1
|
Guest RV, Goeppert B, Nault JC, Sia D. Morphomolecular Pathology and Genomic Insights into the Cells of Origin of Cholangiocarcinoma and Combined Hepatocellular-Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00357-2. [PMID: 39341365 DOI: 10.1016/j.ajpath.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Cholangiocarcinomas are a highly heterogeneous group of malignancies that, despite recent progress in the understanding of their molecular pathogenesis and clinical management, continue to pose a major challenge to public health. The traditional view posits that cholangiocarcinomas derive from the neoplastic transformation of cholangiocytes lining the biliary tree. However, increasing genetic and experimental evidence has recently pointed to a more complex, and nuanced, scenario for the potential cell of origin of cholangiocarcinomas. Hepatocytes as well as hepatic stem/progenitor cells are being considered as additional potential sources, depending on microenvironmental contexts, including liver injury. The hypothesis of potentially diverse cells of origin for cholangiocarcinoma, albeit controversial, is certainly not surprising given the plasticity of the cells populating the liver as well as the existence of liver cancer subtypes with mixed histologic and molecular features. This review carefully examines the current pathologic, genomic, and experimental evidence supporting the existence of multiple cells of origin of liver and biliary tract cancers, with particular focus on cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma.
Collapse
Affiliation(s)
- Rachel V Guest
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Team "Functional Genomics of Solid Tumors", Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France; Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Daniela Sia
- Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
2
|
Jiang C, Qin F, Yan J, Zou J, Wang H, Zhang H, Feng X, Hou G. Tumor burden score is superior to primary liver cancer stages in predicting prognosis for patients with combined hepatocellular-cholangiocarcinoma after surgery: A multi-center study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108610. [PMID: 39213695 DOI: 10.1016/j.ejso.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is poorly understood, while the predictive value of the staging in which it is included is controversial. METHODS Patients with cHCC-CCA underwent radical hepatectomy in two medical centers in China were enrolled and staged based on optimal cut-off values of tumor burden score (TBS), determined using the X-Tile. The association between TBS and prognosis was evaluated by Cox proportional hazard models and Kaplan-Meier curves with Log-rank test. TBS model and primary liver cancer (PLC) stages were compared by discrimination, consistency, and clinical utility, which were further validated by a 5-folds cross-validation. RESULTS A total of 192 patients were stratified into low, medium, and high TBS, comprising 92, 51 and 49 patients, respectively. Prognoses worsened with elevated TBS in both the training and validation cohorts. TBS was not only an independent prognostic indicator in univariate and multivariate cox regression, but also a stable risk factor in subgroup analysis according to baseline variables. TBS exhibited best discrimination within these predictive models, as evidenced by the highest c-index and area under curve values of time-dependent receiver operating curves within 5 years post-surgery. TBS calibration plots revealed favorable consistency between prediction and observation. Decision curve analysis suggested higher net benefits for TBS. A 5-folds cross-validation revealed consistent results. CONCLUSIONS TBS could be applied to stratify cHCC-CCA patients after surgery into groups with statistically different prognoses. Moreover, TBS exhibited optimal prognostic value over all available PLC stages and may inform clinical decisions.
Collapse
Affiliation(s)
- Chuang Jiang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fangying Qin
- Department of Emergency, 363 Hospital, Chengdu, 610041, China
| | - Jiaxin Yan
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jing Zou
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Haiqing Wang
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Hui Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Xielin Feng
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Guimin Hou
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhang M, Chen H, Liu H, Tang H. The impact of integrated hepatitis B virus DNA on oncogenesis and antiviral therapy. Biomark Res 2024; 12:84. [PMID: 39148134 PMCID: PMC11328401 DOI: 10.1186/s40364-024-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 08/17/2024] Open
Abstract
The global burden of hepatitis B virus (HBV) infection remains high, with chronic hepatitis B (CHB) patients facing a significantly increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). The ultimate objective of antiviral therapy is to achieve a sterilizing cure for HBV. This necessitates the elimination of intrahepatic covalently closed circular DNA (cccDNA) and the complete eradication of integrated HBV DNA. This review aims to summarize the oncogenetic role of HBV integration and the significance of clearing HBV integration in sterilizing cure. It specifically focuses on the molecular mechanisms through which HBV integration leads to HCC, including modulation of the expression of proto-oncogenes and tumor suppressor genes, induction of chromosomal instability, and expression of truncated mutant HBV proteins. The review also highlights the impact of antiviral therapy in reducing HBV integration and preventing HBV-related HCC. Additionally, the review offers insights into future objectives for the treatment of CHB. Current strategies for HBV DNA integration inhibition and elimination include mainly antiviral therapies, RNA interference and gene editing technologies. Overall, HBV integration deserves further investigation and can potentially serve as a biomarker for CHB and HBV-related HCC.
Collapse
Affiliation(s)
- Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Li Y, Xun Z, Long J, Sun H, Yang X, Wang Y, Wang Y, Xue J, Zhang N, Zhang J, Bian J, Shi J, Yang X, Wang H, Zhao H. Immunosuppression and phenotypic plasticity in an atlas of human hepatocholangiocarcinoma. Hepatobiliary Surg Nutr 2024; 13:586-603. [PMID: 39175731 PMCID: PMC11336540 DOI: 10.21037/hbsn-23-400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 08/24/2024]
Abstract
Background Hepatocholangiocarcinoma (H-ChC) has the clinicopathological features of both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA) and is a more aggressive subtype of primary hepatic carcinoma than HCC or iCCA. Methods We sequenced 91,112 single-cell transcriptomes from 16 human samples to elucidate the molecular mechanisms underlying the coexistence of HCC and iCCA components in H-ChC. Results We observed two molecular subtypes of H-ChC at the whole-transcriptome level (CHP and CIP), where a metabolically active tumour cell subpopulation enriched in CHP was characterized by a cellular pre-differentiation property. To define the heterogeneity of tumours and their associated microenvironments, we observe greater tumour diversity in H-ChC than HCC and iCCA. H-ChC exhibits weaker immune cell infiltration and greater CD8+ exhausted T cell (Tex) dysfunction than HCC and iCCA. Then we defined two broad cell states of 6,852 CD8+ Tex cells: GZMK+ CD8+ Tex cells and terminal CD8+ Tex cells. GZMK+ CD8+ Tex cells exhibited higher infiltration of after treatment in H-ChC, the effector scores and expression of the immune checkpoints of them greatly increased after immunotherapy, which indicated that H-ChC might be more sensitive than HCC or iCCA to immunotherapy. Conclusions In this paper, H-ChC was explored, hoping to contribute to the study of mixed tumours in other cancers.
Collapse
Affiliation(s)
- Yiran Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ziyu Xun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Junyu Long
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Huishan Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xu Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yanyu Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yunchao Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jingnan Xue
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Nan Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Junwei Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jin Bian
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jie Shi
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaobo Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haitao Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
5
|
Vij M, Veerankutty FH, Rammohan A, Rela M. Combined hepatocellular cholangiocarcinoma: A clinicopathological update. World J Hepatol 2024; 16:766-775. [PMID: 38818284 PMCID: PMC11135265 DOI: 10.4254/wjh.v16.i5.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer associated with an appalling prognosis. The diagnosis and management of this entity have been challenging to physicians, radiologists, surgeons, pathologists, and oncologists alike. The diagnostic and prognostic value of biomarkers such as the immunohistochemical expression of nestin, a progenitor cell marker, have been explored recently. With a better understanding of biology and the clinical course of cHCC-CCA, newer treatment modalities like immune checkpoint inhibitors are being tried to improve the survival of patients with this rare disease. In this review, we give an account of the recent developments in the pathology, diagnostic approach, and management of cHCC-CCA.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Institute of Liver Disease and Transplantation, Chennai 600044, India
| | - Fadl H Veerankutty
- Comprehensive Liver Care Institute, VPS Lakeshore, Cochin 682040, India
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Chennai 600044, India.
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Chennai 600044, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr. Rela Institute and Medical Centre, Chennai 600044, India
| |
Collapse
|
6
|
Guo J, Yan W, Duan H, Wang D, Zhou Y, Feng D, Zheng Y, Zhou S, Liu G, Qin X. Therapeutic Effects of Natural Products on Liver Cancer and Their Potential Mechanisms. Nutrients 2024; 16:1642. [PMID: 38892575 PMCID: PMC11174683 DOI: 10.3390/nu16111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Liver cancer ranks third globally among causes of cancer-related deaths, posing a significant public health challenge. However, current treatments are inadequate, prompting a growing demand for novel, safe, and effective therapies. Natural products (NPs) have emerged as promising candidates in drug development due to their diverse biological activities, low toxicity, and minimal side effects. This paper begins by reviewing existing treatment methods and drugs for liver cancer. It then summarizes the therapeutic effects of NPs sourced from various origins on liver cancer. Finally, we analyze the potential mechanisms of NPs in treating liver cancer, including inhibition of angiogenesis, migration, and invasion; regulation of the cell cycle; induction of apoptosis, autophagy, pyroptosis, and ferroptosis; influence on tumor metabolism; immune regulation; regulation of intestinal function; and regulation of key signaling pathways. This systematic review aims to provide a comprehensive overview of NPs research in liver cancer treatment, offering a foundation for further development and application in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Jinhong Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Wenjie Yan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Hao Duan
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Diandian Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Yaxi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Shiqi Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Gaigai Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.G.); (W.Y.); (H.D.); (D.W.); (Y.Z.); (S.Z.); (G.L.)
| | - Xia Qin
- Graduate Department, Beijing Union University, Beijing 100101, China
| |
Collapse
|
7
|
Zhang YZ, Liu YC, Su T, Shi JN, Huang Y, Liang B. Current advances and future directions in combined hepatocellular and cholangiocarcinoma. Gastroenterol Rep (Oxf) 2024; 12:goae031. [PMID: 38628397 PMCID: PMC11018545 DOI: 10.1093/gastro/goae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
The low incidence of combined hepatocellular cholangiocarcinoma (cHCC-CCA) is an important factor limiting research progression. Our study extensively included nearly three decades of relevant literature and assembled the most comprehensive database comprising 5,742 patients with cHCC-CCA. We summarized the characteristics, tumor markers, and clinical features of these patients. Additionally, we present the evolution of cHCC-CCA classification and explain the underlying rationale for these classification standards. We reviewed cHCC-CCA diagnostic advances using imaging features, tumor markers, and postoperative pathology, as well as treatment options such as surgical, adjuvant, and immune-targeted therapies. In addition, recent advances in more effective chemotherapeutic regimens and immune-targeted therapies were explored. Furthermore, we described the molecular mutation features and potential specific markers of cHCC-CCA. The prognostic value of Nestin has been proven, and we speculate that Nestin will also play a role in classification and diagnosis. However, further research is needed. Moreover, we believe that the possibility of using machine learning liquid biopsy for preoperative diagnosis and establishing a scoring system are directions for future research.
Collapse
Affiliation(s)
- Yu-Zhu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| | - Yu-Chen Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Tong Su
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| | - Jiang-Nan Shi
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| | - Yi Huang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
8
|
Ohni S, Yamaguchi H, Hirotani Y, Nakanishi Y, Midorikawa Y, Sugitani M, Nakayama T, Makishima M, Esumi M. Complex phenotypic heterogeneity of combined hepatocellular-cholangiocarcinoma with a homogenous TERT promoter mutation. Am J Transl Res 2024; 16:690-699. [PMID: 38463590 PMCID: PMC10918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
To clarify the mechanism underlying the development and poor prognosis of combined hepatocellular-cholangiocarcinoma (cHCC-CCA), we characterized liver cancer driver mutations and poor prognostic markers in both the HCC and intrahepatic CCA (iCCA) components of a cHCC-CCA tumor. The telomerase reverse transcriptase (TERT) promoter mutation C228T was quantified by digital polymerase chain reaction using DNA from multiple microdissected cancer components of a single cHCC-CCA nodule. The protein expression of cancer-related markers, including TERT, was examined by serial thin-section immunohistochemistry and double-staining immunofluorescence. TERT promoter mutation and TERT protein expression were detected in all cancer components but not in noncancer regions. TERT promoter mutation frequencies were similar among components; those of TERT protein-positive cancer cells were higher in iCCA and mixed components than in HCC. The frequencies of Ki67- and p53-positive cells were similarly higher in iCCA and mixed components than in HCC. However, double-positive cells for the three proteins were unexpectedly rare; single-positive cells dominated, indicating phenotypic microheterogeneity in cancer cells within a component. Interestingly, HCC and CCA marker protein immunohistochemistry suggested dedifferentiation of HCC and transdifferentiation from HCC to iCCA in HCC and iCCA components, respectively. Such phenotypic intercomponent heterogeneity and intracomponent microheterogeneity were detected in a tumor nodule of cHCC-CCA uniformly carrying the early HCC driver mutation. Moreover, poor prognostic markers were randomly expressed without a regular pattern, consistent with the poor prognosis.
Collapse
Affiliation(s)
- Sumie Ohni
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Hiromi Yamaguchi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| | - Yukari Hirotani
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Yutaka Midorikawa
- Department of Surgery, Nihon University School of Medicine Tokyo, Japan
| | - Masahiko Sugitani
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Clinical Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| | - Mariko Esumi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine Tokyo, Japan
| |
Collapse
|
9
|
Ding Q, Lin F, Huang Z, Li Y, Cai S, Chen X, Liu H, Qiu S. Non-coding RNA-related FCGBP downregulation in head and neck squamous cell carcinoma: a novel biomarker for predicting paclitaxel resistance and immunosuppressive microenvironment. Sci Rep 2024; 14:4426. [PMID: 38396056 PMCID: PMC10891054 DOI: 10.1038/s41598-024-55210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
In head and neck squamous cell carcinoma (HNSC), chemoresistance is a major reason for poor prognosis. Nevertheless, there is a lack of validated biomarkers to screen for patients for categorical chemotherapy. Fc gamma binding protein (FCGBP) is a mucus protein associated with mucosal epithelial cells and has immunological functions that protect against tumors and metastasis. However, the effect of FCGBP on HNSC is unclear. In pan-cancer tissues, the expression of FCGBP and the survival status of patients were analyzed using information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Correlation analysis and Cox regression analysis were conducted to confirm the relationship and survival outcome. Bioinformatics analysis was utilized to predict the probable upstream non-coding RNA. FCGBP functioned as a potential tumor suppressor gene in HNSC. Notably, FCGBP expression was negatively correlated with enriched tumor-infiltrating macrophages and paclitaxel resistance. Cox regression with gene, clinical, and immune factors showed that FCGBP was a risk factor acting in an independent manner. In HNSC, the utmost possibly upstream non-coding RNA-related pathway of FCGBP was also discovered to be the PART1/AC007728.2/LINC00885/hsa-miR-877-5p/FCGBP axis. According to the present study, non-coding RNA-related low levels of FCGBP are a prognostic indicator and are linked to an HNSC-related immunosuppressive state.
Collapse
Affiliation(s)
- Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Fengjie Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Zongwei Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Sunqin Cai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Hui Liu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| |
Collapse
|
10
|
Fujii M, Sekine S, Sato T. Decoding the basis of histological variation in human cancer. Nat Rev Cancer 2024; 24:141-158. [PMID: 38135758 DOI: 10.1038/s41568-023-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Tang C, Zhuang H, Tong H, Yu X, Chen J, Wang Q, Ma X, Wang B, Hua Y, Shang C, Tang Z. Identification of FOXP1 as a favorable prognostic biomarker and tumor suppressor in intrahepatic cholangiocarcinoma. BMC Cancer 2024; 24:137. [PMID: 38279090 PMCID: PMC10811915 DOI: 10.1186/s12885-024-11882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Forkhead-box protein P1 (FOXP1) has been proposed to have both oncogenic and tumor-suppressive properties, depending on tumor heterogeneity. However, the role of FOXP1 in intrahepatic cholangiocarcinoma (ICC) has not been previously reported. METHODS Immunohistochemistry was performed to detect FOXP1 expression in ICC and normal liver tissues. The relationship between FOXP1 levels and the clinicopathological characteristics of patients with ICC was evaluated. Finally, in vitro and in vivo experiments were conducted to examine the regulatory role of FOXP1 in ICC cells. RESULTS FOXP1 was significantly downregulated in the ICC compared to their peritumoral tissues (p < 0.01). The positive rates of FOXP1 were significantly lower in patients with poor differentiation, lymph node metastasis, invasion into surrounding organs, and advanced stages (p < 0.05). Notably, patients with FOXP1 positivity had better outcomes (overall survival) than those with FOXP1 negativity (p < 0.05), as revealed by Kaplan-Meier survival analysis. Moreover, Cox multivariate analysis showed that negative FOXP1 expression, advanced TNM stages, invasion, and lymph node metastasis were independent prognostic risk factors in patients with ICC. Lastly, overexpression of FOXP1 inhibited the proliferation, migration, and invasion of ICC cells and promoted apoptosis, whereas knockdown of FOXP1 had the opposite role. CONCLUSION Our findings suggest that FOXP1 may serve as a novel outcome predictor for ICC as well as a tumor suppressor that may contribute to cancer treatment.
Collapse
Affiliation(s)
- Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Huanjun Tong
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China
| | - Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China
| | - Jialu Chen
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China
| | - Qingbin Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Bingkun Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Yonglin Hua
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510220, Guangdong Province, China.
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200000, China.
| |
Collapse
|
12
|
Na HY, Kim JH, Kim H, Cho JY, Han HS, Jang ES, Kim JW, Jeong SH, Heo J, Kim JW, Kim JW, Ahn S. Multiregional analysis of combined hepatocellular-cholangiocarcinoma reveals histologic diversity and molecular clonality. Histopathology 2024; 84:402-408. [PMID: 37903726 DOI: 10.1111/his.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CC) is a rare type of liver tumour that exhibits both hepatocytic and biliary differentiation within the same tumour. The histology and genomic alterations of recurrent/metastatic cHCC-CC are poorly understood. We selected six patients with cHCC-CC whose recurrent or metastatic tumours were histologically confirmed. Four patients with classic cHCC-CCs and two with intermediate cell carcinomas (ICs) were included. The clinicopathological features were evaluated, and next-generation sequencing was performed in 17 multiregional and longitudinal tumour samples. The histology of recurrent/metastatic lesions of classic cHCC-CCs was variable: hepatocellular carcinoma (HCC) was observed in one (25.0%) patient, cHCC-CC in one (25.0%) patient, and cholangiocarcinoma (CC) in two (50.0%) patients. Among 13 samples from four classic cHCC-CC patients, the most frequent pathological variants were TP53 (46.2%), TERT promoter (38.5%), ARID1A mutations (23.1%), and MET amplification (30.8%). In the sequencing analysis of each HCC and CC component, three (75.0%) of the four classic cHCC-CCs shared pathogenic variants. A large proportion of mutations, both pathogenic and those of undetermined significance, were shared by each HCC and CC component. Regarding ICs, the ATM mutation was detected in one patient. In conclusion, the histology of recurrent/metastatic cHCC-CCs was heterogeneous. Genomic profiling of classic cHCC-CCs revealed similar genomic alterations to those of HCC. Considerable overlapping genomic alterations in each HCC and CC component were observed, suggesting a monoclonal origin. Genetic alterations in ICs were different from those in either HCC or CC, suggesting the distinct nature of this tumour.
Collapse
Affiliation(s)
- Hee Young Na
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jai Young Cho
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ho-Seong Han
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eun Sun Jang
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin-Wook Kim
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sook-Hyang Jeong
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jayoon Heo
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Ji-Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soomin Ahn
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Zhou PY, Zhou C, Gan W, Tang Z, Sun BY, Huang JL, Liu G, Liu WR, Tian MX, Jiang XF, Wang H, Tao CY, Fang Y, Qu WF, Huang R, Zhu GQ, Huang C, Fu XT, Ding ZB, Gao Q, Zhou J, Shi YH, Yi Y, Fan J, Qiu SJ. Single-cell and spatial architecture of primary liver cancer. Commun Biol 2023; 6:1181. [PMID: 37985711 PMCID: PMC10661180 DOI: 10.1038/s42003-023-05455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/12/2023] [Indexed: 11/22/2023] Open
Abstract
Primary liver cancer (PLC) poses a leading threat to human health, and its treatment options are limited. Meanwhile, the investigation of homogeneity and heterogeneity among PLCs remains challenging. Here, using single-cell RNA sequencing, spatial transcriptomic and bulk multi-omics, we elaborated a molecular architecture of 3 PLC types, namely hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC). Taking a high-resolution perspective, our observations revealed that CHC cells exhibit internally discordant phenotypes, whereas ICC and HCC exhibit distinct tumor-specific features. Specifically, ICC was found to be the primary source of cancer-associated fibroblasts, while HCC exhibited disrupted metabolism and greater individual heterogeneity of T cells. We further revealed a diversity of intermediate-state cells residing in the tumor-peritumor junctional zone, including a congregation of CPE+ intermediate-state endothelial cells (ECs), which harbored the molecular characteristics of tumor-associated ECs and normal ECs. This architecture offers insights into molecular characteristics of PLC microenvironment, and hints that the tumor-peritumor junctional zone could serve as a targeted region for precise therapeutical strategies.
Collapse
Affiliation(s)
- Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
- Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Wei Gan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jin-Long Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Gao Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Meng-Xin Tian
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Xi-Fei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Han Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Chen-Yang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Wei-Feng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Run Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
14
|
Sakata M, Kitada K, Omote R, Sonobe H, Utsumi M, Tokunaga N, Fushimi T, Nagao R, Sakata T, Kaneyoshi T, Toyokawa T, Inagaki M. Synchronous Double Primary Combined Hepatocellular-cholangiocarcinoma and Cholangiolocarcinoma in a Cirrhotic Liver. J Clin Transl Hepatol 2023; 11:991-997. [PMID: 37408806 PMCID: PMC10318272 DOI: 10.14218/jcth.2022.00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/09/2022] [Accepted: 01/04/2023] [Indexed: 07/07/2023] Open
Abstract
Both combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and cholangiolocarcinoma are rare primary liver cancers. cHCC-CCA is believed to originate from transformed hepatocellular carcinoma or liver stem/progenitor cells. Cholangiolocarcinoma is characterized by ductular reaction-like anastomosing cords and glands resembling cholangioles or canals containing hepatocellular carcinoma components and adenocarcinoma cells. According to the 2019 revision of the World Health Organization criteria, a subtype with stem cell features as a subclassification of cHCC-CCA was abolished for lack of conclusive evidence of the stem cell origin theory. That led to the classification of cholangiolocarcinoma with hepatocytic differentiation as cHCC-CCA. Consequently, cholangiolocarcinoma without hepatocytic differentiation is classified as a subtype of small-duct cholangiocarcinoma and is assumed to originate from the bile duct. Herein, we report the first case of double primary cHCC-CCA and cholangiolocarcinoma without hepatocytic differentiation in different hepatic segments of a cirrhotic liver. We believe this case supports the validity of the new World Health Organization criteria because the pathological finding of cHCC-CCA in this case shows the transformation of hepatocellular carcinoma to cholangiocarcinoma. Furthermore, this case may demonstrate that immature ductular cell stemness and mature hepatocyte cell stemness in hepatocarcinogenesis can coexist in the same environment. The results provide valuable insights into the mechanisms of growth, differentiation, and regulation of liver cancers.
Collapse
Affiliation(s)
- Masahiro Sakata
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Koji Kitada
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Rika Omote
- Department of Laboratory and Pathology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Hiroshi Sonobe
- Department of Laboratory and Pathology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Masashi Utsumi
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Naoyuki Tokunaga
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Takashi Fushimi
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Ryota Nagao
- Department of Radiology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Tatsuro Sakata
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Toshihiko Kaneyoshi
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Tatsuya Toyokawa
- Department of Gastroenterology and Hepatology, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| | - Masaru Inagaki
- Department of Surgery, National Hospital Organization, Fukuyama Medical Center, Fukuyama, Hiroshima, Japan
| |
Collapse
|
15
|
Gigante E, Cazier H, Albuquerque M, Laouirem S, Beaufrère A, Paradis V. MALDI Imaging, a Powerful Multiplex Approach to Decipher Intratumoral Heterogeneity: Combined Hepato-Cholangiocarcinomas as Proof of Concept. Cancers (Basel) 2023; 15:cancers15072143. [PMID: 37046807 PMCID: PMC10093162 DOI: 10.3390/cancers15072143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Combined hepato-cholangiocarcinomas (cHCC-CCA) belong to the spectrum of primary liver carcinomas, which include hepatocellular carcinomas (HCC) and intrahepatic cholangiocarcinomas (iCCA) at both ends of the spectrum. Mainly due to the high intratumor heterogeneity of cHCC-CCA, its diagnosis and pathological description remain challenging. Taking advantage of in situ non-targeted molecular mapping provided by MALDI (Matrix Assisted Laser Desorption Ionization) imaging, we sought to develop a multiscale and multiparametric morphological approach, integrating molecular and conventional pathological analysis. MALDI imaging was applied to five representative cases of resected cHCC-CCA. Principal component analysis and segmentations with MALDI imaging techniques identified areas related to either iCCA or HCC and also hidden tumor areas not visible microscopically. In addition, the overlap between MALDI segmentation and immunostaining provided a comprehensive description of cHCC-CCA tumor heterogeneity by identifying transitional and micro-metastatic areas. Moreover, a list of peptides derived from in silico digestion was obtained for each immunohistochemical marker and was matched within the peptide peak list acquired by MALDI. Comparison of immunostaining images with ions from in silico digestion revealed an accurate identification of iCCA and HCC areas. Our study provides further evidence on the performance of MALDI imaging in exploring intratumor heterogeneity and offering virtual multiplex immunostaining through a single acquisition.
Collapse
Affiliation(s)
- Elia Gigante
- Centre de Recherche sur L'inflammation, Inserm, Université Paris Cité, F-75018 Paris, France
- Service d’Hépato-Gastroentérologie et Cancérologie Digestive, Hôpital Robert Debré, F-51090 Reims, France
| | - Hélène Cazier
- Centre de Recherche sur L'inflammation, Inserm, Université Paris Cité, F-75018 Paris, France
- Plateforme iMAP, Centre de Recherche sur L'inflammation, Inserm, Université Paris Cité, F-75018 Paris, France
| | - Miguel Albuquerque
- Département de Pathologie, Assistance Publique-Hôpitaux de Paris, FHU MOSAIC, Hôpital Beaujon, F-92110 Clichy, France
| | - Samira Laouirem
- Centre de Recherche sur L'inflammation, Inserm, Université Paris Cité, F-75018 Paris, France
| | - Aurélie Beaufrère
- Centre de Recherche sur L'inflammation, Inserm, Université Paris Cité, F-75018 Paris, France
- Département de Pathologie, Assistance Publique-Hôpitaux de Paris, FHU MOSAIC, Hôpital Beaujon, F-92110 Clichy, France
| | - Valérie Paradis
- Centre de Recherche sur L'inflammation, Inserm, Université Paris Cité, F-75018 Paris, France
- Département de Pathologie, Assistance Publique-Hôpitaux de Paris, FHU MOSAIC, Hôpital Beaujon, F-92110 Clichy, France
| |
Collapse
|
16
|
Shen YT, Yue WW, Xu HX. Non-invasive imaging in the diagnosis of combined hepatocellular carcinoma and cholangiocarcinoma. Abdom Radiol (NY) 2023; 48:2019-2037. [PMID: 36961531 DOI: 10.1007/s00261-023-03879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CC) is a rare type of primary liver cancer. It is a complex "biphenotypic" tumor type consisting of bipotential hepatic progenitor cells that can differentiate into cholangiocytes subtype and hepatocytes subtype. The prognosis of patients with cHCC-CC is quite poor with its specific and more aggressive nature. Furthermore, there are no definite demographic or clinical features of cHCC-CC, thus a clear preoperative identification and accurate non-invasive imaging diagnostic analysis of cHCC-CC are of great value. In this review, we first summarized the epidemiological features, pathological findings, molecular biological information and serological indicators of cHCC-CC disease. Then we reviewed the important applications of non-invasive imaging modalities-particularly ultrasound (US)-in cHCC-CC, covering both diagnostic and prognostic assessment of patients with cHCC-CC. Finally, we presented the shortcomings and potential outlooks for imaging studies in cHCC-CC.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Wen-Wen Yue
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China.
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Jeong MH, Son T, Tae YK, Park CH, Lee HS, Chung MJ, Park JY, Castro CM, Weissleder R, Jo JH, Bang S, Im H. Plasmon-Enhanced Single Extracellular Vesicle Analysis for Cholangiocarcinoma Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205148. [PMID: 36698298 PMCID: PMC10015870 DOI: 10.1002/advs.202205148] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/01/2023] [Indexed: 05/20/2023]
Abstract
Cholangiocarcinoma (CCA) is a fatal disease often detected late in unresectable stages. Currently, there are no effective diagnostic methods or biomarkers to detect CCA early with high confidence. Analysis of tumor-derived extracellular vesicles (tEVs) harvested from liquid biopsies can provide a new opportunity to achieve this goal. Here, an advanced nanoplasmonic sensing technology is reported, termed FLEX (fluorescence-amplified extracellular vesicle sensing technology), for sensitive and robust single EV analysis. In the FLEX assay, EVs are captured on a plasmonic gold nanowell surface and immunolabeled for cancer-associated biomarkers to identify tEVs. The underlying plasmonic gold nanowell structures then amplify EVs' fluorescence signals, an effective amplification process at the single EV level. The FLEX EV analysis revealed a wide heterogeneity of tEVs and their marker levels. FLEX also detected small tEVs not detected by conventional EV fluorescence imaging due to weak signals. Tumor markers (MUC1, EGFR, and EPCAM) are identified in CCA, and this marker combination is applied to detect tEVs in clinical bile samples. The FLEX assay detected CCA with an area under the curve of 0.93, significantly better than current clinical markers. The sensitive and accurate nanoplasmonic EV sensing technology can aid in early CCA diagnosis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Taehwang Son
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Yoo Keung Tae
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Chan Hee Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hee Seung Lee
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Moon Jae Chung
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeong Youp Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| | - Jung Hyun Jo
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seungmin Bang
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
18
|
Zhao J, Stephan-Falkenau S, Schuler M, Arndt B. Management of Locally Advanced or Metastatic Combined Hepatocellular Cholangiocarcinoma. Cancers (Basel) 2023; 15:988. [PMID: 36765942 PMCID: PMC9913543 DOI: 10.3390/cancers15030988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Combined hepatocellular cholangiocarcinoma (cHCC-CC) is a rare primary liver malignancy that comprises features of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). Due to the rarity of this tumor, the treatment of choice has not yet been defined. For resectable disease, liver resection is the mainstay treatment. However, most patients relapse or display advanced disease and were not surgical candidates. Although the majority of patients are either primarily or secondarily treated in palliative intent, no guideline recommendations or prospective trial reports exist to allow reliable evaluation of debated treatment options. We review different locoregional or medical treatment options for advanced combined hepatocellular cholangiocarcinoma (cHCC-CC) in the neoadjuvant, adjuvant, or palliative setting and discuss the possibility of predictive biomarker-guided therapeutic options.
Collapse
Affiliation(s)
- Jemmy Zhao
- National Center of Tumor Diseases, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Susann Stephan-Falkenau
- Institute of Pathology, Medizinisches Versorgungszentrum am Helios Klinikum Emil von Behring, Walterhöferstr. 11, 14165 Berlin, Germany
| | - Markus Schuler
- Onkologischer Schwerpunkt am Oskar-Helene Heim, Clayallee 225a, 14195 Berlin, Germany
| | - Börge Arndt
- Department of Hematology and Oncology, Helios Klinikum Emil von Behring, Walterhöferstr. 11, 14165 Berlin, Germany
| |
Collapse
|
19
|
Testa U, Pelosi E, Castelli G. Cholangiocarcinoma: Molecular Abnormalities and Cells of Origin. Technol Cancer Res Treat 2023; 22:15330338221128689. [PMID: 36872875 PMCID: PMC9989414 DOI: 10.1177/15330338221128689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 03/07/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are a group of heterogeneous epithelial malignancies that can originate at the level of any location of the biliary tree. These tumors are relatively rare but associated with a high rate of mortality. CCAs are morphologically and molecularly heterogeneous and for their location can be distinguished as intracellular and extracellular, subdivided into perihilar and distal. Recent epidemiological, molecular, and cellular studies have supported that the consistent heterogeneity observed for CCAs may result from the convergence of various key elements mainly represented by risk factors, heterogeneity of the associated molecular abnormalities at genetic and epigenetic levels and by different potential cells of origin. These studies have consistently contributed to better defining the pathogenesis of CCAs and to identify in some instances new therapeutic targets. Although the therapeutic progress were still limited, these observations suggest that a better understanding of the molecular mechanisms underlying CCA in the future will help to develop more efficacious treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| |
Collapse
|
20
|
Anticancer Effect of Polyphyllin I in Suppressing Stem Cell-Like Properties of Hepatocellular Carcinoma via the AKT/GSK-3β/β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4031008. [PMID: 36317061 PMCID: PMC9617736 DOI: 10.1155/2022/4031008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
Abstract
Polyphyllin I (PPI), also called Chong Lou saponin I, is a steroidal saponin isolated from the rhizome of Paris polyphylla. PPI has been demonstrated to have strong anticancer activity. However, its effect on the stemness of liver cancer stem cells (LCSCs) is not completely understood. Herein, we aimed to investigate the effect of PPI on the stem cell-like features of LCSCs and hepatocellular carcinoma (HCC). LCSCs were enriched in a serum-free medium and treated with PPI, sorafenib (Sora), or PPI and Sora. Several endpoints, including spheroid formation and differentiation, cell proliferation, surface markers of LCSCs, PPI binding targets, and stemness-associated protein expression, were evaluated. Immunofluorescence staining, quantitative real-time polymerase chain reaction, siRNA transfection, and coimmunoprecipitation ubiquitination assays were conducted for in-depth mechanistic studies. Evaluation of in vivo antitumor efficacy demonstrated that PPI effectively inhibited the proliferation of liver cancer cells and the self-renewal and differentiation of LCSCs. Flow cytometry indicated that PPI suppressed the expression of the stem cell surface markers EpCAM and CD13. Molecular docking showed a high affinity between PPI and proteins of the Wnt/β-catenin signaling pathway, including AKT, GSK-3β, and β-catenin, with the binding energies of -5.51, -5.32, and -5.40 kcal/mol, respectively, which suggested that PPI might regulate the Wnt/β-catenin signaling pathway to affect the stem cell-like properties of HCC. Further ex vivo experiments implied that PPI activated the AKT/GSK-3β-mediated ubiquitin proteasomal degradation of β-catenin and subsequently attenuated the prooncogenic effect of LCSCs. Finally, the anticancer property of PPI was confirmed in vivo. It was found that PPI inhibited the tumor growth in an HCC cell line xenograft model. Taken together, molecular docking analysis and experimental data highlighted the novel function of PPI in suppressing the stem cell-like characteristics of LCSCs via the AKT/GSK-3β/β-catenin signaling pathway.
Collapse
|
21
|
Chen M, Wu GB, Xie ZW, Shi DL, Luo M. A novel diagnostic four-gene signature for hepatocellular carcinoma based on artificial neural network: Development, validation, and drug screening. Front Genet 2022; 13:942166. [PMID: 36246599 PMCID: PMC9554094 DOI: 10.3389/fgene.2022.942166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common cancers with high mortality in the world. HCC screening and diagnostic models are becoming effective strategies to reduce mortality and improve the overall survival (OS) of patients. Here, we expected to establish an effective novel diagnostic model based on new genes and explore potential drugs for HCC therapy. Methods: The gene expression data of HCC and normal samples (GSE14811, GSE60502, GSE84402, GSE101685, GSE102079, GSE113996, and GSE45436) were downloaded from the Gene Expression Omnibus (GEO) dataset. Bioinformatics analysis was performed to distinguish two differentially expressed genes (DEGs), diagnostic candidate genes, and functional enrichment pathways. QRT-PCR was used to validate the expression of diagnostic candidate genes. A diagnostic model based on candidate genes was established by an artificial neural network (ANN). Drug sensitivity analysis was used to explore potential drugs for HCC. CCK-8 assay was used to detect the viability of HepG2 under various presentative chemotherapy drugs. Results: There were 82 DEGs in cancer tissues compared to normal tissue. Protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and infiltrating immune cell analysis were administered and analyzed. Diagnostic-related genes of MT1M, SPINK1, AKR1B10, and SLCO1B3 were selected from DEGs and used to construct a diagnostic model. The receiver operating characteristic (ROC) curves were 0.910 and 0.953 in the training and testing cohorts, respectively. Potential drugs, including vemurafenib, LOXO-101, dabrafenib, selumetinib, Arry-162, and NMS-E628, were found as well. Vemurafenib, dabrafenib, and selumetinib were observed to significantly affect HepG2 cell viability. Conclusion: The diagnostic model based on the four diagnostic-related genes by the ANN could provide predictive significance for diagnosis of HCC patients, which would be worthy of clinical application. Also, potential chemotherapy drugs might be effective for HCC therapy.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Wen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan-Li Shi
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dan-Li Shi, ; Meng Luo,
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dan-Li Shi, ; Meng Luo,
| |
Collapse
|
22
|
Liu Q, Niu X, Li Y, Zhang JR, Zhu SJ, Yang QY, Zhang W, Gong L. Role of the mucin-like glycoprotein FCGBP in mucosal immunity and cancer. Front Immunol 2022; 13:863317. [PMID: 35936008 PMCID: PMC9354016 DOI: 10.3389/fimmu.2022.863317] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
IgGFc-binding protein (FCGBP) is a mucin first detected in the intestinal epithelium. It plays an important role in innate mucosal epithelial defense, tumor metastasis, and tumor immunity. FCGBP forms disulfide-linked heterodimers with mucin-2 and members of the trefoil factor family. These formed complexes inhibit bacterial attachment to mucosal surfaces, affect the motility of pathogens, and support their clearance. Altered FCGBP expression levels may be important in the pathologic processes of Crohn’s disease and ulcerative colitis. FCGBP is also involved in regulating the infiltration of immune cells into tumor microenvironments. Thus, the molecule is a valuable marker of tumor prognosis. This review summarizes the functional relevance and role of FCGBP in immune responses and disease development, and highlights the potential role in diagnosis and predicting tumor prognosis.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Xia Niu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia-rui Zhang
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Shao-jun Zhu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Qi-yuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Wei Zhang
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
- *Correspondence: Li Gong, ; Wei Zhang,
| | - Li Gong
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
- *Correspondence: Li Gong, ; Wei Zhang,
| |
Collapse
|
23
|
Lin YH, Yang YF, Shiue YL. Multi-Omics Analyses to Identify FCGBP as a Potential Predictor in Head and Neck Squamous Cell Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12051178. [PMID: 35626334 PMCID: PMC9140089 DOI: 10.3390/diagnostics12051178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
(Purpose) Previous studies have pointed out the significance of IgG Fc binding protein (FCGBP) in carcinogenesis, cancer progression, and tumor immunity in certain malignancies. However, its prognostic values, molecular interaction, and immune characteristics in the head and neck squamous cell carcinoma (HNSC) remained unclear. (Methods) To evaluate the potential role of the FCGBP gene, we used GEPIA2 and UALCAN platforms to explore the differential levels, survivals, and genetic alteration through cBioPortal (based on The Cancer Genome Atlas dataset). STRING, GeneMania, and TIMER2.0 identified the interacting networks. LinkedOmics performed Gene enrichment analysis, and TISIDB and TIMER2.0 evaluated the role of FCGBP in the tumor microenvironment. (Results) The expression level of FCGBP is lower in cancer tissues. A high FCGBP level is significantly associated with better overall- and disease-specific-survivals, regardless of human papillomavirus infection. Low FCGBP levels correlated to a higher tumor protein p53 (TP53) mutation rate (p = 0.018). FCGBP alteration significantly co-occurred with that of TP53 (q = 0.037). Interacting networks revealed a significant association between FGFBP and trefoil factor 3 (TFF3), a novel prognostic marker in various cancers, at transcriptional and translational levels. Enrichment analyses identified that the top gene sets predominantly related to immune and inflammatory responses. Further investigation found that the FCGBP mRNA level positively correlated to the infiltration rates of B cells, Th17/CD8+ T lymphocytes, T helper follicular cells, mast cells, and expression levels of various immune molecules and immune checkpoints in HNSC. (Conclusions) We found that the FCGBP mRNA level negatively correlated to TP53 mutation status while positively correlated to the TFF3 level. Additionally, FCGBP may regulate the tumor microenvironment. These findings support the FCGBP as a potential biomarker to estimate HNSC prognoses.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-7-525-2000; Fax: +886-7-525-0197
| |
Collapse
|
24
|
An J, Kim D, Oh B, Oh YJ, Song J, Park N, Kim HI, Kang HJ, Oh JH, Kim W, Lee E, Sung CO, Song GW, Kim DG, Yu E, Letouzé E, Zucman-Rossi J, Lee HC, Shim JH. Comprehensive characterization of viral integrations and genomic aberrations in HBV-infected intrahepatic cholangiocarcinomas. Hepatology 2022; 75:997-1011. [PMID: 34478159 DOI: 10.1002/hep.32135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Despite the epidemiological association between intrahepatic cholangiocarcinoma (iCCA) and HBV infection, little is known about the relevant oncogenic effects. We sought to identify the landscape and mechanism of HBV integration, along with the genomic architecture of HBV-infected iCCA (HBV-iCCA) tumors. APPROACH AND RESULTS We profiled a cohort of 108 HBV-iCCAs using whole-genome sequencing, deep sequencing, and RNA sequencing, together with preconstructed data sets of HBV-infected HCC (HBV-HCC; n = 167) and combined hepatocellular cholangiocarcinoma (HBV-cHCC/CCA; n = 59), and conventional (n = 154) and fluke-related iCCAs (n = 16). Platforms based on primary iCCA cell lines to evaluate the functional effects of chimeric transcripts were also used. We found that HBV had inserted at multiple sites in the iCCA genomes in 45 (41.7%) of the tumors. Recurrent viral integration breakpoints were found at nine different sites. The most common insertional hotspot (7 tumors) was in the TERT (telomerase reverse transcriptase) promoter, where insertions and mutations (11 tumors) were mutually exclusive, and were accompanied by promoter hyperactivity. Recurrent HBV integration events (5 tumors) were also detected in FAT2 (FAT atypical cadherin 2), and were associated with enrichment of epithelial-mesenchymal transition-related genes. A distinctive intergenic insertion (chr9p21.3), between DMRTA1 (DMRT like family A1) and LINC01239 (long intergenic non-protein coding RNA 1239), had oncogenic effects through activation of the mammalian target of rapamycin (mTOR)/4EBP/S6K pathway. Regarding the mutational profiles of primary liver cancers, the overall landscape of HBV-iCCA was closer to that of nonviral conventional iCCA, than to HBV-HCC and HBV-cHCC/CCA. CONCLUSIONS Our findings provide insight into the behavior of iCCAs driven by various pathogenic mechanisms involving HBV integration events and associated genomic aberrations. This knowledge should be of use in managing HBV carriers.
Collapse
Affiliation(s)
- Jihyun An
- Gastroenterology and HepatologyHanyang University College of MedicineGuri, GyeonggiRepublic of Korea
| | - Deokhoon Kim
- PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,Center for Cancer Genome DiscoveryAsan Institute for Life ScienceUniversity of Ulsan College of MedicineAsan Medical CenterSeoulRepublic of Korea
| | - Bora Oh
- Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Yoo-Jin Oh
- Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Jihyun Song
- Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Naomi Park
- Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Ha Il Kim
- GastroenterologyKyung Hee University Hospital at GangdongSeoulRepublic of Korea
| | - Hyo Jeong Kang
- PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Ji-Hye Oh
- Center for Cancer Genome DiscoveryAsan Institute for Life ScienceUniversity of Ulsan College of MedicineAsan Medical CenterSeoulRepublic of Korea.,Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Wonkyung Kim
- Center for Cancer Genome DiscoveryAsan Institute for Life ScienceUniversity of Ulsan College of MedicineAsan Medical CenterSeoulRepublic of Korea.,Asan Institute for Life ScienceAsan Medical CenterSeoulRepublic of Korea
| | - Eunjung Lee
- Medical ScienceAsan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Chang Ohk Sung
- PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,Center for Cancer Genome DiscoveryAsan Institute for Life ScienceUniversity of Ulsan College of MedicineAsan Medical CenterSeoulRepublic of Korea
| | - Gi-Won Song
- SurgeryAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,Asan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Dae-Ghon Kim
- Gastroenterology and HepatologyChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| | - Eunsil Yu
- PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,Asan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Eric Letouzé
- Centre de Recherche des CordeliersSorbonne UniversitéINSERMUniversité de ParisParisFrance.,Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre le CancerLabex OncoImmunologyParisFrance
| | - Jessica Zucman-Rossi
- Centre de Recherche des CordeliersSorbonne UniversitéINSERMUniversité de ParisParisFrance.,Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale Contre le CancerLabex OncoImmunologyParisFrance.,Hôpital Européen Georges PompidouParisFrance
| | - Han Chu Lee
- Asan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,GastroenterologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Ju Hyun Shim
- Asan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.,GastroenterologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| |
Collapse
|
25
|
Liu D, Li H, Dong H, Qu M, Yang L, Chen L, Li Y, Wang H, He Y. Spatial Multiomics Analysis Reveals Only Minor Genetic and Epigenetic Changes in Human Liver Cancer Stem-Like Cells Compared With Other Tumor Parenchymal Cells. Front Cell Dev Biol 2022; 10:810687. [PMID: 35223840 PMCID: PMC8863946 DOI: 10.3389/fcell.2022.810687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) usually account for a very small tumor cell population but play pivotal roles in human cancer development and recurrence. A fundamental question in cancer biology is what genetic and epigenetic changes occur in CSCs. Here we show that the in-situ global levels of DNA cytosine modifications, including 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC), are similar between liver cancer stem-like (LCSL) cells and paratumor liver cells of liver cancer patients. We then developed a robust method combining immunohistochemistry, laser capture microdissection and genome sequencing with ultra-low-input cells (CIL-seq) to study the detailed genetic and DNA methylation changes in human LCSL cells. We first used clinical samples of mixed hepatocellular carcinoma-cholangiocarcinoma (HCC-CCA) with stem cell features to investigate human LCSL cells. The CIL-seq analysis of HCC-CCA and HCC patients showed that LCSL cells had strong spatial genetic and epigenetic heterogeneity. More interestingly, although the LCSL cells had some potential key changes in their genome, they had substantially fewer somatic single nucleotide variants (SNVs), copy number alterations (CNAs) and differentially methylated regions than other tumor parenchymal cells. The cluster analysis of SNVs, CNAs, DNA methylation patterns and spatial transcriptomes all clearly showed that the LCSL cells were clustered with the paratumor liver cells. Thus, spatial multiomics analysis showed that LCSL cells had only minor genetic and epigenetic changes compared with other tumor parenchymal cells. Targeting key changes in CSCs, not just changes in bulk tumor cells, should be more effective for human cancer therapy.
Collapse
Affiliation(s)
- Dan Liu
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China.,Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Mincheng Qu
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China.,Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Liguang Yang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongyang Wang
- Model Animal Research Center, Medical School, Nanjing University, Nanjing, China.,National Center for Liver Cancer and International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Shanghai, China
| | - Yufei He
- Molecular Pathology Laboratory, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
26
|
Classification of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Radiomic Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5334095. [PMID: 35237341 PMCID: PMC8885247 DOI: 10.1155/2022/5334095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
Abstract
Introduction Considering the narrow window of surgery, early diagnosis of liver cancer is still a fundamental issue to explore. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICCA) are considered as two different types of liver cancer because of their distinct pathogenesis, pathological features, prognosis, and responses to adjuvant therapies. Qualitative analysis of image is not enough to make a discrimination of liver cancer, especially early-stage HCC or ICCA. Methods This retrospective study developed a radiomic-based model in a training cohort of 122 patients. Radiomic features were extracted from computed tomography (CT) scans. Feature selection was operated with the least absolute shrinkage and operator (LASSO) logistic method. The support vector machine (SVM) was selected to build a model. An internal validation was conducted in 89 patients. Results In the training set, the AUC of the evaluation of the radiomics was 0.855 higher than for radiologists at 0.689. In the valuation cohorts, the AUC of the evaluation was 0.847 and the validation was 0.659, which indicated that the established model has a significantly better performance in distinguishing the HCC from ICCA. Conclusion We developed a radiomic diagnosis model based on CT image that can quickly distinguish HCC from ICCA, which may facilitate the differential diagnosis of HCC and ICCA in the future.
Collapse
|
27
|
Takeda H, Takai A, Eso Y, Takahashi K, Marusawa H, Seno H. Genetic Landscape of Multistep Hepatocarcinogenesis. Cancers (Basel) 2022; 14:568. [PMID: 35158835 PMCID: PMC8833551 DOI: 10.3390/cancers14030568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Although several targeted therapy agents are available for advanced HCC, their antitumor efficacy remains limited. As the complex genetic landscape of HCC would compromise the antitumor efficacy of targeted therapy, a deeper understanding of the genetic landscape of hepatocarcinogenesis is necessary. Recent comprehensive genetic analyses have revealed the driver genes of HCC, which accumulate during the multistage process of hepatocarcinogenesis, facilitating HCC genetic heterogeneity. In addition, as early genetic changes may represent key therapeutic targets, the genetic landscapes of early HCC and precancerous liver tissues have been characterized in recent years, in parallel with the advancement of next-generation sequencing analysis. In this review article, we first summarize the landscape of the liver cancer genome and its intratumor heterogeneity. We then introduce recent insight on early genetic alterations in hepatocarcinogenesis, especially those in early HCC and noncancerous liver tissues. Finally, we summarize the multistep accumulation of genetic aberrations throughout cancer progression and discuss the future perspective towards the clinical application of this genetic information.
Collapse
Affiliation(s)
- Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka 543-8555, Japan;
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| |
Collapse
|
28
|
Ohni S, Yamaguchi H, Hirotani Y, Nakanishi Y, Midorikawa Y, Sugitani M, Naruse H, Nakayama T, Makishima M, Esumi M. Direct molecular evidence for both multicentric and monoclonal carcinogenesis followed by transdifferentiation from hepatocellular carcinoma to cholangiocarcinoma in a case of metachronous liver cancer. Oncol Lett 2022; 23:22. [PMID: 34868359 PMCID: PMC8630812 DOI: 10.3892/ol.2021.13140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023] Open
Abstract
Frequent recurrence is a major issue in liver cancer and histological heterogeneity frequently occurs in this cancer type. However, it has remained elusive whether such cancers are multicentric or monoclonal. To elucidate the clonal evolution of hepatocellular carcinoma (HCC) recurrence and combined hepatocellular-cholangiocarcinoma (cHCC-CCA) development, the somatic mutation frequency and signatures in a patient with triple occurrence of liver cancer every three years were examined, with samples designated as #1HCC, #2HCC and #3cHCC-CCA, respectively. A total of four tumor regions, including HCC (#3HCC) and intrahepatic CCA (#3iCCA) components of #3cHCC-CCA, and three nontumor regions (#1N, #2N and #3N) were precisely dissected from formalin-fixed paraffin-embedded tissues of each surgical specimen. DNA was extracted and subjected to tumor-specific somatic mutation determination. Of note, five nonsynonymous single-nucleotide variants (SNVs), namely those of KMT2D, TP53, DNMT3A, PKHD1 and TLR4, were identified in #3cHCC-CCA. All five SNVs were detected in both #3HCC and #3iCCA and #2HCC but not in #1HCC. The telomerase reverse transcriptase (TERT) promoter mutation C228T, but not C250T, was observed in all tumors. Digital PCR of C228T also indicated the presence of the TERT promoter mutation C228T in nontumorous liver tissues (#1N, #2N and #3N) at a frequency of 0.11-0.83% compared with normal liver and blood samples. These results suggest the following phylogenetic evolution of three metachronous liver cancers: #1HCC was not related to #2HCC, #3HCC and #3iCCA; both #3HCC and #3iCCA arose from #2HCC. From the above, three novel findings were deduced: i) Both multicentric occurrence and intrahepatic metastasis may be involved in liver cancer in a three-year interval; ii) transdifferentiation from HCC to iCCA is a possible pathogenic mechanism of cHCC-CCA; and iii) a nontumorous, noncirrhotic liver may contain a preneoplastic region with a cancer driver mutation in the TERT promoter.
Collapse
Affiliation(s)
- Sumie Ohni
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiromi Yamaguchi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yukari Hirotani
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoko Nakanishi
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yutaka Midorikawa
- Department of Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Masahiko Sugitani
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiromu Naruse
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Tomohiro Nakayama
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Mariko Esumi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
29
|
Svicher V, Salpini R, Piermatteo L, Carioti L, Battisti A, Colagrossi L, Scutari R, Surdo M, Cacciafesta V, Nuccitelli A, Hansi N, Ceccherini Silberstein F, Perno CF, Gill US, Kennedy PTF. Whole exome HBV DNA integration is independent of the intrahepatic HBV reservoir in HBeAg-negative chronic hepatitis B. Gut 2021; 70:2337-2348. [PMID: 33402415 PMCID: PMC8588301 DOI: 10.1136/gutjnl-2020-323300] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The involvement of HBV DNA integration in promoting hepatocarcinogenesis and the extent to which the intrahepatic HBV reservoir modulates liver disease progression remains poorly understood. We examined the intrahepatic HBV reservoir, the occurrence of HBV DNA integration and its impact on the hepatocyte transcriptome in hepatitis B 'e' antigen (HBeAg)-negative chronic hepatitis B (CHB). DESIGN Liver tissue from 84 HBeAg-negative patients with CHB with low (n=12), moderate (n=25) and high (n=47) serum HBV DNA was analysed. Covalently closed circular DNA (cccDNA), pregenomic RNA (pgRNA) were evaluated by quantitative PCR, whole exome and transcriptome sequencing was performed by Illumina, and the burden of HBV DNA integrations was evaluated by digital droplet PCR. RESULTS Patients with low and moderate serum HBV DNA displayed comparable intrahepatic cccDNA and pgRNA, significantly lower than in patients with high HBV DNA, while hepatitis B core-related antigen correlated strongly with the intrahepatic HBV reservoir, reflecting cccDNA quantity. Whole exome integration was detected in a significant number of patients (55.6%, 14.3% and 25% in high, moderate and low viraemic patients, respectively), at a frequency ranging from 0.5 to 157 integrations/1000 hepatocytes. Hepatitis B surface antigen >5000 IU/mL predicted integration within the exome and these integrations localised in genes involved in hepatocarcinogenesis, regulation of lipid/drug metabolism and antiviral/inflammatory responses. Transcript levels of specific genes, including the proto-oncogene hRAS, were higher in patients with HBV DNA integration, supporting an underlying oncogenic risk in patients with low-level to moderate-level viraemia. CONCLUSIONS HBV DNA integration occurs across all HBeAg-negative patients with CHB, including those with a limited HBV reservoir; localising in genes involved in carcinogenesis and altering the hepatocyte transcriptome.
Collapse
Affiliation(s)
- Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Arianna Battisti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy,Barts Liver Cente, Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Luna Colagrossi
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy,Department of Microbiology and Virology, University of Milan, Milano, Lombardia, Italy
| | - Rossana Scutari
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Matteo Surdo
- Molecular Genetics Laboratory, Eurofins GENOMA, Roma, Lazio, Italy
| | | | | | - Navjyot Hansi
- Barts Liver Cente, Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | | | - Carlo Federico Perno
- Department of Oncology and Haematooncology, University of Milan, Milano, Lombardia, Italy
| | - Upkar S Gill
- Barts Liver Cente, Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Patrick T F Kennedy
- Barts Liver Cente, Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
30
|
Nguyen CT, Caruso S, Maille P, Beaufrère A, Augustin J, Favre L, Pujals A, Boulagnon-Rombi C, Rhaiem R, Amaddeo G, di Tommaso L, Luciani A, Regnault H, Brustia R, Scatton O, Charlotte F, Brochériou I, Sommacale D, Soussan P, Leroy V, Laurent A, Le VK, Ta VT, Trinh HS, Tran TL, Gentien D, Rapinat A, Nault JC, Allaire M, Mulé S, Zucman-Rossi J, Pawlotsky JM, Tournigand C, Lafdil F, Paradis V, Calderaro J. Immune profiling of combined hepatocellular-cholangiocarcinoma reveals distinct subtypes and activation of gene signatures predictive of response to immunotherapy. Clin Cancer Res 2021; 28:540-551. [PMID: 34785581 DOI: 10.1158/1078-0432.ccr-21-1219] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Purpose: Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare malignancy associated with an overall poor prognosis. We aimed to investigate the immune profile of cHCC-CCA and determine its impact on disease outcome. Experimental Design: We performed a multicenter study of 96 patients with cHCC-CCA. Gene expression profile was analyzed using nCounter PanCancer IO 360 Panel. Densities of main immune cells subsets were quantified from digital slides of immunohistochemical stainings. Genetic alterations were investigated using targeted next generation sequencing. Results: Two main immune subtypes of cHCC-CCA were identified by clustering analysis: an "Immune High" (IH) subtype (57% of the cases) and an "Immune Low" (IL) subtype (43% of the cases). Tumors classified as IH showed overexpression of genes related to immune cells recruitment, adaptive and innate immunity, antigen presentation, cytotoxicity, immune suppression, and inflammation (p<0.0001). IH cHCC-CCAs also displayed activation of gene signatures recently shown to be associated with response to immunotherapy in patients with HCC. Immunostainings confirmed that IH tumors were also characterized by higher densities of immune cells. Immune subtypes were not associated with any genetic alterations. Finally, multivariate analysis showed that the IH subtype was an independent predictor of improved overall survival. Conclusions: We have identified a subgroup of cHCC-CCA that displays features of an ongoing intra-tumor immune response, along with an activation of gene signatures predictive of response to immunotherapy in HCC. This tumor subclass is associated with an improved clinical outcome. These findings suggest that a subset of patients with cHCC-CCA may benefit from immunomodulating therapeutic approaches.
Collapse
Affiliation(s)
- Cong Trung Nguyen
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
| | - Stefano Caruso
- INSERM UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Paris, France
| | - Pascale Maille
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Département de Pathologie, Créteil, France
| | - Aurélie Beaufrère
- Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Service d'Anatomo-Pathologie, Clichy, France
| | - Jérémy Augustin
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service d'Anatomie et de Cytologie Pathologiques, Sorbonne Université, Paris, France
| | - Loetitia Favre
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Département de Pathologie, Créteil, France
| | - Anaïs Pujals
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Département de Pathologie, Créteil, France
| | - Camille Boulagnon-Rombi
- Centre Hospitalier Universitaire de Reims, Service d'Anatomie et de Cytologie Pathologiques, Reims, France
| | - Rami Rhaiem
- Hôpital Robert Debré, Service de Chirurgie Digestive et Hépatobiliaire, Reims, France
| | - Giuliana Amaddeo
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Luca di Tommaso
- Department of Pathology, Humanitas University, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Alain Luciani
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Imagerie Médicale, Créteil, France
| | - Hélène Regnault
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Raffaele Brustia
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, Paris, France
| | - Olivier Scatton
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, Paris, France
| | - Frédéric Charlotte
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service d'Anatomie et de Cytologie Pathologiques, Sorbonne Université, Paris, France
| | - Isabelle Brochériou
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service d'Anatomie et de Cytologie Pathologiques, Sorbonne Université, Paris, France
| | - Daniele Sommacale
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Chirurgie Digestive et Hépato-bilio-pancréatique, Créteil, France
| | - Patrick Soussan
- Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Vincent Leroy
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Alexis Laurent
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Chirurgie Digestive et Hépato-bilio-pancréatique, Créteil, France
| | - Van Ky Le
- Department of Pathology, National Cancer Hospital, Hanoi, Vietnam
| | - Van To Ta
- Department of Pathology, National Cancer Hospital, Hanoi, Vietnam
| | - Hong Son Trinh
- Department of Surgical Oncology, Vietduc Hospital, Hanoi, Vietnam
| | - Thi Lan Tran
- Department of Pathology, Hanoi Medical University, Hanoi, Vietnam
| | - David Gentien
- Institut Curie, PSL Research University, Translational Research Department, Genomics platform, Paris, France
| | - Audrey Rapinat
- Institut Curie, PSL Research University, Translational Research Department, Genomics platform, Paris, France
| | - Jean Charles Nault
- INSERM UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Jean Verdier, Service d'Hépatologie, Bondy, France
| | - Manon Allaire
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service d'Hépatologie, Paris, France
| | - Sebastien Mulé
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Imagerie Médicale, Créteil, France
| | - Jessica Zucman-Rossi
- INSERM UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service d'Oncologie Médicale, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Descartes, Université Paris Diderot, Université Paris 13, France
| | - Jean-Michel Pawlotsky
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
| | - Christophe Tournigand
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Oncologie Médicale, Créteil, France
| | - Fouad Lafdil
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| | - Valérie Paradis
- Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Service d'Anatomo-Pathologie, Clichy, France
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, U1149, CNRS, ERL8252, Paris, France
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France.
- INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Département de Pathologie, Créteil, France
| |
Collapse
|
31
|
Murugesan K, Sharaf R, Montesion M, Moore JA, Pao J, Pavlick DC, Frampton GM, Upadhyay VA, Alexander BM, Miller VA, Javle MM, Bekaii Saab TS, Albacker LA, Ross JS, Ali SM. Genomic Profiling of Combined Hepatocellular Cholangiocarcinoma Reveals Genomics Similar to Either Hepatocellular Carcinoma or Cholangiocarcinoma. JCO Precis Oncol 2021; 5:PO.20.00397. [PMID: 34476330 PMCID: PMC8384404 DOI: 10.1200/po.20.00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/05/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Combined hepatocellular cholangiocarcinoma (cHCC-CCA) is a rare, aggressive primary liver carcinoma, with morphologic features of both hepatocellular carcinomas (HCC) and liver cholangiocarcinomas (CCA). METHODS The genomic profiles of 4,975 CCA, 1,470 HCC, and 73 cHCC-CCA cases arising from comprehensive genomic profiling in the course of clinical care were reviewed for genomic alterations (GA), tumor mutational burden, microsatellite instability status, genomic loss of heterozygosity, chromosomal aneuploidy, genomic ancestry, and hepatitis B virus status. RESULTS In cHCC-CCA, GA were most common in TP53 (65.8%), TERT (49.3%), and PTEN (9.6%), and 24.6% cHCC-CCA harbored potentially targetable GA. Other GA were predominantly associated with either HCC or CCA, including, but not limited to, TERT, FGFR2, IDH1, and presence of hepatitis B virus. On the basis of these features, a machine learning (ML) model was trained to classify a cHCC-CCA case as CCA-like or HCC-like. Of cHCC-CCA cases, 16% (12/73) were ML-classified as CCA-like and 58% (42/73) cHCC-CCA were ML-classified as HCC-like. The ML model classified more than 70% of cHCC-CCA as CCA-like or HCC-like on the basis of genomic profiles, without additional clinico-pathologic input. CONCLUSION These findings demonstrate the use of ML for classification as based on a targeted exome panel used during routine clinical care. Classification of cHCC-CCA by genomic features alone creates insights into the biology of the disease and warrants further investigation for relevance to clinical care.
Collapse
Affiliation(s)
| | | | | | | | - James Pao
- Foundation Medicine Inc, Cambridge, MA
| | | | | | - Vivek A Upadhyay
- Foundation Medicine Inc, Cambridge, MA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Milind M Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Jeffrey S Ross
- Foundation Medicine Inc, Cambridge, MA.,Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY
| | | |
Collapse
|
32
|
Bai Y, Tong W, Xie F, Zhu L, Wu H, Shi R, Wang L, Yang L, Liu Z, Miao F, Zhao Q, Zhang Y. DNA methylation biomarkers for diagnosis of primary liver cancer and distinguishing hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Aging (Albany NY) 2021; 13:17592-17606. [PMID: 34237708 PMCID: PMC8312421 DOI: 10.18632/aging.203249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two most common pathology subtypes of primary liver cancer (PLC). Identifying DNA methylation biomarkers for diagnosis of PLC and further distinguishing HCC from ICC plays a vital role in subsequent treatment options selection. To obtain potential diagnostic DNA methylation sites for PLC, differentially methylated CpG (DMC) sites were first screened by comparing the methylation data between normal liver samples and PLC samples (ICC samples and HCC samples). A random forest algorithm was then used to select specific DMC sites with top Gini value. To avoid overfitting, another cohort was taken as an external validation for evaluating the area under curves (AUCs) of different DMC sites combination. A similar model construction strategy was applied to distinguish HCC from ICC. In addition, we identified DNA Methylation-Driven Genes in HCC and ICC via MethylMix method and performed pathway analysis by utilizing MetaCore. Finally, we not only performed methylator phenotype based on independent prognostic sites but also analyzed the correlations between methylator phenotype and clinical factors in HCC and ICC, respectively. To diagnose PLC, we developed a model based on three PLC-specific methylation sites (cg24035245, cg21072795, and cg00261162), whose sensitivity and specificity achieved 98.8%,94.8% in training set and 97.3%,81% in validation set. Then, to further divide the PLC samples into HCC and ICC, we established another mode through three methylation sites (cg17769836, cg17591574, and cg07823562), HCC accuracy and ICC accuracy achieved 95.8%, 89.8% in the training set and 96.8%,85.4% in the validation set. In HCC, the enrichment pathways were mainly related to protein folding, oxidative stress, and glutathione metabolism. While in ICC, immune response, embryonic hepatocyte maturation were the top pathways. Both in HCC and ICC, methylator phenotype correlated well with overall survival time and clinical factors involved in tumor progression. In summary, our study provides the biomarkers based on methylation sites not only for the diagnosis of PLC but also for distinguishing HCC from ICC.
Collapse
Affiliation(s)
- Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Wen Tong
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Fucun Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| | - Liuyang Zhu
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Hao Wu
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Rui Shi
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lianjiang Wang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhisong Liu
- Department of Statistics, Tianjin University of Finance and Economics Pearl River College, Tianjin, China
| | - Fei Miao
- Department of Statistics, Tianjin University of Finance and Economics Pearl River College, Tianjin, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science, Nankai University, Tianjin, China
| | - Yaming Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
33
|
Zhang D, Zhang K, Protzer U, Zeng C. HBV Integration Induces Complex Interactions between Host and Viral Genomic Functions at the Insertion Site. J Clin Transl Hepatol 2021; 9:399-408. [PMID: 34221926 PMCID: PMC8237140 DOI: 10.14218/jcth.2021.00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV), one of the well-known DNA oncogenic viruses, is the leading cause of hepatocellular carcinoma (HCC). In infected hepatocytes, HBV DNA can be integrated into the host genome through an insertional mutagenesis process inducing tumorigenesis. Dissection of the genomic features surrounding integration sites will deepen our understanding of mechanisms underlying integration. Moreover, the quantity and biological activity of integration sites may reflect the DNA damage within affected cells or the potential survival benefits they may confer. The well-known human genomic features include repeat elements, particular regions (such as telomeres), and frequently interrupted genes (e.g., telomerase reverse transcriptase [i.e. TERT], lysine methyltransferase 2B [i.e. KMT2B], cyclin E1 [CCNE1], and cyclin A2 [CCNA2]). Consequently, distinct genomic features within diverse integrations differentiate their biological functions. Meanwhile, accumulating evidence has shown that viral proteins produced by integrants may cause cell damage even after the suppression of HBV replication. The integration-derived gene products can also serve as tumor markers, promoting the development of novel therapeutic strategies for HCC. Viral integrants can be single copy or multiple copies of different fragments with complicated rearrangement, which warrants elucidation of the whole viral integrant arrangement in future studies. All of these considerations underlie an urgent need to develop novel methodology and technology for sequence characterization and function evaluation of integration events in chronic hepatitis B-associated disease progression by monitoring both host genomic features and viral integrants. This endeavor may also serve as a promising solution for evaluating the risk of tumorigenesis and as a companion diagnostic for designing therapeutic strategies targeting integration-related disease complications.
Collapse
Affiliation(s)
- Dake Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ke Zhang
- SCG Cell Therapy Pte. Ltd, Singapore
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Urlike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Paradis V. Hepatocellular Carcinomas: Towards a pathomolecular approach. Liver Int 2021; 41 Suppl 1:83-88. [PMID: 34155797 DOI: 10.1111/liv.14867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
Molecular analysis of primary liver malignancies has provided a refinement of the pathological diagnosis of this entity and the identification of an increasing number of tumor subtypes of hepatocellular proliferation, either malignant (hepatocellular carcinomas) or benign (hepatocellular adenomas). Besides the diagnosis, a combined pathomolecular approach can also provide further insights into patient prognosis, and help select patients who can benefit from targeted therapies. Hepatocellular carcinomas define a heterogeneous group of malignant hepatocellular proliferation at various levels: macroscopic, histological and molecular. While most carcinomas occur in patients with chronic liver diseases and advanced fibrosis in the background liver, some arise from the malignant transformation of a pre-existing hepatocellular adenoma. TERT promoter mutations are the most frequent genomic alterations observed in the process of malignancy, and they occur early in the process of liver carcinogenesis. Overall, a more active biopsy strategy should be considered a key step in the management of patients with HCC.
Collapse
Affiliation(s)
- Valérie Paradis
- Department of Pathology, Université de Paris, Hôpital Beaujon, Paris, France
| |
Collapse
|
35
|
Zhuang Q, Shen A, Liu L, Wu M, Shen Z, Liu H, Cheng Y, Lin X, Wu X, Lin W, Li J, Han Y, Chen X, Chen Q, Peng J. Prognostic and immunological roles of Fc fragment of IgG binding protein in colorectal cancer. Oncol Lett 2021; 22:526. [PMID: 34055091 PMCID: PMC8138899 DOI: 10.3892/ol.2021.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Valuable diagnostic and prognostic biomarkers are urgently needed for colorectal cancer (CRC), which is one of the leading causes of mortality worldwide. Previous studies have reported altered expression of a mucin-like protein Fc fragment of IgG binding protein (FCGBP) in various types of cancer, but its potential diagnostic, prognostic and immunological roles in CRC remain to be determined. Therefore, the aim of current study was to investigate the potential roles of FCGBP in CRC. The present study investigated FCGBP mutations and changes in its expression levels using a combination of microarray and public dataset analyses, as well as immunohistochemistry. The results demonstrated a 10.5% mutation frequency in the FCGBP coding sequence in CRC tissues, and identified decreased FCGBP mRNA or protein expression levels in colorectal adenoma and CRC (compared with those in normal colorectal tissues from healthy control subjects), including pathologically advanced CRC (stage III+IV vs. I+II). Survival analysis using the GEPIA and Kaplan-Meier Plotter databases revealed that low FCGBP expression levels were associated with short overall, disease-free, relapse-free and event-free survival times in patients with CRC. Notably, analysis using the online Tumor IMmune Estimation Resource database revealed a positive correlation between FCGBP expression levels and the extent of infiltrating immune cells, such as B cells and dendritic cells. Consistently, the expression levels of most markers (51/57) for various types of immune cells were significantly correlated with FCGBP expression levels in CRC tissues. These findings suggested that FCGBP may serve as a diagnostic and prognostic biomarker, and that FCGBP may be associated with immune infiltration in CRC.
Collapse
Affiliation(s)
- Qunchuan Zhuang
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Huixin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jiapeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuying Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qi Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
36
|
DiPeri TP, Javle MM, Meric-Bernstam F. Next generation sequencing for biliary tract cancers. Expert Rev Gastroenterol Hepatol 2021; 15:471-474. [PMID: 33641586 PMCID: PMC8172427 DOI: 10.1080/17474124.2021.1896967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Timothy P. DiPeri
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX
| | - Milind M. Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX
| |
Collapse
|
37
|
Vij M, Calderaro J. Pathologic and molecular features of hepatocellular carcinoma: An update. World J Hepatol 2021; 13:393-410. [PMID: 33959223 PMCID: PMC8080551 DOI: 10.4254/wjh.v13.i4.393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Morphological diversity and several new distinct pathologic subtypes of hepatocellular carcinoma (HCC) are now well-recognized. Recent advances in tumor genomics and transcriptomics have identified several recurrent somatic/genetic alterations that are closely related with histomorphological subtypes and have therefore, greatly improved our understanding of HCC pathogenesis. Pathologic subtyping allows for a diagnosis which is clinically helpful and can have important implication in patient prognostication as some of these subtypes are extremely aggressive with vascular invasion, early recurrence, and worst outcomes. Several targeted treatments are now being considered in HCC, and the reporting of subtypes may be quite useful for personalized therapeutic purpose. This manuscript reviews the recently identified histomorphological subtypes and molecular alterations in HCC.
Collapse
Affiliation(s)
- Mukul Vij
- Department ofPathology, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Julien Calderaro
- Department of Pathology, Groupe Hospitalier Henri Mondor, Creteil F-94010, France
| |
Collapse
|
38
|
Leone V, Ali A, Weber A, Tschaharganeh DF, Heikenwalder M. Liver Inflammation and Hepatobiliary Cancers. Trends Cancer 2021; 7:606-623. [PMID: 33674229 DOI: 10.1016/j.trecan.2021.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/17/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Immune regulation has an important role in cancer development, particularly in organs with continuous exposure to environmental pathogens, such as the liver and gastrointestinal tract. Chronic liver inflammation can lead to the development of hepatobiliary cancers, namely hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (iCCA), or combined HCC (cHCC)-CCA. In this review, we discuss the link between oxidative stress and the hepatic immune compartments, as well as how these factors trigger hepatocyte damage, proliferation, and eventually cancer initiation and its sustainment. We further give an overview of new anticancer therapies based on immunomodulation.
Collapse
Affiliation(s)
- Valentina Leone
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Research Unit Radiation Cytogenetics, Helmholtz Zentrum München Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, Institute of Molecular Cancer Research (IMCR), University Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Darjus Felix Tschaharganeh
- Helmholtz-University Group Cell Plasticity and Epigenetic Remodeling, German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Rhee H, Park JH, Park YN. Update on Pathologic and Radiologic Diagnosis of Combined Hepatocellular-Cholangiocarcinoma. JOURNAL OF LIVER CANCER 2021; 21:12-24. [PMID: 37384273 PMCID: PMC10035725 DOI: 10.17998/jlc.21.1.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 06/30/2023]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a malignant primary liver carcinoma characterized by the unequivocal presence of both hepatocytic and cholangiocytic differentiation within the same tumor. Recent research has highlighted that cHCC-CCAs are more heterogeneous than previously expected. In the updated consensus terminology and WHO 2019 classification, "classical type" and "subtypes with stem-cell features" of the WHO 2010 classification are no longer recommended. Instead, it is recommended that the presence and percentages of various histopathologic components and stem-cell features be mentioned in the pathologic report. The new terminology and classification enable the exchange of clearer and more objective information about cHCC-CCAs, facilitating multi-center and multi-national research. However, there are limitations to the diagnosis of cHCC-CCA by imaging and biopsy. cHCC-CCAs showing typical imaging findings of HCC could be misdiagnosed as HCC and subjected to inappropriate treatment, if other clinical findings are not sufficiently considered. cHCC-CCAs showing at least one of the CCA-like imaging features or unusual clinical features should be subjected to biopsy. There may be a sampling error for the biopsy diagnosis of cHCC-CCA. An optimized diagnostic algorithm integrating clinical, radiological, and histopathologic information of biopsy is required to resolve these diagnostic pitfalls.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Seoul,
Korea
| | - Jae Hyon Park
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Seoul,
Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
HBV-Integration Studies in the Clinic: Role in the Natural History of Infection. Viruses 2021; 13:v13030368. [PMID: 33652619 PMCID: PMC7996909 DOI: 10.3390/v13030368] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem causing acute and chronic liver disease that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) is essential for viral replication and the establishment of a persistent infection. Integrated HBV DNA represents another stable form of viral DNA regularly observed in the livers of infected patients. HBV DNA integration into the host genome occurs early after HBV infection. It is a common occurrence during the HBV life cycle, and it has been detected in all the phases of chronic infection. HBV DNA integration has long been considered to be the main contributor to liver tumorigenesis. The recent development of highly sensitive detection methods and research models has led to the clarification of some molecular and pathogenic aspects of HBV integration. Though HBV integration does not lead to replication-competent transcripts, it can act as a stable source of viral RNA and proteins, which may contribute in determining HBV-specific T-cell exhaustion and favoring virus persistence. The relationship between HBV DNA integration and the immune response in the liver microenvironment might be closely related to the development and progression of HBV-related diseases. While many new antiviral agents aimed at cccDNA elimination or silencing have been developed, integrated HBV DNA remains a difficult therapeutic challenge.
Collapse
|
41
|
Gigante E, Paradis V, Ronot M, Cauchy F, Soubrane O, Ganne-Carrié N, Nault JC. New insights into the pathophysiology and clinical care of rare primary liver cancers. JHEP Rep 2021; 3:100174. [PMID: 33205035 PMCID: PMC7653076 DOI: 10.1016/j.jhepr.2020.100174] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocholangiocarcinoma, fibrolamellar carcinoma, hepatic haemangioendothelioma and hepatic angiosarcoma represent less than 5% of primary liver cancers. Fibrolamellar carcinoma and hepatic haemangioendothelioma are driven by unique somatic genetic alterations (DNAJB1-PRKCA and CAMTA1-WWTR1 fusions, respectively), while the pathogenesis of hepatocholangiocarcinoma remains more complex, as suggested by its histological diversity. Histology is the gold standard for diagnosis, which remains challenging even in an expert centre because of the low incidences of these liver cancers. Resection, when feasible, is the cornerstone of treatment, together with liver transplantation for hepatic haemangioendothelioma. The role of locoregional therapies and systemic treatments remains poorly studied. In this review, we aim to describe the recent advances in terms of diagnosis and clinical management of these rare primary liver cancers.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- AFP, alpha-fetoprotein
- APHE, arterial phase hyperenhancement
- CA19-9, carbohydrate antigen 19-9
- CCA, cholangiocarcinoma
- CEUS, contrast-enhanced ultrasound
- CK, cytokeratin
- CLC, cholangiolocellular carcinoma
- EpCAM, epithelial cell adhesion molecule
- FISH, fluorescence in situ hybridisation
- FLC, fibrolamellar carcinoma
- Fibrolamellar carcinoma
- HAS, hepatic angiosarcoma
- HCC, hepatocellular carcinoma
- HEH, hepatic epithelioid haemangioendothelioma
- HepPar1, hepatocyte specific antigen antibody
- Hepatic angiosarcoma
- Hepatic hemangioendothelioma
- Hepatocellular carcinoma
- Hepatocholangiocarcinoma
- IHC, immunohistochemistry
- LI-RADS, liver imaging reporting and data system
- LT, liver transplantation
- Mixed tumor
- RT-PCR, reverse transcription PCR
- SIRT, selective internal radiation therapy
- TACE, transarterial chemoembolisation
- WHO, World Health Organization
- cHCC-CCA, combined hepatocholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
Collapse
Affiliation(s)
- Elia Gigante
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
| | - Valérie Paradis
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service d'anatomie pathologique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Maxime Ronot
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de radiologie, Hôpital Beaujon, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - François Cauchy
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Olivier Soubrane
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Nathalie Ganne-Carrié
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | - Jean-Charles Nault
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| |
Collapse
|
42
|
Zhang J, Zhang L, Luo J, Ge T, Fan P, Sun L, Hou L, Li J, Yu H, Wu C, Zhu Y, Wu C, Jiang G, Troncone G, Malhotra J, Okuda K, Santarpia M, Zamarchi R, Goto T, Cardona AF, Xu J, Chen Q, Zhang Z, Zhang P. Comprehensive genomic profiling of combined small cell lung cancer. Transl Lung Cancer Res 2021; 10:636-650. [PMID: 33718010 PMCID: PMC7947408 DOI: 10.21037/tlcr-20-1099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Combined small cell lung cancer (CSCLC) is an uncommon and heterogeneous subtype of small cell lung cancer (SCLC). However, there is limited data concerning the different molecular changes and clinical features in CSCLC compared to pure SCLC. Methods The clinical and pathological characteristics of pure SCLC and CSCLC patients were analyzed. Immunohistochemistry and microdissection were performed to isolate the CSCLC components. Further molecular analysis was carried out by next-generation sequencing (NGS) in 12 CSCLC and 30 pure SCLC. Results There were no significant differences in clinical features between CSCLC and pure SCLC. Overall survival (OS) of CSCLC patients was worse than pure SCLC (P=0.005). NGS results indicated that TP53 and RB1 were the most frequently mutated genes in both CSCLC (83.33% and 66.67%) and pure SCLC (80.00% and 63.33%) groups. However, less than 10% common mutations were found in both CSCLC and pure SCLC. When analyzing the data of SCLC and non-small cell lung cancer (NSCLC) components of CSCLC, more than 50% common mutations, and identical genes with mutations were detected. Moreover, there were also common biological processes and signaling pathways identified in CSCLC and pure SCLC, in addition to SCLC and NSCLC components. Conclusions There were no significant differences in terms of clinical features between CSCLC and pure SCLC. However, the prognosis for CSCLC was worse than pure SCLC. NGS analysis suggested that CSCLC components might derive from the same pluripotent single clone with common initial molecular alterations and subsequent acquisitions of other genetic mutations.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Ge
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengyu Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junqiang Li
- D1Med, Building 6, No. 28 Xiangle Road, Jiading District, Shanghai, China
| | - Huansha Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunxiao Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Andrés F Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), El Bosque University, Bogotá, Colombia
| | - Jianfang Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiankun Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghong Zhang
- Respiration Department II, the First Affiliated Hospital of Shihezi University Medical College, Xinjiang, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | | |
Collapse
|
43
|
Azizi AA, Hadjinicolaou AV, Goncalves C, Duckworth A, Basu B. Update on the Genetics of and Systemic Therapy Options for Combined Hepatocellular Cholangiocarcinoma. Front Oncol 2020; 10:570958. [PMID: 33102226 PMCID: PMC7545907 DOI: 10.3389/fonc.2020.570958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-ICC) is an uncommon and aggressive form of primary liver cancer. Currently, there are no international guidelines for optimal management. For localized tumors, radical resection represents the preferred treatment option, whereas for advanced tumors, systemic therapies recommended for intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are often selected. Emerging information from comparative cohort studies, genomic and transcriptomic data sets are starting to build a case for rationalized approaches to systemic treatment in the advanced setting specific to cHCC-ICC.
Collapse
Affiliation(s)
- Alexander A Azizi
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Andreas V Hadjinicolaou
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Carla Goncalves
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Adam Duckworth
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Bristi Basu
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Kim TH, Kim H, Joo I, Lee JM. Combined Hepatocellular-Cholangiocarcinoma: Changes in the 2019 World Health Organization Histological Classification System and Potential Impact on Imaging-Based Diagnosis. Korean J Radiol 2020; 21:1115-1125. [PMID: 32729276 PMCID: PMC7458861 DOI: 10.3348/kjr.2020.0091] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a primary liver cancer (PLC) with both hepatocytic and cholangiocytic phenotypes. Recently, the World Health Organization (WHO) updated its histological classification system for cHCC-CCA. Compared to the previous WHO histological classification system, the new version no longer recognizes subtypes of cHCC-CCA with stem cell features. Furthermore, some of these cHCC-CCA subtypes with stem cell features have been recategorized as either hepatocellular carcinomas (HCCs) or intrahepatic cholangiocarcinomas (ICCs). Additionally, distinctive diagnostic terms for intermediate cell carcinomas and cholangiolocarcinomas (previous cholangiolocellular carcinoma subtype) are now recommended. It is important for radiologists to understand these changes because of its potential impact on the imaging-based diagnosis of HCC, particularly because cHCC-CCAs frequently manifest as HCC mimickers, ICC mimickers, or as indeterminate on imaging studies. Therefore, in this review, we introduce the 2019 WHO classification system for cHCC-CCA, illustrate important imaging features characteristic of its subtypes, discuss the impact on imaging-based diagnosis of HCC, and address other important considerations.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Department of Radiology, Naval Pohang Hospital, Pohang, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
45
|
Chu KJ, Ma YS, Jiang XH, Wu TM, Wu ZJ, Li ZZ, Wang JH, Gao QX, Yi B, Shi Y, Wang HM, Gu LP, Zhang SQ, Wang GR, Liu JB, Fu D, Jiang XQ. Whole-Transcriptome Sequencing Identifies Key Differentially Expressed mRNAs, miRNAs, lncRNAs, and circRNAs Associated with CHOL. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:592-603. [PMID: 32721879 PMCID: PMC7390861 DOI: 10.1016/j.omtn.2020.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
To systematically evaluate the whole-transcriptome sequencing data of cholangiocarcinoma (CHOL) to gain more insights into the transcriptomic landscape and molecular mechanism of this cancer, we performed whole-transcriptome sequencing based on the tumorous (C) and their corresponding non-tumorous adjacent to the tumors (CP) from eight CHOL patients. Subsequently, differential expression analysis was performed on the C and CP groups, followed by functional interaction prediction analysis to investigate gene-regulatory circuits in CHOL. In addition, The Cancer Genome Atlas (TCGA) for CHOL data was used to validate the results. In total, 2,895 differentially expressed messenger RNAs (dif-mRNAs), 56 differentially expressed microRNAs (dif-miRNAs), 151 differentially expressed long non-coding RNAs (dif-lncRNAs), and 110 differentially expressed circular RNAs (dif-circRNAs) were found in CHOL samples compared with controls. Enrichment analysis on those differentially expressed genes (DEGs) related to miRNA, lncRNA, and circRNA also identified the function of spliceosome. The downregulated hsa-miR-144-3p were significantly enriched in the competing endogenous RNA (ceRNA) complex network, which also included 7 upregulated and 13 downregulated circRNAs, 7 upregulated lncRNAs, and 90 upregulated and 40 downregulated mRNAs. Moreover, most of the DEGs and a few of the miRNAs (such as hsa-miR-144-3p) were successfully validated by TCGA data. The genes involved in RNA splicing and protein degradation processes and miR-144-3p may play fundamental roles in the pathogenesis of CHOL.
Collapse
Affiliation(s)
- Kai-Jian Chu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Yu-Shui Ma
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Hui Jiang
- General Surgery, Nantong Tumor Hospital, Nantong 226631, China
| | - Ting-Miao Wu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Zhi-Jun Wu
- Department of Oncology, Nantong Second People's Hospital, Nantong 226002, China
| | - Zhi-Zhen Li
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Jing-Han Wang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Qing-Xiang Gao
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Bin Yi
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Su-Qing Zhang
- Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong 226631, China
| | - Gao-Ren Wang
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China.
| | - Da Fu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xiao-Qing Jiang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China.
| |
Collapse
|
46
|
Bai K, He S, Shu L, Wang W, Lin S, Zhang Q, Li L, Cheng L, Dai Y. Identification of cancer stem cell characteristics in liver hepatocellular carcinoma by WGCNA analysis of transcriptome stemness index. Cancer Med 2020; 9:4290-4298. [PMID: 32311840 PMCID: PMC7300398 DOI: 10.1002/cam4.3047] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are characterized by self-renewal and -differential potential as compared to common cancer cells and play an important role in the development and therapeutic resistance of liver hepatocellular carcinoma (LIHC). However, the specific pathogenesis of LIHC stem cells is still unclear, and the genes involved in the stemness of LIHC stem cells are currently unknown. In this study, we investigated novel biomarkers associated with LIHC and explored the expression characteristics of stem cell-related genes in LIHC. We found that mRNA expression-based stemness index (mRNAsi) was significantly overexpressed in liver cancer tissues. Further, mRNAsi expression in LIHC increased with the tumor pathological grade, with grade 4 tumors harboring the greatest stem cell features. Upon establishing mRNAsi scores based on mRNA expression of every gene, we found an association with poor overall survival in LIHC. Moreover, modules of interest were determined based on weighted gene co-expression network analysis (WGCNA) inclusion criteria, and three significant modules (red, green, and brown) and 21 key genes (DCN, ECM1, HAND2, PTGIS, SFRP1, SRPX, COLEC10, GRP182, ADAMTS7, CD200, CDH11, COL8A1, FAP, LZTS1, MAP1B, NAV1, NOTCH3, OLFML2A, PRR16, TMEM119, and VCAN) were identified. Functional analysis of these 21 genes demonstrated their enrichment in pathways involved in angiogenesis, negative regulation of DNA-binding transcription factor activity, apoptosis, and autophagy. Causal relationship with proteins indicated that the Wnt, Notch, and Hypoxia pathways are closely related to LIHC tumorigenesis. To our knowledge, this is the first report of a novel CSC biomarker, mRNAsi, to predict the prognosis of LIHC. Further, we identified 21 key genes through mRNA expression network analysis, which could be potential therapeutic targets to inhibit the stemness of cancer cells in LIHC.
Collapse
Affiliation(s)
- Kun‐Hao Bai
- Department of EndoscopySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Si‐Yuan He
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTXUSA
| | - Ling‐Ling Shu
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wei‐Da Wang
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Shi‐Yong Lin
- Department of EndoscopySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Qian‐Yi Zhang
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Liang Li
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Lei Cheng
- Collaborative Innovation Center for Cancer MedicineCancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Yu‐Jun Dai
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
47
|
Wang G, Wang Q, Liang N, Xue H, Yang T, Chen X, Qiu Z, Zeng C, Sun T, Yuan W, Liu C, Chen Z, He X. Oncogenic driver genes and tumor microenvironment determine the type of liver cancer. Cell Death Dis 2020; 11:313. [PMID: 32366840 PMCID: PMC7198508 DOI: 10.1038/s41419-020-2509-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Primary liver cancer (PLC) may be mainly classified as the following four types: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), hepatoblastoma (HB), and combined hepatocellular carcinoma and intrahepatic cholangiocarcinoma (cHCC-ICC). The majority of PLC develops in the background of tumor microenvironment, such as inflammatory microenvironments caused by viral hepatitis, alcoholic or nonalcoholic steatohepatitis, carbon tetrachloride (CCl4), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and necroptosis-associated hepatic cytokine microenvironment caused by necroptosis of hepatocytes. However, the impact of different types of microenvironments on the phenotypes of PLC generated by distinct oncogenes is still unclear. In addition, the cell origin of different liver cancers have not been clarified, as far as we know. Recent researches show that mature hepatocytes retain phenotypic plasticity to differentiate into cholangiocytes. More importantly, our results initially demonstrated that HCC, ICC, and cHCC-ICC could originate from mature hepatocytes rather than liver progenitor cells (LPCs), hepatic stellate cells (HSCs) and cholangiocytes in AKT-driven, AKT/NICD-driven and AKT/CAT-driven mouse PLC models respectively by using hydrodynamic transfection methodology. Therefore, liver tumors originated from mature hepatocytes embody a wide spectrum of phenotypes from HCC to CC, possibly including cHCC-ICC and HB. However, the underlying mechanism determining the cancer phenotype of liver tumors has yet to be delineated. In this review, we will provide a summary of the possible mechanisms for directing the cancer phenotype of liver tumors (i.e., ICC, HCC, and cHCC-ICC) in terms of oncogenic driver genes and tumor microenvironment. Moreover, this study initially revealed the cell origin of different types of liver cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The 74th Group Army Hospital, Guangzhou, 510220, China.,Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qian Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Hongyuan Xue
- Department of General Surgery, Huashan North Hospital, Fudan University, Shanghai, 201907, China
| | - Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shanxi, China
| | - Xuguang Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China
| | - Zhaoyan Qiu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Chao Zeng
- Department of Cardiology, The 74th Group Army Hospital, Guangzhou, 510318, China
| | - Tao Sun
- Departmentof Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zheng zhou, 450052, China
| | - Weitang Yuan
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Chaoxu Liu
- Department of General Surgery, Huashan North Hospital, Fudan University, Shanghai, 201907, China. .,Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Zhangqian Chen
- Department of Infectious Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China. .,State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
48
|
Wang A, Li Z, Wang M, Jia S, Chen J, Ji K, Ji X, Zong X, Wu X, Zhang J, Li Z, Zhang L, Hu Y, Bu Z, Zheng Q, Ji J. Molecular characteristics of synchronous multiple gastric cancer. Theranostics 2020; 10:5489-5500. [PMID: 32373223 PMCID: PMC7196298 DOI: 10.7150/thno.42814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/15/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Multiple gastric cancer (MGC) is characterized by the presence of more than two different tumors in the stomach. However, the clonal relationship and carcinogenesis of MGC remain unclear. We investigated the clonal relationship and role of germline mutations in the carcinogenesis of MGC. Methods: We gathered 16 multiple gastric cancer patients. Thirty-three tumor samples and sixteen normal gastric tissue or blood samples were obtained from January 2016 to December 2017. We also conducted analyses for 208 gastric cancer and 49 esophagogastric junction cancer (GC-EGJ) tumors from TCGA. DNA extraction from our samples was conducted for whole-exome sequencing (WES). Results: Tumor mutation burden (TMB) was not statistically significant within database and our data in the GC-EGJ (P=0.0591) and GC groups (P=0.3113). The mutation spectrum and signatures also showed uniform distributions in GC and GC-EGJ groups within our data and TCGA database. Among sixteen patients, four were identified as monoclonal, in which 11, 10, 26 and 6 somatic mutations were shared within different tumors of P7, P8, P9 and P16, respectively. However, no common mutation between different tumors of the same patient was found among the other 12 patients. After identifying predisposing genes, we found that germline MSH2 and NCOR2 mutations were significantly dominant in 8/12 and 10/12 of genetic MGC patients. Additionally, all patients were identified with MSH2 mutations in cancer samples of those genetic MGC patients. Taking genetic MGCs as a whole, we identified that TP53 were significantly mutated in 14 of 25 tumor samples. Main conclusions: WES analyses are suggestive of monoclonal and polyclonal origin of MGC, which may promote the classification of MGC into genetic and metastatic MGC. For patients with genetic MGC, germline MSH2 X314_splice variants may contribute to carcinogenesis, thus prompting the consideration of more radical surgery and/or anti-PD-1/PD-L1 therapy.
Collapse
|
49
|
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, typically develops on the background of chronic liver disease and is an aggressive disease with dismal prognosis. Studies using next-generation sequencing of multiple regions of the same tumour nodule suggest different patterns of HCC evolution and confirm the high molecular heterogeneity in a subset of patients. Different hypotheses have been proposed to explain tumour evolution, including clonal selection or neutral and punctuated acquisition of genetic alterations. In parallel, data indicate a fundamental contribution of nonmalignant cells of the tumour microenvironment to cancer clonal evolution. Delineating these dynamics is crucial to improve the treatment of patients with HCC, and particularly to help understand how HCC evolution drives resistance to systemic therapies. A number of new minimally invasive techniques, such as liquid biopsies, could help track cancer evolution in HCC. These tools might improve our understanding of how systemic therapies affect tumour clonal composition and could facilitate implementation of real-time molecular monitoring of patients with HCC.
Collapse
|
50
|
Huang A, Wang YP, Wang J, Fu PY, Zhang X, Cao Y, Fan J, Yang XR, Zhou J. Limited bias effect of intratumoral heterogeneity on genetic profiling of hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:112-120. [PMID: 32175113 DOI: 10.21037/jgo.2019.09.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Utilization of next-generation sequencing (NGS) to identify potential therapeutic targets and then prescribe matched agents provides new hope for patients with advanced cancer, such as hepatocellular carcinoma (HCC). However, intratumoral heterogeneity (ITH) challenges precise genomic profiling and may lead to target treatment failure. This study aims to evaluate whether and to what extent would genetic profiling be biased by ITH in HCC. We datamined publications focusing on the ITH of HCC and extracted the sequencing and clinicopathological information to make data reanalysis. Potential therapeutic targets and driver genes in HCC were specially pooled as reference to analyze the bias effect of ITH on genetic profiling. Five studies which analyzed ITH using NGS of multi-site samples were enrolled, with a total of 207 tumor samples from 36 HCC patients. The ITH ranged from 5.21% to 88.27% and no correlations between ITH extent and sample numbers, sequencing depth, or clinicopathological parameters were observed. In total, 72 therapeutic and 15 candidate driver genes were pooled as reference. Totally, 38.8% HCCs were found to be drugable in single-site sample, of which only 19.4% might be biased by ITH. Of the driver genes, 86% could be detected in single-site sample. HCC is a highly heterogeneous disease. While ITH indeed hinders comprehensive and precise HCC genome profiling, it has limited influences on identification of actionable and driver mutations. Single-site sampling/biopsy assayed with targeted deep sequencing might be efficient in the clinical management of HCC.
Collapse
Affiliation(s)
- Ao Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yu-Peng Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Jian Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Pei-Yao Fu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xin Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ya Cao
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Central South University, Ministry of Education, Changsha 410078, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.,State Key Laboratory of Genetic Engineering Fudan University, Shanghai 200433, China
| |
Collapse
|