors into the bacterial tetrameric cation channel NaK, which served as a structural scaffold. We determined a series of X-ray structures of NaK-CDI, NaK-SDI and NaK-SELM mutants at 1.42-2.10 Å resolution, showing distinct ion occupation of different monovalent cations. Molecular dynamics (MD) simulations of NaK-CDI indicated the channel to be conductive to monovalent cations, which agrees well with our electrophysiology recordings. Moreover, previously unobserved structural asymmetry of the SF was revealed by the X-ray structures and MD simulations, implying its importance in ion non-selectivity of tetrameric cation channels.
Collapse
Affiliation(s)
- Sonja Minniberger
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Saeid Abdolvand
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Sebastian Braunbeck
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Han Sun
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institute of Chemistry, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
| | - Andrew J R Plested
- Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany; NeuroCure, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.
| |
Collapse
|
8
|
Schackert F, Biedermann J, Abdolvand S, Minniberger S, Song C, Plested AJR, Carloni P, Sun H. Mechanism of Calcium Permeation in a Glutamate Receptor Ion Channel. J Chem Inf Model 2023; 63:1293-1300. [PMID: 36758214 PMCID: PMC9976283 DOI: 10.1021/acs.jcim.2c01494] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 02/11/2023]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are neurotransmitter-activated cation channels ubiquitously expressed in vertebrate brains. The regulation of calcium flux through the channel pore by RNA-editing is linked to synaptic plasticity while excessive calcium influx poses a risk for neurodegeneration. Unfortunately, the molecular mechanisms underlying this key process are mostly unknown. Here, we investigated calcium conduction in calcium-permeable AMPAR using Molecular Dynamics (MD) simulations with recently introduced multisite force-field parameters for Ca2+. Our calculations are consistent with experiment and explain the distinct calcium permeability in different RNA-edited forms of GluA2. For one of the identified metal binding sites, multiscale Quantum Mechanics/Molecular Mechanics (QM/MM) simulations further validated the results from MD and revealed small but reproducible charge transfer between the metal ion and its first solvation shell. In addition, the ion occupancy derived from MD simulations independently reproduced the Ca2+ binding profile in an X-ray structure of an NaK channel mimicking the AMPAR selectivity filter. This integrated study comprising X-ray crystallography, multisite MD, and multiscale QM/MM simulations provides unprecedented insights into Ca2+ permeation mechanisms in AMPARs, and paves the way for studying other biological processes in which Ca2+ plays a pivotal role.
Collapse
Affiliation(s)
- Florian
Karl Schackert
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52428 Jülich, Germany
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Johann Biedermann
- Institute
of Biology, Cellular Biophysics, Humboldt
Universität zu Berlin, 10115 Berlin, Germany
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Saeid Abdolvand
- Institute
of Biology, Cellular Biophysics, Humboldt
Universität zu Berlin, 10115 Berlin, Germany
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Sonja Minniberger
- Institute
of Biology, Cellular Biophysics, Humboldt
Universität zu Berlin, 10115 Berlin, Germany
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Chen Song
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Andrew J. R. Plested
- Institute
of Biology, Cellular Biophysics, Humboldt
Universität zu Berlin, 10115 Berlin, Germany
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Paolo Carloni
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52428 Jülich, Germany
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Han Sun
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institute
of Chemistry, TU Berlin, Straße des 17 Juni 135, 10623 Berlin, Germany
| |
Collapse
|
9
|
Lu J, Jiang G, Zhang H, Qian B, Zhu H, Gu Q, Yan Y, Liu JZ, Freeman BD, Jiang L, Wang H. An artificial sodium-selective subnanochannel. SCIENCE ADVANCES 2023; 9:eabq1369. [PMID: 36706186 PMCID: PMC9882983 DOI: 10.1126/sciadv.abq1369] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Single-ion selectivity with high precision has long been pursued for fundamental bioinspired engineering and applications such as in ion separation and energy conversion. However, it remains a challenge to develop artificial ion channels to achieve single-ion selectivity comparable to their biological analogs, especially for high Na+/K+ selectivity. Here, we report an artificial sodium channel by subnanoconfinement of 4'-aminobenzo-15-crown-5 ethers (15C5s) into ~6-Å-sized metal-organic framework subnanochannel (MOFSNC). The resulting 15C5-MOFSNC shows an unprecedented Na+/K+ selectivity of tens to 102 and Na+/Li+ selectivity of 103 under multicomponent permeation conditions, comparable to biological sodium channels. A co-ion-responsive single-file transport mechanism in 15C-MOFSNC is proposed for the preferential transport of Na+ over K+ due to the synergetic effects of size exclusion, charge selectivity, local hydrophobicity, and preferential binding with functional groups. This study provides an alternative strategy for developing potential single-ion selective channels and membranes for many applications.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Gengping Jiang
- Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Wuhan 430072, China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Binbin Qian
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Haijin Zhu
- Institute for Frontier Materials, Deakin University Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Qinfen Gu
- ANSTO, Australian Synchrotron, 800 Blackburn Rd., Clayton, Victoria 3168, Australia
| | - Yuan Yan
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benny D. Freeman
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lei Jiang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Kurauskas V, Tonelli M, Henzler-Wildman K. Full opening of helix bundle crossing does not lead to NaK channel activation. J Gen Physiol 2022; 154:213659. [PMID: 36326620 PMCID: PMC9640265 DOI: 10.1085/jgp.202213196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
A critical part of ion channel function is the ability to open and close in response to stimuli and thus conduct ions in a regulated fashion. While x-ray diffraction studies of ion channels suggested a general steric gating mechanism located at the helix bundle crossing (HBC), recent functional studies on several channels indicate that the helix bundle crossing is wide-open even in functionally nonconductive channels. Two NaK channel variants were crystallized in very different open and closed conformations, which served as important models of the HBC gating hypothesis. However, neither of these NaK variants is conductive in liposomes unless phenylalanine 92 is mutated to alanine (F92A). Here, we use NMR to probe distances at near-atomic resolution of the two NaK variants in lipid bicelles. We demonstrate that in contrast to the crystal structures, both NaK variants are in a fully open conformation, akin to Ca2+-bound MthK channel structure where the HBC is widely open. While we were not able to determine what a conductive NaK structure is like, our further inquiry into the gating mechanism suggests that the selectivity filter and pore helix are coupled to the M2 helix below and undergo changes in the structure when F92 is mutated. Overall, our data show that NaK exhibits coupling between the selectivity filter and HBC, similar to K+ channels, and has a more complex gating mechanism than previously thought, where the full opening of HBC does not lead to channel activation.
Collapse
Affiliation(s)
- Vilius Kurauskas
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
- Correspondence to Katherine Henzler-Wildman:
| |
Collapse
|
11
|
Suzuki Y, Hirata K, Lisy JM, Ishiuchi SI, Fujii M. A bottom-up approach to the ion recognition mechanism of K + channels from laser spectroscopy of hydrated partial peptide-alkali metal ion complexes. Phys Chem Chem Phys 2022; 24:20803-20812. [PMID: 36000593 DOI: 10.1039/d2cp01667b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
K+ channels allow selective permeation of K+, but not physiologically abundant Na+, at almost diffusion limit rates. The conduction mechanism of K+ channels is still controversial, with experimental and computation studies supporting two distinct conduction mechanisms: either with or without water inside the channel. Here, we employ a bottom-up approach on hydrated alkali metal complexes of a model peptide of K+ channels, Ac-Tyr-NHMe, to characterize metal-peptide, metal-water, and water-peptide interactions that govern the selectivity of K+ channels at a molecular level. Both the extension to the series of alkali metal ions and to temperature-dependent studies (approaching physiological values) have revealed the clear difference between permeable and non-permeable ions in the spectral features of the ion complexes. Furthermore, the impact of hydration is discussed in relation to the K+ channels by comparisons of the non-hydrated and hydrated complexes.
Collapse
Affiliation(s)
- Yukina Suzuki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - James M Lisy
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
12
|
Molecular Events behind the Selectivity and Inactivation Properties of Model NaK-Derived Ion Channels. Int J Mol Sci 2022; 23:ijms23169246. [PMID: 36012519 PMCID: PMC9409022 DOI: 10.3390/ijms23169246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Y55W mutants of non-selective NaK and partly K+-selective NaK2K channels have been used to explore the conformational dynamics at the pore region of these channels as they interact with either Na+ or K+. A major conclusion is that these channels exhibit a remarkable pore conformational flexibility. Homo-FRET measurements reveal a large change in W55–W55 intersubunit distances, enabling the selectivity filter (SF) to admit different species, thus, favoring poor or no selectivity. Depending on the cation, these channels exhibit wide-open conformations of the SF in Na+, or tight induced-fit conformations in K+, most favored in the four binding sites containing NaK2K channels. Such conformational flexibility seems to arise from an altered pattern of restricting interactions between the SF and the protein scaffold behind it. Additionally, binding experiments provide clues to explain such poor selectivity. Compared to the K+-selective KcsA channel, these channels lack a high affinity K+ binding component and do not collapse in Na+. Thus, they cannot properly select K+ over competing cations, nor reject Na+ by collapsing, as K+-selective channels do. Finally, these channels do not show C-type inactivation, likely because their submillimolar K+ binding affinities prevent an efficient K+ loss from their SF, thus favoring permanently open channel states.
Collapse
|
13
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Bauer D, Wissmann J, Moroni A, Thiel G, Hamacher K. Weak Cation Selectivity in HCN Channels Results From K +-Mediated Release of Na + From Selectivity Filter Binding Sites. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac019. [PMID: 36156894 PMCID: PMC9492253 DOI: 10.1093/function/zqac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate the pacemaker current which plays an important role in the timing of various biological processes like the heart beat. We used umbrella sampling to explore the potential of mean force for the conduction of potassium and sodium through the open HCN4 pore. Our data explain distinct functional features like low unitary conductance and weak selectivity as a result of high energetic barriers inside the selectivity filter of this channel. They exceed the 3-5 kJ/mol threshold which is presumed as maximal barrier for diffusion-limited conductance. Furthermore, simulations provide a thermodynamic explanation for the weak cation selectivity of HCN channels that contain only two ion binding sites in the selectivity filter (SF). We find that sodium ions bind more strongly to the SF than potassium and are easier released by binding of potassium than of another sodium. Hence ion transport and selectivity in HCN channels is not determined by the same mechanism as in potassium-selective channels; it rather relies on sodium as a weak blocker that can only be released by potassium.
Collapse
Affiliation(s)
- Daniel Bauer
- Department of Biology and Centre for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Jan Wissmann
- Department of Physics, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Kay Hamacher
- Department of Biology and Centre for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany,Department of Physics, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| |
Collapse
|
15
|
Medeiros-Silva J, Somberg NH, Wang HK, McKay MJ, Mandala VS, Dregni AJ, Hong M. pH- and Calcium-Dependent Aromatic Network in the SARS-CoV-2 Envelope Protein. J Am Chem Soc 2022; 144:6839-6850. [PMID: 35380805 DOI: 10.1021/jacs.2c00973] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.
Collapse
Affiliation(s)
- João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Harrison K Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V. Nat Commun 2022; 13:1574. [PMID: 35322021 PMCID: PMC8943062 DOI: 10.1038/s41467-022-28866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022] Open
Abstract
C-type inactivation is of great physiological importance in voltage-activated K+ channels (Kv), but its structural basis remains unresolved. Knowledge about C-type inactivation has been largely deduced from the bacterial K+ channel KcsA, whose selectivity filter constricts under inactivating conditions. However, the filter is highly sensitive to its molecular environment, which is different in Kv channels than in KcsA. In particular, a glutamic acid residue at position 71 along the pore helix in KcsA is substituted by a valine conserved in most Kv channels, suggesting that this side chain is a molecular determinant of function. Here, a combination of X-ray crystallography, solid-state NMR and MD simulations of the E71V KcsA mutant is undertaken to explore inactivation in this Kv-like construct. X-ray and ssNMR data show that the filter of the Kv-like mutant does not constrict under inactivating conditions. Rather, the filter adopts a conformation that is slightly narrowed and rigidified. On the other hand, MD simulations indicate that the constricted conformation can nonetheless be stably established in the mutant channel. Together, these findings suggest that the Kv-like KcsA mutant may be associated with different modes of C-type inactivation, showing that distinct filter environments entail distinct C-type inactivation mechanisms.
Collapse
|
17
|
Öster C, Tekwani Movellan K, Goold B, Hendriks K, Lange S, Becker S, de Groot BL, Kopec W, Andreas LB, Lange A. Direct Detection of Bound Ammonium Ions in the Selectivity Filter of Ion Channels by Solid-State NMR. J Am Chem Soc 2022; 144:4147-4157. [PMID: 35200002 PMCID: PMC8915258 DOI: 10.1021/jacs.1c13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/16/2023]
Abstract
The flow of ions across cell membranes facilitated by ion channels is an important function for all living cells. Despite the huge amount of structural data provided by crystallography, elucidating the exact interactions between the selectivity filter atoms and bound ions is challenging. Here, we detect bound 15N-labeled ammonium ions as a mimic for potassium ions in ion channels using solid-state NMR under near-native conditions. The non-selective ion channel NaK showed two ammonium peaks corresponding to its two ion binding sites, while its potassium-selective mutant NaK2K that has a signature potassium-selective selectivity filter with four ion binding sites gave rise to four ammonium peaks. Ions bound in specific ion binding sites were identified based on magnetization transfer between the ions and carbon atoms in the selectivity filters. Magnetization transfer between bound ions and water molecules revealed that only one out of four ions in the selectivity filter of NaK2K is in close contact with water, which is in agreement with the direct knock-on ion conduction mechanism where ions are conducted through the channel by means of direct interactions without water molecules in between. Interestingly, the potassium-selective ion channels investigated here (NaK2K and, additionally, KcsA-Kv1.3) showed remarkably different chemical shifts for their bound ions, despite having identical amino acid sequences and crystal structures of their selectivity filters. Molecular dynamics simulations show similar ion binding and conduction behavior between ammonium and potassium ions and identify the origin of the differences between the investigated potassium channels.
Collapse
Affiliation(s)
- Carl Öster
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Kumar Tekwani Movellan
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Benjamin Goold
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, SO17 1BJ Southampton, U.K.
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kitty Hendriks
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sascha Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stefan Becker
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Wojciech Kopec
- Computational
Biomolecular Dynamics Group, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Loren B. Andreas
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Department
of Molecular Biophysics, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Institut
für Biologie, Humboldt-Universität
zu Berlin, Invalidenstr.
42, 10115 Berlin, Germany
| |
Collapse
|
18
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
19
|
Hendriks K, Öster C, Lange A. Structural Plasticity of the Selectivity Filter in Cation Channels. Front Physiol 2021; 12:792958. [PMID: 34950061 PMCID: PMC8689586 DOI: 10.3389/fphys.2021.792958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.
Collapse
Affiliation(s)
- Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Chen IS, Eldstrom J, Fedida D, Kubo Y. A novel ion conducting route besides the central pore in an inherited mutant of G-protein-gated inwardly rectifying K + channel. J Physiol 2021; 600:603-622. [PMID: 34881429 DOI: 10.1113/jp282430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023] Open
Abstract
G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important physiological roles in various organs. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited GIRK mutants. By the two-electrode voltage-clamp analysis of GIRK mutants heterologously expressed in Xenopus oocytes, we observed that Kir3.2 G156S permeates Li+ better than Rb+ , while T154del or L173R of Kir3.2 and T158A of Kir3.4 permeate Rb+ better than Li+ , suggesting a unique conformational change in the G156S mutant. Applications of blockers of the selectivity filter (SF) pathway, Ba2+ or Tertiapin-Q (TPN-Q), remarkably increased the Li+ -selectivity of Kir3.2 G156S but did not alter those of the other mutants. In single-channel recordings of Kir3.2 G156S expressed in mouse fibroblasts, two types of events were observed, one attributable to a TPN-Q-sensitive K+ current and the second a TPN-Q-resistant Li+ current. The results show that a novel Li+ -permeable and blocker-resistant pathway exists in G156S in addition to the SF pathway. Mutations in the pore helix, S148F and T151A also induced high Li+ permeation. Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations. KEY POINTS: G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important roles in controlling excitation of cells in various organs, such as the brain and the heart. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited mutants of Kir3.2 and Kir3.4. Here we show that a novel Na+ , Li+ -permeable and blocker-resistant pathway exists in an inherited mutant, Kir3.2 G156S, in addition to the conventional ion conducting pathway formed by the selectivity filter (SF). Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations.
Collapse
Affiliation(s)
- I-Shan Chen
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.,Department of Pharmacology, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
21
|
Lewis A, Kurauskas V, Tonelli M, Henzler-Wildman K. Ion-dependent structure, dynamics, and allosteric coupling in a non-selective cation channel. Nat Commun 2021; 12:6225. [PMID: 34711838 PMCID: PMC8553846 DOI: 10.1038/s41467-021-26538-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
The selectivity filter (SF) determines which ions are efficiently conducted through ion channel pores. NaK is a non-selective cation channel that conducts Na+ and K+ with equal efficiency. Crystal structures of NaK suggested a rigid SF structure, but later solid-state NMR and MD simulations questioned this interpretation. Here, we use solution NMR to characterize how bound Na+ vs. K+ affects NaK SF structure and dynamics. We find that the extracellular end of the SF is flexible on the ps-ns timescale regardless of bound ion. On a slower timescale, we observe a structural change between the Na+ and K+-bound states, accompanied by increased structural heterogeneity in Na+. We also show direct evidence that the SF structure is communicated to the pore via I88 on the M2 helix. These results support a dynamic SF with multiple conformations involved in non-selective conduction. Our data also demonstrate allosteric coupling between the SF and pore-lining helices in a non-selective cation channel that is analogous to the allosteric coupling previously demonstrated for K+-selective channels, supporting the generality of this model. NaK is a bacterial non-selective cation channel. Here, the authors use solution NMR to show that selectivity filter (SF) in NaK is dynamic, with structural differences between the Na+ and K + -bound states. The conformation of the SF is communicated to the pore-lining helices similarly as in the K + -selective channels.
Collapse
Affiliation(s)
- Adam Lewis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Vilius Kurauskas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
22
|
Zhang S, Cheng M, Dhinakaran MK, Sun Y, Li H. Enantioselective Antiport in Asymmetric Nanochannels. ACS NANO 2021; 15:13148-13154. [PMID: 34319088 DOI: 10.1021/acsnano.1c02630] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enantioselective sensing and separation are major challenges. Nanochannel technologies are energy-saving and efficient for membrane separation. Herein, inspired by biological antiporter proteins, artificial nanochannels with antiporter behavior were fabricated for chiral sensing and separation. Tyrosine enantiomers were incorporated into hourglass-shaped nanochannels via stepwise modifications to fabricating multiligand-modified asymmetric channels. Chiral distinction of naproxen enantiomers was amplified in the l-Tyr/d-Tyr channels, with an enantioselectivity coefficient of 524, which was over 100-fold that of one-ligand-modified nanochannels. Furthermore, transport experiments evidenced the spontaneous antiport of naproxen enantiomers in the l-Tyr/d-Tyr channels. The racemic naproxen sample was separated via the chiral antiport process, with an enantiomeric excess of 71.2%. Further analysis using electro-osmotic flow experiments and finite-element simulations confirmed that the asymmetric modified multiligand was key to achieving separation of the naproxen enantiomers. We expect these multiligand-modified asymmetric nanochannels to provide insight into mimicking biological antiporter systems and offer an approach to energy-efficient and robust enantiomer separation.
Collapse
Affiliation(s)
- Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, People's Republic of China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, People's Republic of China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, People's Republic of China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin 300387, People's Republic of China
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, People's Republic of China
| |
Collapse
|
23
|
Abstract
Fast excitatory synaptic transmission in the central nervous system relies on the AMPA-type glutamate receptor (AMPAR). This receptor incorporates a nonselective cation channel, which is opened by the binding of glutamate. Although the open pore structure has recently became available from cryo-electron microscopy (Cryo-EM), the molecular mechanisms governing cation permeability in AMPA receptors are not understood. Here, we combined microsecond molecular dynamic (MD) simulations on a putative open-state structure of GluA2 with electrophysiology on cloned channels to elucidate ion permeation mechanisms. Na+, K+, and Cs+ permeated at physiological rates, consistent with a structure that represents a true open state. A single major ion binding site for Na+ and K+ in the pore represents the simplest selectivity filter (SF) structure for any tetrameric cation channel of known structure. The minimal SF comprised only Q586 and Q587, and other residues on the cytoplasmic side formed a water-filled cavity with a cone shape that lacked major interactions with ions. We observed that Cl- readily enters the upper pore, explaining anion permeation in the RNA-edited (Q586R) form of GluA2. A permissive architecture of the SF accommodated different alkali metals in distinct solvation states to allow rapid, nonselective cation permeation and copermeation by water. Simulations suggested Cs+ uses two equally populated ion binding sites in the filter, and we confirmed with electrophysiology of GluA2 that Cs+ is slightly more permeant than Na+, consistent with serial binding sites preferentially driving selectivity.
Collapse
|
24
|
Cai X, Liu L, Qiu C, Wen C, He Y, Cui Y, Li S, Zhang X, Zhang L, Tian C, Bi L, Zhou ZH, Gong W. Identification and architecture of a putative secretion tube across mycobacterial outer envelope. SCIENCE ADVANCES 2021; 7:7/34/eabg5656. [PMID: 34417177 PMCID: PMC8378821 DOI: 10.1126/sciadv.abg5656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Tuberculosis-causing mycobacteria have thick cell-wall and capsule layers that are formed from complex structures. Protein secretion across these barriers depends on a specialized protein secretion system, but none has been reported. We show that Mycobacterium tuberculosis Rv3705c and its homologous MSMEG_6251 in Mycobacterium smegmatis are tube-forming proteins in the mycobacterial envelope (TiME). Crystallographic and cryo-EM structures of these two proteins show that both proteins form rotationally symmetric rings. Two layers of TiME rings pack together in a tail-to-tail manner into a ring-shaped complex, which, in turn, stacks together to form tubes. M. smegmatis TiME was detected mainly in the cell wall and capsule. Knocking out the TiME gene markedly decreased the amount of secreted protein in the M. smegmatis culture medium, and expression of this gene in knocked-out strain partially restored the level of secreted protein. Our structure and functional data thus suggest that TiME forms a protein transport tube across the mycobacterial outer envelope.
Collapse
Affiliation(s)
- Xiaoying Cai
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunhong Qiu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chongzheng Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao He
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Siyu Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuan Zhang
- Institute of Health Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Longhua Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Changlin Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lijun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Weimin Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
25
|
Saponaro A, Bauer D, Giese MH, Swuec P, Porro A, Gasparri F, Sharifzadeh AS, Chaves-Sanjuan A, Alberio L, Parisi G, Cerutti G, Clarke OB, Hamacher K, Colecraft HM, Mancia F, Hendrickson WA, Siegelbaum SA, DiFrancesco D, Bolognesi M, Thiel G, Santoro B, Moroni A. Gating movements and ion permeation in HCN4 pacemaker channels. Mol Cell 2021; 81:2929-2943.e6. [PMID: 34166608 PMCID: PMC8294335 DOI: 10.1016/j.molcel.2021.05.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 10/31/2022]
Abstract
The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniel Bauer
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - M Hunter Giese
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Paolo Swuec
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | | | | | | | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | - Laura Alberio
- Department of Biosciences, University of Milan, Milan, Italy; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giacomo Parisi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gabriele Cerutti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Kay Hamacher
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Wayne A Hendrickson
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Dario DiFrancesco
- Department of Biosciences, University of Milan, Milan, Italy; Institute of Biophysics-Milano, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA.
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy; Institute of Biophysics-Milano, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
26
|
Hendriks K, Öster C, Shi C, Sun H, Lange A. Sodium Ions Do Not Stabilize the Selectivity Filter of a Potassium Channel. J Mol Biol 2021; 433:167091. [PMID: 34090923 DOI: 10.1016/j.jmb.2021.167091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022]
Abstract
Ion conduction is an essential function for electrical activity in all organisms. The non-selective ion channel NaK was previously shown to adopt two stable conformations of the selectivity filter. Here, we present solid-state NMR measurements of NaK demonstrating a population shift between these conformations induced by changing the ions in the sample while the overall structure of NaK is not affected. We show that two K+-selective mutants (NaK2K and NaK2K-Y66F) suffer a complete loss of selectivity filter stability under Na+ conditions, but do not collapse into a defined structure. Widespread chemical shift perturbations are seen between the Na+ and K+ states of the K+-selective mutants in the region of the pore helix indicating structural changes. We conclude that the stronger link between the selectivity filter and the pore helix in the K+-selective mutants, compared to the non-selective wild-type NaK channel, reduces the ion-dependent conformational flexibility of the selectivity filter.
Collapse
Affiliation(s)
- Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany; Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Huangshan Road 443, Hefei 230027, China
| | - Han Sun
- Structural Chemistry and Computational Biophysics Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany.
| |
Collapse
|
27
|
Roy RN, Hendriks K, Kopec W, Abdolvand S, Weiss KL, de Groot BL, Lange A, Sun H, Coates L. Structural plasticity of the selectivity filter in a nonselective ion channel. IUCRJ 2021; 8:421-430. [PMID: 33953928 PMCID: PMC8086165 DOI: 10.1107/s205225252100213x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The sodium potassium ion channel (NaK) is a nonselective ion channel that conducts both sodium and potassium across the cellular membrane. A new crystallographic structure of NaK reveals conformational differences in the residues that make up the selectivity filter between the four subunits that form the ion channel and the inner helix of the ion channel. The crystallographic structure also identifies a side-entry, ion-conduction pathway for Na+ permeation that is unique to NaK. NMR studies and molecular dynamics simulations confirmed the dynamical nature of the top part of the selectivity filter and the inner helix in NaK as also observed in the crystal structure. Taken together, these results indicate that the structural plasticity of the selectivity filter combined with the dynamics of the inner helix of NaK are vital for the efficient conduction of different ions through the non-selective ion channel of NaK.
Collapse
Affiliation(s)
- Raktim N. Roy
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Saeid Abdolvand
- Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Bert L. de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Han Sun
- Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
28
|
Mironenko A, Zachariae U, de Groot BL, Kopec W. The Persistent Question of Potassium Channel Permeation Mechanisms. J Mol Biol 2021; 433:167002. [PMID: 33891905 DOI: 10.1016/j.jmb.2021.167002] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/09/2023]
Abstract
Potassium channels play critical roles in many physiological processes, providing a selective permeation route for K+ ions in and out of a cell, by employing a carefully designed selectivity filter, evolutionarily conserved from viruses to mammals. The structure of the selectivity filter was determined at atomic resolution by x-ray crystallography, showing a tight coordination of desolvated K+ ions by the channel. However, the molecular mechanism of K+ ions permeation through potassium channels remains unclear, with structural, functional and computational studies often providing conflicting data and interpretations. In this review, we will present the proposed mechanisms, discuss their origins, and will critically assess them against all available data. General properties shared by all potassium channels are introduced first, followed by the introduction of two main mechanisms of ion permeation: soft and direct knock-on. Then, we will discuss critical computational and experimental studies that shaped the field. We will especially focus on molecular dynamics (MD) simulations, that provided mechanistic and energetic aspects of K+ permeation, but at the same time created long-standing controversies. Further challenges and possible solutions are presented as well.
Collapse
Affiliation(s)
- Andrei Mironenko
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
29
|
Zhang X, Zhang Y, Tang S, Ma S, Shen Y, Chen Y, Tong Q, Li Y, Yang J. Hydrophobic Gate of Mechanosensitive Channel of Large Conductance in Lipid Bilayers Revealed by Solid-State NMR Spectroscopy. J Phys Chem B 2021; 125:2477-2490. [DOI: 10.1021/acs.jpcb.0c07487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xuning Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siyang Tang
- Children’s Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shaojie Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Yanke Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Tong
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuezhou Li
- Children’s Hospital and Department of Biophysics, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
30
|
Abstract
Potassium channels are present in every living cell and essential to setting up a stable, non-zero transmembrane electrostatic potential which manifests the off-equilibrium livelihood of the cell. They are involved in other cellular activities and regulation, such as the controlled release of hormones, the activation of T-cells for immune response, the firing of action potential in muscle cells and neurons, etc. Pharmacological reagents targeting potassium channels are important for treating various human diseases linked to dysfunction of the channels. High-resolution structures of these channels are very useful tools for delineating the detailed chemical basis underlying channel functions and for structure-based design and optimization of their pharmacological and pharmaceutical agents. Structural studies of potassium channels have revolutionized biophysical understandings of key concepts in the field - ion selectivity, conduction, channel gating, and modulation, making them multi-modality targets of pharmacological regulation. In this chapter, I will select a few high-resolution structures to illustrate key structural insights, proposed allostery behind channel functions, disagreements still open to debate, and channel-lipid interactions and co-evolution. The known structural consensus allows the inference of conserved molecular mechanisms shared among subfamilies of K+ channels and makes it possible to develop channel-specific pharmaceutical agents.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Laboratory of Molecular Physiology and Biophysics and the Cryo-EM Center, Hauptmann-Woodward Medical Research Institute, Buffalo, NY, USA.
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
- Departments of Materials Design and Invention and Physiology and Biophysics, University of Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|
31
|
Abstract
A helium atom superfluid was originally discovered by Kapitsa and Allen. Biological channels in such a fluid allow ultrafast molecule and ion transport, defined as a quantum-confined superfluid (QSF). In the process of enzymatic biosynthesis, unique performances can be achieved with high flux, 100% selectivity and low reaction activation energy at room temperature, under atmospheric pressure in an aqueous environment. Such reactions are considered as QSF reactions. In this perspective, we introduce the concept of QSF reactions in artificial systems. Through designing the channel size at the van der Waals equilibrium distance (r0) for molecules or the Debye length (λD) for ions, and arranging the reactants orderly in the channel to satisfy symmetry-matching principles, QSF reactions in artificial systems can be realized with high flux, 100% selectivity and low reaction activation energy. Several types of QSF-like molecular reactions are summarized, including quantum-confined polymerizations, quasi-superfluid-based reactions and superfluid-based molecular reactions, followed by the discussion of QSF ion redox reactions. We envision in the future that chemical engineering, based on multi-step QSF reactions, and a tubular reactor with continuous nanochannel membranes taking advantage of high flux, high selectivity and low energy consumption, will replace the traditional tower reactor, and bring revolutionary technology to both chemistry and chemical engineering. The concept of quantum-confined superfluid reactions is introduced into artificial systems, which is expected to be useful in future chemical engineering.![]()
Collapse
Affiliation(s)
- Yuwei Hao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China
| | - Shuai Pang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiqi Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100191 P. R. China .,CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,School of Future Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
32
|
HCN2 activation modulation: An electrophysiological and molecular study of the well-preserved LCI sequence in the pore channel. Arch Biochem Biophys 2020; 689:108436. [DOI: 10.1016/j.abb.2020.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
|
33
|
Hoffmann J, Ruta J, Shi C, Hendriks K, Chevelkov V, Franks WT, Oschkinat H, Giller K, Becker S, Lange A. Protein resonance assignment by BSH-CP-based 3D solid-state NMR experiments: A practical guide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:445-465. [PMID: 31691361 DOI: 10.1002/mrc.4945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/05/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Solid-state NMR (ssNMR) spectroscopy has evolved into a powerful method to obtain structural information and to study the dynamics of proteins at atomic resolution and under physiological conditions. The method is especially well suited to investigate insoluble and noncrystalline proteins that cannot be investigated easily by X-ray crystallography or solution NMR. To allow for detailed analysis of ssNMR data, the assignment of resonances to the protein atoms is essential. For this purpose, a set of three-dimensional (3D) spectra needs to be acquired. Band-selective homo-nuclear cross-polarization (BSH-CP) is an effective method for magnetization transfer between carbonyl carbon (CO) and alpha carbon (CA) atoms, which is an important transfer step in multidimensional ssNMR experiments. This tutorial describes the detailed procedure for the chemical shift assignment of the backbone atoms of 13 C-15 N-labeled proteins by BSH-CP-based 13 C-detected ssNMR experiments. A set of six 3D experiments is used for unambiguous assignment of the protein backbone as well as certain side-chain resonances. The tutorial especially addresses scientists with little experience in the field of ssNMR and provides all the necessary information for protein assignment in an efficient, time-saving approach.
Collapse
Affiliation(s)
- Jutta Hoffmann
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Julia Ruta
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - W Trent Franks
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Hartmut Oschkinat
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
34
|
Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. J Am Chem Soc 2019; 141:19888-19901. [DOI: 10.1021/jacs.9b11195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Öster C, Hendriks K, Kopec W, Chevelkov V, Shi C, Michl D, Lange S, Sun H, de Groot BL, Lange A. The conduction pathway of potassium channels is water free under physiological conditions. SCIENCE ADVANCES 2019; 5:eaaw6756. [PMID: 31392272 PMCID: PMC6669007 DOI: 10.1126/sciadv.aaw6756] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism.
Collapse
Affiliation(s)
- Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Wojciech Kopec
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Dagmar Michl
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Han Sun
- Section Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Bert L. de Groot
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
36
|
Zhang X, Liu H, Jiang L. Wettability and Applications of Nanochannels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804508. [PMID: 30345614 DOI: 10.1002/adma.201804508] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 07/30/2018] [Indexed: 05/27/2023]
Abstract
Wettability in nanochannels is of great importance for understanding many challenging problems in interface chemistry and fluid mechanics, and presents versatile applications including mass transport, catalysis, chemical reaction, nanofabrication, batteries, and separation. Recently, both molecular dynamic simulations and experimental measurements have been employed to study wettability in nanochannels. Here, wettability in three types of nanochannels comprising 1D nanochannels, 2D nanochannels, and 3D nanochannels is summarized both theoretically and experimentally. The proposed concept of "quantum-confined superfluid" for ultrafast mass transport in nanochannels is first introduced, and the mostly studied 1D nanochannels are reviewed from molecular simulation to water wettability, followed by reversible switching of water wettability via external stimuli (temperature and voltage). Liquid transport and two confinement strategies in nanochannels of melt wetting and liquid wetting are also included. Then, molecular simulation, water wettability, liquid transport, and confinement in nanochannels are introduced for 2D nanochannels and 3D nanochannels, respectively. Based on the wettability in nanochannels, broad applications of various nanochannels are presented. Finally, the perspective for future challenges in the wettability and applications of nanochannels is discussed.
Collapse
Affiliation(s)
- Xiqi Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongliang Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
37
|
Jekhmane S, Medeiros-Silva J, Li J, Kümmerer F, Müller-Hermes C, Baldus M, Roux B, Weingarth M. Shifts in the selectivity filter dynamics cause modal gating in K + channels. Nat Commun 2019; 10:123. [PMID: 30631074 PMCID: PMC6328603 DOI: 10.1038/s41467-018-07973-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023] Open
Abstract
Spontaneous activity shifts at constant experimental conditions represent a widespread regulatory mechanism in ion channels. The molecular origins of these modal gating shifts are poorly understood. In the K+ channel KcsA, a multitude of fast activity shifts that emulate the native modal gating behaviour can be triggered by point-mutations in the hydrogen bonding network that controls the selectivity filter. Using solid-state NMR and molecular dynamics simulations in a variety of KcsA mutants, here we show that modal gating shifts in K+ channels are associated with important changes in the channel dynamics that strongly perturb the selectivity filter equilibrium conformation. Furthermore, our study reveals a drastically different motional and conformational selectivity filter landscape in a mutant that mimics voltage-gated K+ channels, which provides a foundation for an improved understanding of eukaryotic K+ channels. Altogether, our results provide a high-resolution perspective on some of the complex functional behaviour of K+ channels.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Jing Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E57th Street, Chicago, IL, 60637, USA
| | - Felix Kümmerer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Christoph Müller-Hermes
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E57th Street, Chicago, IL, 60637, USA
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands.
| |
Collapse
|
38
|
Kopec W, Köpfer DA, Vickery ON, Bondarenko AS, Jansen TLC, de Groot BL, Zachariae U. Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels. Nat Chem 2018; 10:813-820. [DOI: 10.1038/s41557-018-0105-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/15/2018] [Indexed: 01/26/2023]
|