1
|
Peng L, Wang L, Wu S, Gu M, Deng S, Liu J, Cheng CK, Sui X. Biomechanics characterization of an implantable ultrathin intracortical electrode through finite element method. Sci Rep 2025; 15:19938. [PMID: 40481078 PMCID: PMC12144109 DOI: 10.1038/s41598-025-04737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
Neural electrodes are widely used in brain-computer interfaces and neuroprosthesis for the treatment of various neurological disorders. However, as components that come into direct contact with neural tissue, implanted neural electrodes could cause mechanical damage during surgical insertions or while inside the brain. Thus, accurately and timely assessing this damage was vital for chronic implantation, which posed a significant challenge. This study aimed to evaluate the biomechanical effects and clinical application risks of a polyimide-based ultrathin flexible intracortical microelectrode through the finite element method (FEM). It analyzed the electrode-brain biomechanical effects during the electrode's insertion process and under steady-state acceleration with the electrode inside the brain. Furthermore, the study examined the impact of factors including implantation depth (ranging from 5 to 5000 μm), cortical thickness (0.5 mm, 2.5 mm, and 4.5 mm), step displacement (from 1 to 5 μm) during insertion, and acceleration direction (vertical and horizontal) on the electrode's biomechanical effects. The primary findings showed that the 98th percentile Von Mises Strain (ε98) and Von Mises Stress (σ98) in the region of interest (ROI) decreased dual-exponentially with increasing implantation depth and increased linearly with larger step displacements. Compared to the Von Mises strain threshold of 14.65%, as proposed by Sahoo et al., indicating a 50% risk of diffuse axonal injury (DAI), it was recommended to limit the initial step displacement during insertion to 1 μm, increasing to 5 μm at deeper locations (over 500 μm) to balance safety and efficiency. Additionally, it was found that cortical thickness had a negligible impact during insertion and while experiencing steady-state acceleration in vivo, with the three fitted curves almost coinciding when cortical thicknesses were 0.5 mm, 2.5 mm, and 4.5 mm. The flexible electrode exhibited excellent mechanical performance under steady-state acceleration in vivo, with ε98 being less than 0.3% and σ98 being less than 50 Pa, although it was more sensitive to horizontal acceleration. Thus, it could be concluded that during long-duration accelerations from transportation modes such as elevators and high-speed trains, the electrode's mechanical effects on brain tissue could be neglected, demonstrating long-term mechanical stability. This research was significant for guiding surgical insertion and clinical applications of flexible electrodes.
Collapse
Affiliation(s)
- Linsen Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Longchun Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuhui Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingcheng Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shang Deng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng-Kung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Med-X Research Institute, Engineering Research Center of Digital Medicine, Shanghai Jiao Tong University, Ministry of Education, Shanghai, 200240, China.
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Abdel Aziz I, Tullii G, Antognazza MR, Criado-Gonzalez M. Poly(3-hexylthiophene) as a versatile semiconducting polymer for cutting-edge bioelectronics. MATERIALS HORIZONS 2025. [PMID: 40331312 PMCID: PMC12056706 DOI: 10.1039/d5mh00096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
Semiconducting polymers (SPs), widely used in organic optoelectronics, are gaining interest in bioelectronics owing to their intrinsic optical properties, conductivity, biocompatibility, flexibility, and chemical tunability. Among them, poly(3-hexylthiophene) (P3HT) has attracted great attention as a versatile SP, being both optically active and conductive, for the fabrication of smart materials (e.g., films and nanoparticles), allowing the modulation of their performance and final biomedical applications. This review article provides an overview of the design of different kinds of P3HT-based materials, from chemical properties to structural engineering, to be used as key opto-electronic components in the development of opto-transducers for the modulation of cell fate, as well as biosensors such as organic electrochemical transistors (OECTs) and organic field effect transistors (OEFTs). Finally, their foremost applications in the biomedical field ranging from tissue engineering to biosensing will be discussed, including the future perspectives of P3HT derivatives towards cutting-edge applications for bioelectronics, in which optoceutics plays a key role.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Gabriele Tullii
- Center for Nano Science andTechnology@PoliMi, Istituto Italiano di Tecnologia, 20134 Milano, Italy.
| | - Maria Rosa Antognazza
- Center for Nano Science andTechnology@PoliMi, Istituto Italiano di Tecnologia, 20134 Milano, Italy.
| | - Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
3
|
Weng K, Li W, Cheng X, Xing Y, Fu X, Wang Y, Wang H, Tian X, Wang Y, Li L, Yao J, Sheng X, Li J, Zhang H. Metal-Organic Frameworks Modified Organic Bulk Heterojunction Interfaces for Effective Nongenetic Neuromodulation. ACS NANO 2025; 19:16813-16828. [PMID: 40279182 DOI: 10.1021/acsnano.5c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Photoactive organic semiconductors, such as bulk heterojunctions (BHJs) of donor-acceptor pairs, are promising for building flexible devices for nongenetic and precise optical neuromodulation. However, the full potential of the diverse compositions and functionalities of BHJs has yet to be explored for neuromodulation due to their unsatisfactory interfaces with soft biotissues, which hinder signal transduction, tissue adhesion, and biocompatibility. Here, we address these challenges by introducing an interfacial layer composed of conductive and porous metal-organic frameworks (MOFs). The MOFs layer enhances charge injection capacity at the interface by >400 times and ensures tight and biocompatible junction between BHJs and biological materials. These improvements enable efficient electrical-to-ionic signal transduction for various BHJs, supporting reliable nongenetic modulation of cultured mouse hippocampal neurons under deep-red and near-infrared light. Moreover, flexible devices made from MOFs-modified BHJs allow for the in vivo stimulation of rat sciatic nerves at an ultralow light intensity threshold (0.01 mW mm-2), 700 times lower than that required for unmodified devices. This interfacial engineering with porous MOFs can expand the material toolbox of BHJs-based photocapacitors and unlock more functionalities for neuromodulation and prosthetic biointerfaces.
Collapse
Affiliation(s)
- Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Optics and Photonics, Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xinyu Cheng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yunyun Xing
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Fu
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yinghan Wang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yuqi Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Vanalakar SA, Qureshi MH, Srivastava SB, Khan SU, Eren GO, Onal A, Kaya L, Kaleli HN, Pehlivan C, Hassnain M, Vhanalakar SA, Sahin A, Hasanreisoglu M, Nizamoglu S. Perovskite Quantum Dot-Based Photovoltaic Biointerface for Photostimulation of Neurons. IEEE Trans Biomed Eng 2025; 72:1248-1255. [PMID: 39485691 DOI: 10.1109/tbme.2024.3490180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
OBJECTIVE A promising avenue for vision restoration against retinal degeneration is the use of semiconductor-based photovoltaic biointerfaces to substitute natural photoreceptors. Instead of silicon, perovskite has emerged as an exciting material for solar energy harvesting, and its nanocrystalline forms generally offer better stability than their bulk counterparts in addition to the distinct synthesis and fabrication steps. METHODS Herein, we synthesize tetramethylammonium lead iodide (TMAPbI3) perovskite quantum dots (QDs) as a novel photoactive material for photovoltaic biointerfaces. While the TMAPbI3 quantum dots and electrolyte interface induces Faradaic photocurrent under light illumination, the heterojunction with P3HT converts the charge-transfer process to a safe capacitive photocurrent with an improved ionic responsivity of 17.4 mA/W. SIGNIFICANCE The integration of the 18-nm quantum dot thickness shows good biocompatibility with primary cultures of hippocampal neurons and the photoresponse of the biointerface triggered photostimulation of the neurons. The rise of perovskite materials can stimulate novel forms of photovoltaic retina implants.
Collapse
|
5
|
Yao Y, Ahnood A, Chambers A, Tong W, Prawer S. Nitrogen-Doped Ultrananocrystalline Diamond - Optoelectronic Biointerface for Wireless Neuronal Stimulation. Adv Healthc Mater 2025; 14:e2403901. [PMID: 39935067 PMCID: PMC11973940 DOI: 10.1002/adhm.202403901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/28/2024] [Indexed: 02/13/2025]
Abstract
This study presents a semiconducting optoelectronic system for light-controlled non-genetic neuronal stimulation using visible light. The system architecture is entirely wireless, comprising a thin film of nitrogen-doped ultrananocrystalline diamond directly grown on a semiconducting silicon substrate. When immersed in a physiological medium and subjected to pulsed illumination in the visible (595 nm) or near-infrared wavelength (808 nm) range, charge accumulation at the device-medium interface induces a transient ionic displacement current capable of electrically stimulating neurons with high temporal resolution. With a measured photoresponsivity of 7.5 mA W-1, the efficacy of this biointerface is demonstrated through optoelectronic stimulation of degenerate rat retinas using 595 nm irradiation, pulse durations of 50-500 ms, and irradiance levels of 1.1-4.3 mW mm-2, all below the safe ocular threshold. This work presents the pioneering utilization of a diamond-based optoelectronic platform, capable of generating sufficiently large photocurrents for neuronal stimulation in the retina.
Collapse
Affiliation(s)
- Yue Yao
- School of PhysicsThe University of MelbourneParkvilleVictoria3010Australia
| | - Arman Ahnood
- School of EngineeringThe RMIT UniversityMelbourneVictoria3000Australia
| | - Andre Chambers
- Department of Mechanical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Wei Tong
- School of PhysicsThe University of MelbourneParkvilleVictoria3010Australia
| | - Steven Prawer
- School of PhysicsThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
6
|
An NM, Roh H, Kim S, Kim JH, Im M. Machine Learning Techniques for Simulating Human Psychophysical Testing of Low-Resolution Phosphene Face Images in Artificial Vision. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405789. [PMID: 39985243 PMCID: PMC12005743 DOI: 10.1002/advs.202405789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/18/2025] [Indexed: 02/24/2025]
Abstract
To evaluate the quality of artificial visual percepts generated by emerging methodologies, researchers often rely on labor-intensive and tedious human psychophysical experiments. These experiments necessitate repeated iterations upon any major/minor modifications in the hardware/software configurations. Here, the capacity of standard machine learning (ML) models is investigated to accurately replicate quaternary match-to-sample tasks using low-resolution facial images represented by arrays of phosphenes as input stimuli. Initially, the performance of the ML models trained to approximate innate human facial recognition abilities across a dataset comprising 3600 phosphene images of human faces is analyzed. Subsequently, due to the time constraints and the potential for subject fatigue, the psychophysical test is limited to presenting only 720 low-resolution phosphene images to 36 human subjects. Notably, the superior model adeptly mirrors the behavioral trend of human subjects, offering precise predictions for 8 out of 9 phosphene quality levels on the overlapping test queries. Subsequently, human recognition performances for untested phosphene images are predicted, streamlining the process and minimizing the need for additional psychophysical tests. The findings underscore the transformative potential of ML in reshaping the research paradigm of visual prosthetics, facilitating the expedited advancement of prostheses.
Collapse
Affiliation(s)
- Na Min An
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Present address:
Kim Jaechul Graduate School of AIKAISTSeoul02455Republic of Korea
| | - Hyeonhee Roh
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Sein Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jae Hun Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Sensor System Research CenterAdvanced Materials and Systems Research DivisionKISTSeoul02792Republic of Korea
| | - Maesoon Im
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyUniversity of Science and Technology (UST)Seoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
| |
Collapse
|
7
|
Balcewicz FK, Baumgarten S, Schaffrath K, Wang J, Johnen S, Walter P, Lohmann T. Design, Fabrication, and Surgical Testing of the 3D-Printed Large-Array Port-System for the Implantation of Large Epiretinal Stimulators. Transl Vis Sci Technol 2025; 14:8. [PMID: 39908133 PMCID: PMC11804888 DOI: 10.1167/tvst.14.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose In the treatment of blindness causing retinal dystrophies, that is, retinitis pigmentosa (RP), retinal implants showed promising results. Recently, larger devices restoring a greater visual field were introduced. With larger size, implantation surgery became more difficult. In this study, a novel implantation device was developed, fabricated, and tested in implantation surgeries. The goal was to demonstrate a reproducible, safe, and, in comparison, superior implantation method. Methods The novel implantation device 3D-Printed Large-Array Port-System (3D-PLAPS) was designed using computer-aided design software. Anatomic dimensions of rabbit, pig, and human eyes were collected from anatomic and histological data sources. The 3D-PLAPS were 3D-printed. In cadaveric porcine and rabbit eyes, 3D-PLAPS was used to implant large epiretinal stimulators developed by this group. A standardized surgical procedure was established. Intraocular pressure (IOP) was measured. Results The 3D-PLAPS implantation device was designed with a length of 8.4 mm and adapted to the curvature of normal sighted human eyes with a diameter of 24.0 mm. The elliptical aperture is 7.0 mm in length and 1.0 mm in width at its widest points. Marginal apertures for scleral fixation were added. A closing plug was introduced. Design and dimensions were adapted for rabbit eyes. During surgery, the 3D-PLAPS improved ocular stability, sealed the incision, and withstood an elevated IOP. It was suitable for foldable stimulators with a diameter of up to 14.0 mm. Conclusions The 3D-PLAPS implantation device showed feasibility in implantation of large epiretinal stimulators and possibly also facilitates repositioning of stimulating arrays in acute experiments without the necessity for additional surgical steps. Translational Relevance The 3D printing and CAD software are used to applied surgery for large epiretinal stimulators.
Collapse
Affiliation(s)
| | - Sabine Baumgarten
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Kim Schaffrath
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Jiayun Wang
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Tibor Lohmann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Rao Z, Ershad F, Guan YS, Paccola Mesquita FC, da Costa EC, Morales-Garza MA, Moctezuma-Ramirez A, Kan B, Lu Y, Patel S, Shim H, Cheng K, Wu W, Haideri T, Lian XL, Karim A, Yang J, Elgalad A, Hochman-Mendez C, Yu C. Ultrathin rubbery bio-optoelectronic stimulators for untethered cardiac stimulation. SCIENCE ADVANCES 2024; 10:eadq5061. [PMID: 39642227 PMCID: PMC11623305 DOI: 10.1126/sciadv.adq5061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024]
Abstract
Untethered electrical stimulation or pacing of the heart is of critical importance in addressing the pressing needs of cardiovascular diseases in both clinical therapies and fundamental studies. Among various stimulation methods, light illumination-induced electrical stimulation via photoelectric effect without any genetic modifications to beating cells/tissues or whole heart has profound benefits. However, a critical bottleneck lies in the lack of a suitable material with tissue-like mechanical softness and deformability and sufficient optoelectronic performances toward effective stimulation. Here, we introduce an ultrathin (<500 nm), stretchy, and self-adhesive rubbery bio-optoelectronic stimulator (RBOES) in a bilayer construct of a rubbery semiconducting nanofilm and a transparent, stretchable gold nanomesh conductor. The RBOES could maintain its optoelectronic performance when it was stretched by 20%. The RBOES was validated to effectively accelerate the beating of the human induced pluripotent stem cell-derived cardiomyocytes. Furthermore, acceleration of ex vivo perfused rat hearts by optoelectronic stimulation with the self-adhered RBOES was achieved with repetitive pulsed light illumination.
Collapse
Affiliation(s)
- Zhoulyu Rao
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Faheem Ershad
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Ying-Shi Guan
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
| | | | | | - Marco A. Morales-Garza
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | - Angel Moctezuma-Ramirez
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | - Bin Kan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuntao Lu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Shubham Patel
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyunseok Shim
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kuan Cheng
- Materials Science and Engineering Program, University of Houston, Houston, TX 77024, USA
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77024, USA
| | - Tahir Haideri
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77024, USA
| | - Jian Yang
- Department of Materials Science and Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Abdelmotagaly Elgalad
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | | | - Cunjiang Yu
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Department of Mechanical Science and Engineering, Materials Science
and Engineering, Bioengineering, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Hinrichs S, Placidet L, Duret A, Authié C, Arleo A, Ghezzi D. Wide-angle simulated artificial vision enhances spatial navigation and object interaction in a naturalistic environment. J Neural Eng 2024; 21:066005. [PMID: 39454585 DOI: 10.1088/1741-2552/ad8b6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
Objective. Vision restoration approaches, such as prosthetics and optogenetics, provide visual perception to blind individuals in clinical settings. Yet their effectiveness in daily life remains a challenge. Stereotyped quantitative tests used in clinical trials often fail to translate into practical, everyday applications. On the one hand, assessing real-life benefits during clinical trials is complicated by environmental complexity, reproducibility issues, and safety concerns. On the other hand, predicting behavioral benefits of restorative therapies in naturalistic environments may be a crucial step before starting clinical trials to minimize patient discomfort and unmet expectations.Approach. To address this, we leverage advancements in virtual reality technology to conduct a fully immersive and ecologically valid task within a physical artificial street environment. As a case study, we assess the impact of the visual field size in simulated artificial vision for common outdoor tasks.Main results. We show that a wide visual angle (45°) enhances participants' ability to navigate and solve tasks more effectively, safely, and efficiently. Moreover, it promotes their learning and generalization capability. Concurrently, it changes the visual exploration behavior and facilitates a more accurate mental representation of the environment. Further increasing the visual angle beyond this value does not yield significant additional improvements in most metrics.Significance. We present a methodology combining augmented reality with a naturalistic environment, enabling participants to perceive the world as patients with retinal implants would and to interact physically with it. Combining augmented reality in naturalistic environments is a valuable framework for low vision and vision restoration research.
Collapse
Affiliation(s)
- Sandrine Hinrichs
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Louise Placidet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Antonin Duret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Ophthalmic and Neural Technologies Laboratory, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
10
|
Cheng X, Li W, Wang Y, Weng K, Xing Y, Huang Y, Sheng X, Yao J, Zhang H, Li J. Highly Branched Au Superparticles as Efficient Photothermal Transducers for Optical Neuromodulation. ACS NANO 2024; 18:29572-29584. [PMID: 39400203 DOI: 10.1021/acsnano.4c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Precise neuromodulation is critical for interrogating cellular communication and treating neurological diseases. Nanoscale transducers have emerged as effective interfaces to exert photothermal effects and modulate neural activities with a high spatiotemporal resolution. Ideal materials for this application should possess strong light absorption, high photothermal conversion efficiency, and great biocompatibility for clinical translation. Here, we show that the structurally designed 3D Au superparticles with a highly branched morphology can be promising candidates for nongenetic and remote neuromodulation. The structure-induced blackbody-like absorption endows Au superparticles with photothermal conversion efficiency over 90%, much higher than that of conventional Au nanorods. With the biocompatible polydopamine ligands, Au superparticles can be readily interfaced with primary mouse hippocampal neurons and other cells and can photostimulate or inhibit their activities in both cell networks or with a single-cell resolution. These findings highlight the importance of structural designs as powerful tools to promote the performance of plasmonic materials in neuromodulation and related research of neuroscience and neuroengineering.
Collapse
Affiliation(s)
- Xinyu Cheng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yinghan Wang
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Optics and Photonics, Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Yunyun Xing
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jun Yao
- School of Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Choi H, Biswas S, Lang P, Bae JH, Kim H. A Current Development of Energy Harvesting Systems for Energy-Independent Bioimplantable Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403899. [PMID: 38984756 DOI: 10.1002/smll.202403899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Biosensors have emerged as vital tools for the detection and monitoring of essential biological information. However, their efficiency is often constrained by limitations in the power supply. To address this challenge, energy harvesting systems have gained prominence. These off-grid, independent systems harness energy from the surrounding environment, providing a sustainable solution for powering biosensors autonomously. This continuous power source overcomes critical constraints, ensuring uninterrupted operation and seamless data collection. In this article, a comprehensive review of recent literature on energy harvesting-based biosensors is presented. Various techniques and technologies are critically examined, including optical, mechanical, thermal, and wireless power transfer, focusing on their applications and optimization. Furthermore, the immense potential of these energy harvesting-driven biosensors is highlighted across diverse fields, such as medicine, environmental surveillance, and biosignal analysis. By exploring the integration of energy harvesting systems, this review underscores their pivotal role in advancing biosensor technology. These innovations promise improved efficiency, reduced environmental impact, and broader applicability, marking significant progress in the field of biosensors.
Collapse
Affiliation(s)
- Hyojeong Choi
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Swarup Biswas
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Philippe Lang
- ITODYS, University of Paris, CNRS UMR 7086, 15 rue Jean-Antoine de Baif, Paris CEDEX 13, 75205, France
| | - Jin-Hyuk Bae
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| |
Collapse
|
12
|
Zhu Y, Liu X, Ma J, Wang Z, Jiang H, Sun C, Jeong DY, Guan H, Chu B. Wireless and Opto-Stimulated Flexible Implants: Artificial Retina Constructed by Ferroelectric BiFeO 3-BaTiO 3/P(VDF-TrFE) Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48395-48405. [PMID: 39223074 DOI: 10.1021/acsami.4c12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The degeneration of retinal photoreceptors is one of the primary causes of blindness, and the implantation of retinal prostheses offers hope for vision restoration in individuals who are completely blind. Flexible bioelectronic devices present a promising avenue for the next generation of retinal prostheses owing to their soft mechanical properties and tissue friendliness. In this study, we developed flexible composite films of ferroelectric BiFeO3-BaTiO3 (BFO-BTO) particles synthesized by the hydrothermal method and ferroelectric poly(vinyldene difluoride-trifluoroethylene) (P(VDF-TrFE)) polymer and investigated their applications in artificial retinas. Owing to the coupling of the photothermal effect of BFO-BTO particles and the pyroelectric effect of the P(VDF-TrFE) polymer, the composite films demonstrate a strong photoelectric response (a maximum peak-to-peak photovoltage > 80 V under blue light of 100 mW/cm2) in a wide wavelength range of light (from visible to infrared) with the inherent flexibility and ease of preparation, making it an attractive candidate for artificial retinal applications. Experimental results showed that blind rats implanted with artificial retinas of the composites display light-responsive behavior, showcasing the effectiveness of vision restoration. This study demonstrates a novel approach for employing ferroelectric materials in vision restoration and offers insights into future artificial retina design.
Collapse
Affiliation(s)
- Yuhong Zhu
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong 226001, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Zhaopeng Wang
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jiang
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Dae-Yong Jeong
- Department of Materials Science & Engineering, Inha University, Incheon 22212, Korea
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong 226001, China
| | - Baojin Chu
- CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Wang L, Liu S, Zhao W, Li J, Zeng H, Kang S, Sheng X, Wang L, Fan Y, Yin L. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Adv Healthc Mater 2024; 13:e2303316. [PMID: 38323711 DOI: 10.1002/adhm.202303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.
Collapse
Affiliation(s)
- Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wentai Zhao
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Jiakun Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Haoxuan Zeng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
14
|
Jakešová M, Kunovský O, Gablech I, Khodagholy D, Gelinas J, Głowacki ED. Coupling of photovoltaics with neurostimulation electrodes-optical to electrolytic transduction. J Neural Eng 2024; 21:046003. [PMID: 38885680 DOI: 10.1088/1741-2552/ad593d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents.Approach.We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrOx, Ti, W, PtOx, Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit.Main results.Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types.Significance.This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to bothin vitroandin vivoapplications, offering a resource to the neural engineering community.
Collapse
Affiliation(s)
- Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ondřej Kunovský
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Imrich Gablech
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Jennifer Gelinas
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
- Department of Neurology, Columbia University, New York, NY 10032, United States of America
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
15
|
Schulz A, Knoll T, Jaeger T, Le Harzic R, Stracke F, Wien SL, Olsommer Y, Meiser I, Wagner S, Rammensee M, Kurz O, Klesy S, Sermeus L, Julich-Haertel H, Schweitzer Y, Januschowski K, Velten T, Szurman P. Photovoltaic, wireless wide-field epiretinal prosthesis to treat retinitis pigmentosa. Acta Ophthalmol 2024. [PMID: 38923194 DOI: 10.1111/aos.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To develop and evaluate a photovoltaic, wireless wide-field epiretinal prosthesis for the treatment of retinitis pigmentosa. METHODS A mosaic array of thinned silicon-based photodiodes with integrated thin-film stimulation electrodes was fabricated with a flexible polyimide substrate film to form a film-based miniaturized electronic system with wireless optical power and signal transmission and integrated electrostimulation. Manufactured implants were characterized with respect to their optoelectronic performance and biocompatibility following DIN EN ISO 10993. RESULTS A 14 mm diameter prosthesis containing 1276 pixels with a maximum sensitivity at a near infrared wavelength of 905 nm and maximized stimulation current density 30-50 μm below the electrodes was developed for direct activation of retinal ganglion cells during epiretinal stimulation. Fabricated prostheses demonstrated mucosal tolerance and the preservation of both metabolic activity, proliferation and membrane integrity of human fibroblasts as well as the retinal functions of bovine retinas. Illumination of the prosthesis, which was placed epiretinally on an isolated perfused bovine retina, with infrared light resulted in electrophysiological recordings reminiscent of an a-wave (hyperpolarization) and b-wave (depolarization). CONCLUSIONS A photovoltaic, wireless wide-field epiretinal prosthesis for the treatment of retinitis pigmentosa using near infrared light for signal transmission was designed, manufactured and its biocompatibility and functionality demonstrated in vitro and ex vivo.
Collapse
Affiliation(s)
- André Schulz
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
- Klaus Heimann Eye Research Institute, Sulzbach, Germany
| | - Thorsten Knoll
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | | | - Ronan Le Harzic
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Frank Stracke
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Sascha L Wien
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Yves Olsommer
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ina Meiser
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | | | | | | | - Loic Sermeus
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
| | - Henrike Julich-Haertel
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
- Klaus Heimann Eye Research Institute, Sulzbach, Germany
| | | | - Kai Januschowski
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
- Klaus Heimann Eye Research Institute, Sulzbach, Germany
| | - Thomas Velten
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
- Klaus Heimann Eye Research Institute, Sulzbach, Germany
| |
Collapse
|
16
|
Kelly AR, Glover DJ. Information Transmission through Biotic-Abiotic Interfaces to Restore or Enhance Human Function. ACS APPLIED BIO MATERIALS 2024; 7:3605-3628. [PMID: 38729914 DOI: 10.1021/acsabm.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Advancements in reliable information transfer across biotic-abiotic interfaces have enabled the restoration of lost human function. For example, communication between neuronal cells and electrical devices restores the ability to walk to a tetraplegic patient and vision to patients blinded by retinal disease. These impactful medical achievements are aided by tailored biotic-abiotic interfaces that maximize information transfer fidelity by considering the physical properties of the underlying biological and synthetic components. This Review develops a modular framework to define and describe the engineering of biotic and abiotic components as well as the design of interfaces to facilitate biotic-abiotic information transfer using light or electricity. Delineating the properties of the biotic, interface, and abiotic components that enable communication can serve as a guide for future research in this highly interdisciplinary field. Application of synthetic biology to engineer light-sensitive proteins has facilitated the control of neural signaling and the restoration of rudimentary vision after retinal blindness. Electrophysiological methodologies that use brain-computer interfaces and stimulating implants to bypass spinal column injuries have led to the rehabilitation of limb movement and walking ability. Cellular interfacing methodologies and on-chip learning capability have been made possible by organic transistors that mimic the information processing capacity of neurons. The collaboration of molecular biologists, material scientists, and electrical engineers in the emerging field of biotic-abiotic interfacing will lead to the development of prosthetics capable of responding to thought and experiencing touch sensation via direct integration into the human nervous system. Further interdisciplinary research will improve electrical and optical interfacing technologies for the restoration of vision, offering greater visual acuity and potentially color vision in the near future.
Collapse
Affiliation(s)
- Alexander R Kelly
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Rahmani A, Eom K. Enhanced organic photovoltaic-based retinal prosthesis using a cathode-modified structure with plasmonic silver nanoparticles: a computational study. Front Cell Neurosci 2024; 18:1385567. [PMID: 38873618 PMCID: PMC11169897 DOI: 10.3389/fncel.2024.1385567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Organic interfaces have recently emerged as a breakthrough trend in biomedical applications, demonstrating exceptional performance in stimulating retinal neuronal cells owing to their high flexibility and compatibility with tissues. However, the primary challenge associated with organic photovoltaics is their low efficiency compared to that of their inorganic counterparts. Among different approaches, embedding plasmonic metal nanoparticles (NPs) in active or buffer layers can efficiently improve photovoltaic cell performance. Methods A cathode decorated with silver nanoparticles is introduced to increase the absorption Phenomenon and improve the interface performance as a computational study. In addition to embedding spherical silver nanoparticles in the active layer (A-AgNPs), a monolayer array of spherical AgNPs in the cathode electrode (K-AgNPs) is incorporated. In this configuration, the large K-AgNPs play dual roles: acting as cathode electrode and serving as plasmonic centers to increase light trapping and absorption. The bulk heterojunction PCPDTBT:PCBM is chosen as the active layer due to its favorable electronic properties. Results Our computational analysis demonstrates a notable 10% enhancement in the photovoltaic cell current density for the developed structure with K-AgNPs in contrast to without them. Additionally, the simulation results reveal that the modeled device achieves a two-fold efficiency of the bare photovoltaic cell (without A-AgNPs and K-AgNPs), which is particularly evident at a low intensity of 0.26 mW/mm2. Discussion This study aims to propose an efficient epiretinal prosthesis structure using a different strategy for plasmonic effects rather than conventional methods, such as incorporating NPs into the active or buffer layer. This structure can prevent the harmful side effects of using large metal NPs (r > 10 nm) in the active layer during exciton quenching, charge trapping, and recombination, which deteriorate the power conversion efficiency (PCE).
Collapse
Affiliation(s)
- Ali Rahmani
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan, Republic of Korea
- Department of Electronics, College of Electrical and Computer Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Kyungsik Eom
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
18
|
Dawit H, Zhao Y, Wang J, Pei R. Advances in conductive hydrogels for neural recording and stimulation. Biomater Sci 2024; 12:2786-2800. [PMID: 38682423 DOI: 10.1039/d4bm00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The brain-computer interface (BCI) allows the human or animal brain to directly interact with the external environment through the neural interfaces, thus playing the role of monitoring, protecting, improving/restoring, enhancing, and replacing. Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. According to the electrode position, it can be divided into non-implantable, semi-implantable, and implantable. Among them, implantable neural electrodes can obtain the highest-quality electrophysiological information, so they have the most promising application. However, due to the chemo-mechanical mismatch between devices and tissues, the adverse foreign body response and performance loss over time seriously restrict the development and application of implantable neural electrodes. Given the challenges, conductive hydrogel-based neural electrodes have recently attracted much attention, owing to many advantages such as good mechanical match with the native tissues, negligible foreign body response, and minimal signal attenuation. This review mainly focuses on the current development of conductive hydrogels as a biocompatible framework for neural tissue and conductivity-supporting substrates for the transmission of electrical signals of neural tissue to speed up electrical regeneration and their applications in neural sensing and recording as well as stimulation.
Collapse
Affiliation(s)
- Hewan Dawit
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
19
|
Lu G, Gong C, Sun Y, Qian X, Rajendran Nair DS, Li R, Zeng Y, Ji J, Zhang J, Kang H, Jiang L, Chen J, Chang CF, Thomas BB, Humayun MS, Zhou Q. Noninvasive imaging-guided ultrasonic neurostimulation with arbitrary 2D patterns and its application for high-quality vision restoration. Nat Commun 2024; 15:4481. [PMID: 38802397 PMCID: PMC11130148 DOI: 10.1038/s41467-024-48683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain's visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.
Collapse
Affiliation(s)
- Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yizhe Sun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Deepthi S Rajendran Nair
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haochen Kang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jiawen Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chi-Feng Chang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Biju B Thomas
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Corna A, Cojocaru AE, Bui MT, Werginz P, Zeck G. Avoidance of axonal stimulation with sinusoidal epiretinal stimulation. J Neural Eng 2024; 21:026036. [PMID: 38547529 DOI: 10.1088/1741-2552/ad38de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Objective.Neuromodulation, particularly electrical stimulation, necessitates high spatial resolution to achieve artificial vision with high acuity. In epiretinal implants, this is hindered by the undesired activation of distal axons. Here, we investigate focal and axonal activation of retinal ganglion cells (RGCs) in epiretinal configuration for different sinusoidal stimulation frequencies.Approach.RGC responses to epiretinal sinusoidal stimulation at frequencies between 40 and 100 Hz were tested inex-vivophotoreceptor degenerated (rd10) isolated retinae. Experiments were conducted using a high-density CMOS-based microelectrode array, which allows to localize RGC cell bodies and axons at high spatial resolution.Main results.We report current and charge density thresholds for focal and distal axon activation at stimulation frequencies of 40, 60, 80, and 100 Hz for an electrode size with an effective area of 0.01 mm2. Activation of distal axons is avoided up to a stimulation amplitude of 0.23µA (corresponding to 17.3µC cm-2) at 40 Hz and up to a stimulation amplitude of 0.28µA (14.8µC cm-2) at 60 Hz. The threshold ratio between focal and axonal activation increases from 1.1 for 100 Hz up to 1.6 for 60 Hz, while at 40 Hz stimulation frequency, almost no axonal responses were detected in the tested intensity range. With the use of synaptic blockers, we demonstrate the underlying direct activation mechanism of the ganglion cells. Finally, using high-resolution electrical imaging and label-free electrophysiological axon tracking, we demonstrate the extent of activation in axon bundles.Significance.Our results can be exploited to define a spatially selective stimulation strategy avoiding axonal activation in future retinal implants, thereby solving one of the major limitations of artificial vision. The results may be extended to other fields of neuroprosthetics to achieve selective focal electrical stimulation.
Collapse
Affiliation(s)
- Andrea Corna
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | | | - Mai Thu Bui
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Paul Werginz
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Günther Zeck
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| |
Collapse
|
21
|
Li P, Zhang J, Hayashi H, Yue J, Li W, Yang C, Sun C, Shi J, Huberman-Shlaes J, Hibino N, Tian B. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 2024; 626:990-998. [PMID: 38383782 PMCID: PMC11646366 DOI: 10.1038/s41586-024-07016-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024]
Abstract
Electrode-based electrical stimulation underpins several clinical bioelectronic devices, including deep-brain stimulators1,2 and cardiac pacemakers3. However, leadless multisite stimulation is constrained by the technical difficulties and spatial-access limitations of electrode arrays. Optogenetics offers optically controlled random access with high spatiotemporal capabilities, but clinical translation poses challenges4-6. Here we show tunable spatiotemporal photostimulation of cardiac systems using a non-genetic platform based on semiconductor-enabled biomodulation interfaces. Through spatiotemporal profiling of photoelectrochemical currents, we assess the magnitude, precision, accuracy and resolution of photostimulation in four leadless silicon-based monolithic photoelectrochemical devices. We demonstrate the optoelectronic capabilities of the devices through optical overdrive pacing of cultured cardiomyocytes (CMs) targeting several regions and spatial extents, isolated rat hearts in a Langendorff apparatus, in vivo rat hearts in an ischaemia model and an in vivo mouse heart model with transthoracic optical pacing. We also perform the first, to our knowledge, optical override pacing and multisite pacing of a pig heart in vivo. Our systems are readily adaptable for minimally invasive clinical procedures using our custom endoscopic delivery device, with which we demonstrate closed-thoracic operations and endoscopic optical stimulation. Our results indicate the clinical potential of the leadless, lightweight and multisite photostimulation platform as a pacemaker in cardiac resynchronization therapy (CRT), in which lead-placement complications are common.
Collapse
Affiliation(s)
- Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jing Zhang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Hidenori Hayashi
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Wen Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Changxu Sun
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | | | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Leong F, Rahmani B, Psaltis D, Moser C, Ghezzi D. An actor-model framework for visual sensory encoding. Nat Commun 2024; 15:808. [PMID: 38280912 PMCID: PMC10821921 DOI: 10.1038/s41467-024-45105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
A fundamental challenge in neuroengineering is determining a proper artificial input to a sensory system that yields the desired perception. In neuroprosthetics, this process is known as artificial sensory encoding, and it holds a crucial role in prosthetic devices restoring sensory perception in individuals with disabilities. For example, in visual prostheses, one key aspect of artificial image encoding is to downsample images captured by a camera to a size matching the number of inputs and resolution of the prosthesis. Here, we show that downsampling an image using the inherent computation of the retinal network yields better performance compared to learning-free downsampling methods. We have validated a learning-based approach (actor-model framework) that exploits the signal transformation from photoreceptors to retinal ganglion cells measured in explanted mouse retinas. The actor-model framework generates downsampled images eliciting a neuronal response in-silico and ex-vivo with higher neuronal reliability than the one produced by a learning-free approach. During the learning process, the actor network learns to optimize contrast and the kernel's weights. This methodological approach might guide future artificial image encoding strategies for visual prostheses. Ultimately, this framework could be applicable for encoding strategies in other sensory prostheses such as cochlear or limb.
Collapse
Affiliation(s)
- Franklin Leong
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Babak Rahmani
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Microsoft Research, Cambridge, UK
| | - Demetri Psaltis
- Optics Laboratory, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Ophthalmic and Neural Technologies Laboratory, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland.
| |
Collapse
|
23
|
Ramirez KA, Drew-Bear LE, Vega-Garces M, Betancourt-Belandria H, Arevalo JF. An update on visual prosthesis. Int J Retina Vitreous 2023; 9:73. [PMID: 37996905 PMCID: PMC10668475 DOI: 10.1186/s40942-023-00498-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/17/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE To review the available evidence on the different retinal and visual prostheses for patients with retinitis pigmentosa and new implants for other indications including dry age-related macular degeneration. METHODS The PubMed, GoogleScholar, ScienceDirect, and ClinicalTrials databases were the main resources used to conduct the medical literature search. An extensive search was performed to identify relevant articles concerning the worldwide advances in retinal prosthesis, clinical trials, status of devices and potential future directions up to December 2022. RESULTS Thirteen devices were found to be current and were ordered by stimulation location. Six have active clinical trials. Four have been discontinued, including the Alpha IMS, Alpha AMS, IRIS II, and ARGUS II which had FDA and CE mark approval. Future directions will be presented in the review. CONCLUSION This review provides an update of retinal prosthetic devices, both current and discontinued. While some devices have achieved visual perception in animals and/or humans, the main issues impeding the commercialization of these devices include: increased length of time to observe outcomes, difficulties in finding validated meaures for use in studies, unknown long-term effects, lack of funding, and a low amount of patients simultaneously diagnosed with RP lacking other comorbid conditions. The ARGUS II did get FDA and CE mark approval so it was deemed safe and also effective. However, the company became more focused on a visual cortical implant. Future efforts are headed towards more biocompatible, safe, and efficacious devices.
Collapse
Affiliation(s)
- Kailyn A Ramirez
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Laura E Drew-Bear
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Maumenee 713, Baltimore, MD, 21287, USA
| | | | | | - J Fernando Arevalo
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Maumenee 713, Baltimore, MD, 21287, USA.
| |
Collapse
|
24
|
Kaya L, Karatum O, Balamur R, Kaleli HN, Önal A, Vanalakar SA, Hasanreisoğlu M, Nizamoglu S. MnO 2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301854. [PMID: 37386797 PMCID: PMC10477844 DOI: 10.1002/advs.202301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Optoelectronic biointerfaces have gained significant interest for wireless and electrical control of neurons. Three-dimentional (3D) pseudocapacitive nanomaterials with large surface areas and interconnected porous structures have great potential for optoelectronic biointerfaces that can fulfill the requirement of high electrode-electrolyte capacitance to effectively transduce light into stimulating ionic currents. In this study, the integration of 3D manganese dioxide (MnO2 ) nanoflowers into flexible optoelectronic biointerfaces for safe and efficient photostimulation of neurons is demonstrated. MnO2 nanoflowers are grown via chemical bath deposition on the return electrode, which has a MnO2 seed layer deposited via cyclic voltammetry. They facilitate a high interfacial capacitance (larger than 10 mF cm-2 ) and photogenerated charge density (over 20 µC cm-2 ) under low light intensity (1 mW mm-2 ). MnO2 nanoflowers induce safe capacitive currents with reversible Faradaic reactions and do not cause any toxicity on hippocampal neurons in vitro, making them a promising material for biointerfacing with electrogenic cells. Patch-clamp electrophysiology is recorded in the whole-cell configuration of hippocampal neurons, and the optoelectronic biointerfaces trigger repetitive and rapid firing of action potentials in response to light pulse trains. This study points out the potential of electrochemically-deposited 3D pseudocapacitive nanomaterials as a robust building block for optoelectronic control of neurons.
Collapse
Affiliation(s)
- Lokman Kaya
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Onuralp Karatum
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Rıdvan Balamur
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Hümeyra Nur Kaleli
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
| | - Asım Önal
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| | | | - Murat Hasanreisoğlu
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
- Department of OphthalmologySchool of MedicineKoc University34450IstanbulTurkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| |
Collapse
|
25
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Park B, Bang S, Hwang KS, Cha YK, Kwak J, Tran NL, Kim HS, Park S, Oh SJ, Im M, Chung S, Kim J, Park TH, Song HS, Kim HN, Kim JH. Eye-Mimicked Neural Network Composed of Photosensitive Neural Spheroids with Human Opsin Proteins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302996. [PMID: 37377148 DOI: 10.1002/adma.202302996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
An in vitro model, composed of the short-wavelength human opsins and rhodopsins, is created. Two types of photosensitive neural spheroids are transfected for selective reaction under bluish-purple and green lights. These are employed to two devices with intact neuron and neural-spheroid to study the interaction. By photostimulation, the photosensitive spheroid initiated photoactivation, and the signal generated from its body is transmitted to adjacent neural networks. Specifically, the signal traveled through the axon bundle in narrow gap from photosensitive spheroid to intact spheroid as an eye-to-brain model including optic nerve. The whole process with photosensitive spheroid is monitored by calcium ion detecting fluorescence images. The results of this study can be applied to examine vision restoration and novel photosensitive biological systems with spectral sensitivity.
Collapse
Affiliation(s)
- Byeongho Park
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seokyoung Bang
- Department of Biomedical Engineering, Dongguk University, Goyang, 10326, Republic of Korea
| | - Kyeong Seob Hwang
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeon Kyung Cha
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jisung Kwak
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Na Ly Tran
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyo-Suk Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Subeen Park
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seung Ja Oh
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Maesoon Im
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sooyoung Chung
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tai Hyun Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyun Seok Song
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong Nam Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hun Kim
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
27
|
Rahmani A, Eom K. Computational analysis of efficient organic solar cell-based retinal prosthesis using plasmonic gold nanoparticles. Front Cell Neurosci 2023; 17:1205048. [PMID: 37576567 PMCID: PMC10413124 DOI: 10.3389/fncel.2023.1205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Photovoltaic restoration of vision, especially in conjunction with the use of silicon photodiodes, has gained attention for use in patients affected by blindness due to retinal layer disease. Although the use of silicon photodiodes offers miniaturization of the implant unit and increase in the stimulation channel, the implant unit may suffer from the fracture of these brittle photodiodes when mechanical pressure exerted. Methods We present an organic solar cell (OSC)-based retinal prosthesis in which spherical gold nanoparticles (AuNPs) are embedded into the active layer to increase the efficiency of the bioelectric interface. Results We demonstrate computationally that a modeled OSC incorporating spherical AuNPs has three times higher efficiency than that of a bare OSC presented before for retinal prostheses. Our AuNP based OSC was able to activate the neuron at the minimum light intensity of 0.26 mW/mm2, which is lower than that of the bare OSC. Discussion The use of AuNPs in OSC allows device miniaturization or lowering of the light exposure required for neural activation using a photovoltaic retinal prosthesis, which can generally be applied in a broad range of neural prostheses.
Collapse
Affiliation(s)
- Ali Rahmani
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan, Republic of Korea
- Department of Electronics, College of Electrical and Computer Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre-e-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Kyungsik Eom
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
28
|
Kang H, Kim J, Kim J. Integrated High-Temporal-Resolution and High-Density Subretinal Prosthesis Using a Correlated Double-Sampling Technique. SENSORS (BASEL, SWITZERLAND) 2023; 23:6501. [PMID: 37514794 PMCID: PMC10383336 DOI: 10.3390/s23146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
This paper presents a 1600-pixel integrated neural stimulator with a correlated double-sampling readout (DSR) circuit for a subretinal prosthesis. The retinal stimulation chip inserted beneath the photoreceptor layer comprises an array of an active pixel sensor (APS) and biphasic pulse shaper. The DSR circuit achieves a high signal-to-noise ratio (SNR) of the APS with a short integration time to simultaneously improve the temporal and spatial resolutions of restored vision. This DSR circuit is adopted along with a 5 × 5-pixel tile, which reduces pixel size and improves the SNR by increasing the area occupied by storage capacitors. Moreover, a low-mismatch reference generator enables a low standard deviation between individual pulse shapers. The 1600-pixel retinal chip, fabricated using the 0.18 μm 1P6M CMOS process, occupies a total area of 4.3 mm × 3.3 mm and dissipates an average power of 3.4 mW; this was demonstrated by determining the stimulus current patterns corresponding to the illuminations of an LCD projector. Experimental results show that the proposed high-density stimulation array chip can achieve a high temporal resolution owing to its short integration time.
Collapse
Affiliation(s)
- Hosung Kang
- Department of Medical Science, Korea University, Seoul 02841, Republic of Korea
| | - Jungyeon Kim
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21936, Republic of Korea
- Cellico Research and Development Laboratory, Sungnam-si 13449, Republic of Korea
| | - Jungsuk Kim
- Department of Biomedical Engineering, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
29
|
Jia H, Huang Z, Kaynak M, Sakar MS. Colloidal self-assembly of soft neural interfaces from injectable photovoltaic microdevices. RSC Adv 2023; 13:19888-19897. [PMID: 37404318 PMCID: PMC10316755 DOI: 10.1039/d3ra03591c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Biomimetic retinas with a wide field of view and high resolution are in demand for neuroprosthetics and robot vision. Conventional neural prostheses are manufactured outside the application area and implanted as a complete device using invasive surgery. Here, a minimally invasive strategy based on in situ self-assembly of photovoltaic microdevices (PVMs) is presented. The photoelectricity transduced by PVMs upon visible light illumination reaches the intensity levels that could effectively activate the retinal ganglion cell layers. The geometry and multilayered architecture of the PVMs along with the tunability of their physical properties such as size and stiffness allow several routes for initiating a self-assembly process. The spatial distribution and packing density of the PVMs within the assembled device are modulated through concentration, liquid discharge speed, and coordinated self-assembly steps. Subsequent injection of a photocurable and transparent polymer facilitates tissue integration and reinforces the cohesion of the device. Taken together, the presented methodology introduces three unique features: minimally invasive implantation, personalized visual field and acuity, and a device geometry adaptable to retina topography.
Collapse
Affiliation(s)
- Haiyan Jia
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Zhangjun Huang
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Murat Kaynak
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne CH-1015 Switzerland
| |
Collapse
|
30
|
Wu KY, Mina M, Sahyoun JY, Kalevar A, Tran SD. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration. SENSORS (BASEL, SWITZERLAND) 2023; 23:5782. [PMID: 37447632 PMCID: PMC10347280 DOI: 10.3390/s23135782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
A retinal prosthesis, also known as a bionic eye, is a device that can be implanted to partially restore vision in patients with retinal diseases that have resulted in the loss of photoreceptors (e.g., age-related macular degeneration and retinitis pigmentosa). Recently, there have been major breakthroughs in retinal prosthesis technology, with the creation of numerous types of implants, including epiretinal, subretinal, and suprachoroidal sensors. These devices can stimulate the remaining cells in the retina with electric signals to create a visual sensation. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 is conducted. This narrative review delves into the retinal anatomy, physiology, pathology, and principles underlying electronic retinal prostheses. Engineering aspects are explored, including electrode-retina alignment, electrode size and material, charge density, resolution limits, spatial selectivity, and bidirectional closed-loop systems. This article also discusses clinical aspects, focusing on safety, adverse events, visual function, outcomes, and the importance of rehabilitation programs. Moreover, there is ongoing debate over whether implantable retinal devices still offer a promising approach for the treatment of retinal diseases, considering the recent emergence of cell-based and gene-based therapies as well as optogenetics. This review compares retinal prostheses with these alternative therapies, providing a balanced perspective on their advantages and limitations. The recent advancements in retinal prosthesis technology are also outlined, emphasizing progress in engineering and the outlook of retinal prostheses. While acknowledging the challenges and complexities of the technology, this article highlights the significant potential of retinal prostheses for vision restoration in individuals with retinal diseases and calls for continued research and development to refine and enhance their performance, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Mina Mina
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jean-Yves Sahyoun
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
31
|
Karatum O, Han M, Erdogan ET, Karamursel S, Nizamoglu S. Physical mechanisms of emerging neuromodulation modalities. J Neural Eng 2023; 20:031001. [PMID: 37224804 DOI: 10.1088/1741-2552/acd870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
One of the ultimate goals of neurostimulation field is to design materials, devices and systems that can simultaneously achieve safe, effective and tether-free operation. For that, understanding the working mechanisms and potential applicability of neurostimulation techniques is important to develop noninvasive, enhanced, and multi-modal control of neural activity. Here, we review direct and transduction-based neurostimulation techniques by discussing their interaction mechanisms with neurons via electrical, mechanical, and thermal means. We show how each technique targets modulation of specific ion channels (e.g. voltage-gated, mechanosensitive, heat-sensitive) by exploiting fundamental wave properties (e.g. interference) or engineering nanomaterial-based systems for efficient energy transduction. Overall, our review provides a detailed mechanistic understanding of neurostimulation techniques together with their applications toin vitro, in vivo, and translational studies to guide the researchers toward developing more advanced systems in terms of noninvasiveness, spatiotemporal resolution, and clinical applicability.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Mertcan Han
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Ezgi Tuna Erdogan
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sacit Karamursel
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
32
|
Wang C, Fang C, Zou Y, Yang J, Sawan M. SpikeSEE: An energy-efficient dynamic scenes processing framework for retinal prostheses. Neural Netw 2023; 164:357-368. [PMID: 37167749 DOI: 10.1016/j.neunet.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Intelligent and low-power retinal prostheses are highly demanded in this era, where wearable and implantable devices are used for numerous healthcare applications. In this paper, we propose an energy-efficient dynamic scenes processing framework (SpikeSEE) that combines a spike representation encoding technique and a bio-inspired spiking recurrent neural network (SRNN) model to achieve intelligent processing and extreme low-power computation for retinal prostheses. The spike representation encoding technique could interpret dynamic scenes with sparse spike trains, decreasing the data volume. The SRNN model, inspired by the human retina's special structure and spike processing method, is adopted to predict the response of ganglion cells to dynamic scenes. Experimental results show that the Pearson correlation coefficient of the proposed SRNN model achieves 0.93, which outperforms the state-of-the-art processing framework for retinal prostheses. Thanks to the spike representation and SRNN processing, the model can extract visual features in a multiplication-free fashion. The framework achieves 8 times power reduction compared with the convolutional recurrent neural network (CRNN) processing-based framework. Our proposed SpikeSEE predicts the response of ganglion cells more accurately with lower energy consumption, which alleviates the precision and power issues of retinal prostheses and provides a potential solution for wearable or implantable prostheses.
Collapse
Affiliation(s)
- Chuanqing Wang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Chaoming Fang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Yang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Mohamad Sawan
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
33
|
Zhou M, Young BK, Valle ED, Koo B, Kim J, Weiland JD. Full-field, conformal epiretinal electrode array using hydrogel and polymer hybrid technology. Sci Rep 2023; 13:6973. [PMID: 37117214 PMCID: PMC10147691 DOI: 10.1038/s41598-023-32976-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 04/30/2023] Open
Abstract
Shape-morphable electrode arrays can form 3D surfaces to conform to complex neural anatomy and provide consistent positioning needed for next-generation neural interfaces. Retinal prostheses need a curved interface to match the spherical eye and a coverage of several cm to restore peripheral vision. We fabricated a full-field array that can (1) cover a visual field of 57° based on electrode position and of 113° based on the substrate size; (2) fold to form a compact shape for implantation; (3) self-deploy into a curvature fitting the eye after implantation. The full-field array consists of multiple polymer layers, specifically, a sandwich structure of elastomer/polyimide-based-electrode/elastomer, coated on one side with hydrogel. Electrodeposition of high-surface-area platinum/iridium alloy significantly improved the electrical properties of the electrodes. Hydrogel over-coating reduced electrode performance, but the electrodes retained better properties than those without platinum/iridium. The full-field array was rolled into a compact shape and, once implanted into ex vivo pig eyes, restored to a 3D curved surface. The full-field retinal array provides significant coverage of the retina while allowing surgical implantation through an incision 33% of the final device diameter. The shape-changing material platform can be used with other neural interfaces that require conformability to complex neuroanatomy.
Collapse
Affiliation(s)
- Muru Zhou
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, 48105, USA
| | - Benjamin K Young
- Department of Ophthalmology, Oregon Health and Sciences University, Portland, OR, 97239, USA
| | - Elena Della Valle
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA
| | - Beomseo Koo
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA
| | - Jinsang Kim
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, 48105, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA
- Chemical Engineering, University of Michigan, Ann Arbor, 48105, USA
- Materials Science and Engineering, University of Michigan, Ann Arbor, 48105, USA
- Chemistry, University of Michigan, Ann Arbor, 48105, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, 48105, USA
| | - James D Weiland
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, 48105, USA.
- Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, 48105, USA.
| |
Collapse
|
34
|
Ahnood A, Chambers A, Gelmi A, Yong KT, Kavehei O. Semiconducting electrodes for neural interfacing: a review. Chem Soc Rev 2023; 52:1491-1518. [PMID: 36734845 DOI: 10.1039/d2cs00830k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past 50 years, the advent of electronic technology to directly interface with neural tissue has transformed the fields of medicine and biology. Devices that restore or even replace impaired bodily functions, such as deep brain stimulators and cochlear implants, have ushered in a new treatment era for previously intractable conditions. Meanwhile, electrodes for recording and stimulating neural activity have allowed researchers to unravel the vast complexities of the human nervous system. Recent advances in semiconducting materials have allowed effective interfaces between electrodes and neuronal tissue through novel devices and structures. Often these are unattainable using conventional metallic electrodes. These have translated into advances in research and treatment. The development of semiconducting materials opens new avenues in neural interfacing. This review considers this emerging class of electrodes and how it can facilitate electrical, optical, and chemical sensing and modulation with high spatial and temporal precision. Semiconducting electrodes have advanced electrically based neural interfacing technologies owing to their unique electrochemical and photo-electrochemical attributes. Key operation modalities, namely sensing and stimulation in electrical, biochemical, and optical domains, are discussed, highlighting their contrast to metallic electrodes from the application and characterization perspective.
Collapse
Affiliation(s)
- Arman Ahnood
- School of Engineering, RMIT University, VIC 3000, Australia
| | - Andre Chambers
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Amy Gelmi
- School of Science, RMIT University, VIC 3000, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| | - Omid Kavehei
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
35
|
Wang C, Fang C, Zou Y, Yang J, Sawan M. Artificial intelligence techniques for retinal prostheses: a comprehensive review and future direction. J Neural Eng 2023; 20. [PMID: 36634357 DOI: 10.1088/1741-2552/acb295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Objective. Retinal prostheses are promising devices to restore vision for patients with severe age-related macular degeneration or retinitis pigmentosa disease. The visual processing mechanism embodied in retinal prostheses play an important role in the restoration effect. Its performance depends on our understanding of the retina's working mechanism and the evolvement of computer vision models. Recently, remarkable progress has been made in the field of processing algorithm for retinal prostheses where the new discovery of the retina's working principle and state-of-the-arts computer vision models are combined together.Approach. We investigated the related research on artificial intelligence techniques for retinal prostheses. The processing algorithm in these studies could be attributed to three types: computer vision-related methods, biophysical models, and deep learning models.Main results. In this review, we first illustrate the structure and function of the normal and degenerated retina, then demonstrate the vision rehabilitation mechanism of three representative retinal prostheses. It is necessary to summarize the computational frameworks abstracted from the normal retina. In addition, the development and feature of three types of different processing algorithms are summarized. Finally, we analyze the bottleneck in existing algorithms and propose our prospect about the future directions to improve the restoration effect.Significance. This review systematically summarizes existing processing models for predicting the response of the retina to external stimuli. What's more, the suggestions for future direction may inspire researchers in this field to design better algorithms for retinal prostheses.
Collapse
Affiliation(s)
- Chuanqing Wang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Chaoming Fang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jie Yang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| | - Mohamad Sawan
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou 310030, People's Republic of China
| |
Collapse
|
36
|
Borda E, Medagoda DI, Airaghi Leccardi MJI, Zollinger EG, Ghezzi D. Conformable neural interface based on off-stoichiometry thiol-ene-epoxy thermosets. Biomaterials 2023; 293:121979. [PMID: 36586146 DOI: 10.1016/j.biomaterials.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants. Here we exploit OSTE+ to manufacture a conformable multilayer micro-electrocorticography array with 16 platinum electrodes coated with platinum black. The mechanical properties allow conformability to curved surfaces such as the brain. The low permeability and strong adhesion between layers improve the stability of the device. Acute experiments in mice show the multimodal capacity of the array to record and stimulate the neural tissue by smoothly conforming to the mouse cortex. Devices are not cytotoxic, and immunohistochemistry stainings reveal only modest foreign body reaction after two and six weeks of chronic implantation. This work introduces OSTE+ as a promising material for implantable neural interfaces.
Collapse
Affiliation(s)
- Eleonora Borda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Danashi Imani Medagoda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Marta Jole Ildelfonsa Airaghi Leccardi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland.
| |
Collapse
|
37
|
Elnabawy RH, Abdennadher S, Hellwich O, Eldawlatly S. Object recognition and localization enhancement in visual prostheses: a real-time mixed reality simulation. Biomed Eng Online 2022; 21:91. [PMID: 36566183 DOI: 10.1186/s12938-022-01059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Blindness is a main threat that affects the daily life activities of any human. Visual prostheses have been introduced to provide artificial vision to the blind with the aim of allowing them to restore confidence and independence. In this article, we propose an approach that involves four image enhancement techniques to facilitate object recognition and localization for visual prostheses users. These techniques are clip art representation of the objects, edge sharpening, corner enhancement and electrode dropout handling. The proposed techniques are tested in a real-time mixed reality simulation environment that mimics vision perceived by visual prostheses users. Twelve experiments were conducted to measure the performance of the participants in object recognition and localization. The experiments involved single objects, multiple objects and navigation. To evaluate the performance of the participants in objects recognition, we measure their recognition time, recognition accuracy and confidence level. For object localization, two metrics were used to measure the performance of the participants which are the grasping attempt time and the grasping accuracy. The results demonstrate that using all enhancement techniques simultaneously gives higher accuracy, higher confidence level and less time for recognizing and grasping objects in comparison to not applying the enhancement techniques or applying pair-wise combinations of them. Visual prostheses could benefit from the proposed approach to provide users with an enhanced perception.
Collapse
Affiliation(s)
- Reham H Elnabawy
- Digital Media Engineering and Technology Department, Faculty of Media Engineering and Technology, German University in Cairo, Cairo, Egypt
| | - Slim Abdennadher
- Computer Science and Engineering Department, Faculty of Media Engineering and Technology, German University in Cairo, Cairo, Egypt.,Computer Science Department, Faculty of Informatics and Computer Science, German International University, New Administrative Capital, Egypt
| | - Olaf Hellwich
- Chair of Computer Vision and Remote Sensing, Technische Universität Berlin, Berlin, Germany
| | - Seif Eldawlatly
- Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, 1 El-Sarayat St., Abbassia, Cairo, Egypt. .,Computer Science and Engineering Department, The American University in Cairo, Cairo, Egypt.
| |
Collapse
|
38
|
Cojocaru AE, Corna A, Reh M, Zeck G. High spatial resolution artificial vision inferred from the spiking output of retinal ganglion cells stimulated by optogenetic and electrical means. Front Cell Neurosci 2022; 16:1033738. [PMID: 36568888 PMCID: PMC9780279 DOI: 10.3389/fncel.2022.1033738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
With vision impairment affecting millions of people world-wide, various strategies aiming at vision restoration are being undertaken. Thanks to decades of extensive research, electrical stimulation approaches to vision restoration began to undergo clinical trials. Quite recently, another technique employing optogenetic therapy emerged as a possible alternative. Both artificial vision restoration strategies reported poor spatial resolution so far. In this article, we compared the spatial resolution inferred ex vivo under ideal conditions using a computational model analysis of the retinal ganglion cell (RGC) spiking activity. The RGC spiking was stimulated in epiretinal configuration by either optogenetic or electrical means. RGCs activity was recorded from the ex vivo retina of transgenic late-stage photoreceptor-degenerated mice (rd10) using a high-density Complementary Metal Oxide Semiconductor (CMOS) based microelectrode array. The majority of retinal samples were stimulated by both, optogenetic and electrical stimuli using a spatial grating stimulus. A population-level analysis of the spiking activity of identified RGCs was performed and the spatial resolution achieved through electrical and optogenetic photo-stimulation was inferred using a support vector machine classifier. The best f1 score of the classifier for the electrical stimulation in epiretinal configuration was 86% for 32 micron wide gratings and increased to 100% for 128 microns. For optogenetically activated cells, we obtained high f1 scores of 82% for 10 microns grid width for a photo-stimulation frequency of 2.5 Hz and 73% for a photo-stimulation frequency of 10 Hz. A subsequent analysis, considering only the RGCs modulated in both electrical and optogenetic stimulation protocols revealed no significant difference in the prediction accuracy between the two stimulation modalities. The results presented here indicate that a high spatial resolution can be achieved for electrical or optogenetic artificial stimulation using the activated retinal ganglion cell output.
Collapse
Affiliation(s)
| | - Andrea Corna
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Miriam Reh
- Institute for Ophthalmic Research at the University of Tübingen, Tübingen, Germany
| | - Günther Zeck
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| |
Collapse
|
39
|
Beyeler M, Sanchez-Garcia M. Towards a Smart Bionic Eye: AI-powered artificial vision for the treatment of incurable blindness. J Neural Eng 2022; 19:10.1088/1741-2552/aca69d. [PMID: 36541463 PMCID: PMC10507809 DOI: 10.1088/1741-2552/aca69d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Objective.How can we return a functional form of sight to people who are living with incurable blindness? Despite recent advances in the development of visual neuroprostheses, the quality of current prosthetic vision is still rudimentary and does not differ much across different device technologies.Approach.Rather than aiming to represent the visual scene as naturally as possible, aSmart Bionic Eyecould provide visual augmentations through the means of artificial intelligence-based scene understanding, tailored to specific real-world tasks that are known to affect the quality of life of people who are blind, such as face recognition, outdoor navigation, and self-care.Main results.Complementary to existing research aiming to restore natural vision, we propose a patient-centered approach to incorporate deep learning-based visual augmentations into the next generation of devices.Significance.The ability of a visual prosthesis to support everyday tasks might make the difference between abandoned technology and a widely adopted next-generation neuroprosthetic device.
Collapse
Affiliation(s)
- Michael Beyeler
- Department of Computer Science,University of California,Santa Barbara, CA, United States of America
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, United States of America
| | - Melani Sanchez-Garcia
- Department of Computer Science,University of California,Santa Barbara, CA, United States of America
| |
Collapse
|
40
|
Rasla A, Beyeler M. The Relative Importance of Depth Cues and Semantic Edges for Indoor Mobility Using Simulated Prosthetic Vision in Immersive Virtual Reality. PROCEEDINGS OF THE ACM SYMPOSIUM ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY. ACM SYMPOSIUM ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY 2022; 2022:27. [PMID: 40017497 PMCID: PMC11866403 DOI: 10.1145/3562939.3565620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Visual neuroprostheses (bionic eyes) have the potential to treat degenerative eye diseases that often result in low vision or complete blindness. These devices rely on an external camera to capture the visual scene, which is then translated frame-by-frame into an electrical stimulation pattern that is sent to the implant in the eye. To highlight more meaningful information in the scene, recent studies have tested the effectiveness of deep-learning based computer vision techniques, such as depth estimation to highlight nearby obstacles (DepthOnly mode) and semantic edge detection to outline important objects in the scene (EdgesOnly mode). However, nobody has yet attempted to combine the two, either by presenting them together (EdgesAndDepth) or by giving the user the ability to flexibly switch between them (EdgesOrDepth). Here, we used a neurobiologically inspired model of simulated prosthetic vision (SPV) in an immersive virtual reality (VR) environment to test the relative importance of semantic edges and relative depth cues to support the ability to avoid obstacles and identify objects. We found that participants were significantly better at avoiding obstacles using depth-based cues as opposed to relying on edge information alone, and that roughly half the participants preferred the flexibility to switch between modes (EdgesOrDepth). This study highlights the relative importance of depth cues for SPV mobility and is an important first step towards a visual neuroprosthesis that uses computer vision to improve a user's scene understanding.
Collapse
Affiliation(s)
- Alex Rasla
- University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Michael Beyeler
- University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
41
|
|
42
|
Botzanowski B, Donahue MJ, Ejneby MS, Gallina AL, Ngom I, Missey F, Acerbo E, Byun D, Carron R, Cassarà AM, Neufeld E, Jirsa V, Olofsson PS, Głowacki ED, Williamson A. Noninvasive Stimulation of Peripheral Nerves using Temporally-Interfering Electrical Fields. Adv Healthc Mater 2022; 11:e2200075. [PMID: 35751364 PMCID: PMC11468927 DOI: 10.1002/adhm.202200075] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/13/2022] [Indexed: 01/27/2023]
Abstract
Electrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation (PNS) noninvasively without surgically implanted devices are enabling for fundamental research and clinical translation. Here, it is demonstrated how relatively high-frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 - 4 Hz) between the two carriers. This principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model is validated. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve is demonstrated. This method is simple, relying on the repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.
Collapse
Affiliation(s)
- Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Mary J. Donahue
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Malin Silverå Ejneby
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Alessandro L. Gallina
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
| | - Ibrahima Ngom
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Florian Missey
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Donghak Byun
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Romain Carron
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Antonino M. Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS)Zeughaustrasse 43Zurich8004Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS)Zeughaustrasse 43Zurich8004Switzerland
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Peder S. Olofsson
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
- EMUNE ABNanna Svartz väg 6ASolna171 65Sweden
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices LabCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
| |
Collapse
|
43
|
Yücel EI, Sadeghi R, Kartha A, Montezuma SR, Dagnelie G, Rokem A, Boynton GM, Fine I, Beyeler M. Factors affecting two-point discrimination in Argus II patients. Front Neurosci 2022; 16:901337. [PMID: 36090266 PMCID: PMC9448992 DOI: 10.3389/fnins.2022.901337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Two of the main obstacles to the development of epiretinal prosthesis technology are electrodes that require current amplitudes above safety limits to reliably elicit percepts, and a failure to consistently elicit pattern vision. Here, we explored the causes of high current amplitude thresholds and poor spatial resolution within the Argus II epiretinal implant. We measured current amplitude thresholds and two-point discrimination (the ability to determine whether one or two electrodes had been stimulated) in 3 blind participants implanted with Argus II devices. Our data and simulations show that axonal stimulation, lift and retinal damage all play a role in reducing performance in the Argus 2, by either limiting sensitivity and/or reducing spatial resolution. Understanding the relative role of these various factors will be critical for developing and surgically implanting devices that can successfully subserve pattern vision.
Collapse
Affiliation(s)
- Ezgi I. Yücel
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Roksana Sadeghi
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Arathy Kartha
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sandra Rocio Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Gislin Dagnelie
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA, United States,eScience Institute, University of Washington, Seattle, WA, United States
| | - Geoffrey M. Boynton
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Ione Fine
- Department of Psychology, University of Washington, Seattle, WA, United States,*Correspondence: Ione Fine,
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, United States,Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
44
|
Elnabawy RH, Abdennadher S, Hellwich O, Eldawlatly S. PVGAN: A generative adversarial network for object simplification in prosthetic vision. J Neural Eng 2022; 19. [PMID: 35981530 DOI: 10.1088/1741-2552/ac8acf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE By means of electrical stimulation of the visual system, visual prostheses provide promising solution for blind patients through partial restoration of their vision. Despite the great success achieved so far in this field, the limited resolution of the perceived vision using these devices hinders the ability of visual prostheses users to correctly recognize viewed objects. Accordingly, we propose a deep learning approach based on Generative Adversarial Networks (GANs), termed PVGAN, to enhance object recognition for the implanted patients by representing objects in the field of view based on a corresponding simplified clip art version. APPROACH To assess the performance, an axon map model was used to simulate prosthetic vision in experiments involving normally-sighted participants. In these experiments, four types of image representation were examined. The first and second types comprised presenting phosphene simulation of real images containing the actual high-resolution object, and presenting phosphene simulation of the real image followed by the clip art image, respectively. The other two types were utilized to evaluate the performance in the case of electrode dropout, where the third type comprised presenting phosphene simulation of only clip art images without electrode dropout, while the fourth type involved clip art images with electrode dropout. MAIN RESULTS The performance was measured through three evaluation metrics which are the accuracy of the participants in recognizing the objects, the time taken by the participants to correctly recognize the object, and the confidence level of the participants in the recognition process. Results demonstrate that representing the objects using clip art images generated by the PVGAN model results in a significant enhancement in the speed and confidence of the subjects in recognizing the objects. SIGNIFICANCE These results demonstrate the utility of using GANs in enhancing the quality of images perceived using prosthetic vision.
Collapse
Affiliation(s)
- Reham H Elnabawy
- Digital Media Engineering and Technology, German University in Cairo, German University in Cairo Campus, 5th Settlement, New Cairo, Cairo, Egypt, Cairo, 11835, EGYPT
| | - Slim Abdennadher
- Computer Science and Engineering, German University in Cairo, German University in Cairo Campus, 5th Settlement, New Cairo, Cairo, Egypt, Cairo, 11835, EGYPT
| | - Olaf Hellwich
- Department of Computer Vision & Remote Sensing, Technische Universität Berlin, MAR 6-5 Marchstr. 23 D-10587 Berlin, Berlin, 10623, GERMANY
| | - Seif Eldawlatly
- Computer and Systems Engineering, Ain Shams University Faculty of Engineering, 1 El-sarayat st, Cairo, 11517, EGYPT
| |
Collapse
|
45
|
Cetkovic A, Bellapianta A, Irimia-Vladu M, Hofinger J, Yumusak C, Corna A, Scharber MC, Zeck G, Sariciftci NS, Bolz M, Salti A. In Vitro Cytotoxicity of D18 and Y6 as Potential Organic Photovoltaic Materials for Retinal Prostheses. Int J Mol Sci 2022; 23:8666. [PMID: 35955800 PMCID: PMC9369111 DOI: 10.3390/ijms23158666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Millions of people worldwide are diagnosed with retinal dystrophies such as retinitis pigmentosa and age-related macular degeneration. A retinal prosthesis using organic photovoltaic (OPV) semiconductors is a promising therapeutic device to restore vision to patients at the late onset of the disease. However, an appropriate cytotoxicity approach has to be employed on the OPV materials before using them as retinal implants. In this study, we followed ISO standards to assess the cytotoxicity of D18, Y6, PFN-Br and PDIN individually, and as mixtures of D18/Y6, D18/Y6/PFN-Br and D18/Y6/PDIN. These materials were proven for their high performance as organic solar cells. Human RPE cells were put in direct and indirect contact with these materials to analyze their cytotoxicity by the MTT assay, apoptosis by flow cytometry, and measurements of cell morphology and proliferation by immunofluorescence. We also assessed electrophysiological recordings on mouse retinal explants via microelectrode arrays (MEAs) coated with D18/Y6. In contrast to PFN-Br and PDIN, all in vitro experiments show no cytotoxicity of D18 and Y6 alone or as a D18/Y6 mixture. We conclude that D18/Y6 is safe to be subsequently investigated as a retinal prosthesis.
Collapse
Affiliation(s)
- Ana Cetkovic
- Center for Medical Research, University Clinic for Ophthalmology and Optometry, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Alessandro Bellapianta
- Center for Medical Research, University Clinic for Ophthalmology and Optometry, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Mihai Irimia-Vladu
- Linz Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Jakob Hofinger
- Linz Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Cigdem Yumusak
- Linz Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Andrea Corna
- Institute of Biomedical Electronics, Technische Universität (TU) Wien, 1040 Vienna, Austria
| | - Markus Clark Scharber
- Linz Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Günther Zeck
- Institute of Biomedical Electronics, Technische Universität (TU) Wien, 1040 Vienna, Austria
| | - Niyazi Serdar Sariciftci
- Linz Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Matthias Bolz
- Center for Medical Research, University Clinic for Ophthalmology and Optometry, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Ahmad Salti
- Center for Medical Research, University Clinic for Ophthalmology and Optometry, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
46
|
Vagni P, Airaghi Leccardi MJI, Vila CH, Zollinger EG, Sherafatipour G, Wolfensberger TJ, Ghezzi D. POLYRETINA restores light responses in vivo in blind Göttingen minipigs. Nat Commun 2022; 13:3678. [PMID: 35760775 PMCID: PMC9237028 DOI: 10.1038/s41467-022-31180-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Retinal prostheses hold the potential for artificial vision in blind people affected by incurable diseases of the outer retinal layer. Available technologies provide only a small field of view: a significant limitation for totally blind people. To overcome this problem, we recently proposed a large and high-density photovoltaic epiretinal device, known as POLYRETINA. Here, we report the in vivo assessment of POLYRETINA. First, we characterise a model of chemically-induced blindness in Göttingen minipigs. Then, we develop and test a minimally invasive injection procedure to insert the large epiretinal implant into the eye. Last, we show that POLYRETINA restores light-evoked cortical responses in blind animals at safe irradiance levels. These results indicate that POLYRETINA holds the potential for artificial vision in totally blind patients affected by retinitis pigmentosa.
Collapse
Affiliation(s)
- Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Marta Jole Ildelfonsa Airaghi Leccardi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Charles-Henri Vila
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Golnaz Sherafatipour
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Thomas J Wolfensberger
- Department of Ophthalmology, University of Lausanne, Hôpital Ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| |
Collapse
|
47
|
Kim S, Roh H, Im M. Artificial Visual Information Produced by Retinal Prostheses. Front Cell Neurosci 2022; 16:911754. [PMID: 35734216 PMCID: PMC9208577 DOI: 10.3389/fncel.2022.911754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Numerous retinal prosthetic systems have demonstrated somewhat useful vision can be restored to individuals who had lost their sight due to outer retinal degenerative diseases. Earlier prosthetic studies have mostly focused on the confinement of electrical stimulation for improved spatial resolution and/or the biased stimulation of specific retinal ganglion cell (RGC) types for selective activation of retinal ON/OFF pathway for enhanced visual percepts. To better replicate normal vision, it would be also crucial to consider information transmission by spiking activities arising in the RGC population since an incredible amount of visual information is transferred from the eye to the brain. In previous studies, however, it has not been well explored how much artificial visual information is created in response to electrical stimuli delivered by microelectrodes. In the present work, we discuss the importance of the neural information for high-quality artificial vision. First, we summarize the previous literatures which have computed information transmission rates from spiking activities of RGCs in response to visual stimuli. Second, we exemplify a couple of studies which computed the neural information from electrically evoked responses. Third, we briefly introduce how information rates can be computed in the representative two ways - direct method and reconstruction method. Fourth, we introduce in silico approaches modeling artificial retinal neural networks to explore the relationship between amount of information and the spiking patterns. Lastly, we conclude our review with clinical implications to emphasize the necessity of considering visual information transmission for further improvement of retinal prosthetics.
Collapse
Affiliation(s)
- Sein Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, South Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
| |
Collapse
|
48
|
Silverå Ejneby M, Jakešová M, Ferrero JJ, Migliaccio L, Sahalianov I, Zhao Z, Berggren M, Khodagholy D, Đerek V, Gelinas JN, Głowacki ED. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat Biomed Eng 2022; 6:741-753. [PMID: 34916610 DOI: 10.1038/s41551-021-00817-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/28/2021] [Indexed: 11/09/2022]
Abstract
Implantable devices for the wireless modulation of neural tissue need to be designed for reliability, safety and reduced invasiveness. Here we report chronic electrical stimulation of the sciatic nerve in rats by an implanted organic electrolytic photocapacitor that transduces deep-red light into electrical signals. The photocapacitor relies on commercially available semiconducting non-toxic pigments and is integrated in a conformable 0.1-mm3 thin-film cuff. In freely moving rats, fixation of the cuff around the sciatic nerve, 10 mm below the surface of the skin, allowed stimulation (via 50-1,000-μs pulses of deep-red light at wavelengths of 638 nm or 660 nm) of the nerve for over 100 days. The robustness, biocompatibility, low volume and high-performance characteristics of organic electrolytic photocapacitors may facilitate the wireless chronic stimulation of peripheral nerves.
Collapse
Affiliation(s)
- Malin Silverå Ejneby
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Marie Jakešová
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ludovico Migliaccio
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ihor Sahalianov
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Vedran Đerek
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden. .,Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA. .,Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden. .,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
49
|
Karatum O, Kaleli HN, Eren GO, Sahin A, Nizamoglu S. Electrical Stimulation of Neurons with Quantum Dots via Near-Infrared Light. ACS NANO 2022; 16:8233-8243. [PMID: 35499159 PMCID: PMC9134491 DOI: 10.1021/acsnano.2c01989] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Photovoltaic biointerfaces offer wireless and battery-free bioelectronic medicine via photomodulation of neurons. Near-infrared (NIR) light enables communication with neurons inside the deep tissue and application of high photon flux within the ocular safety limit of light exposure. For that, nonsilicon biointerfaces are highly demanded for thin and flexible operation. Here, we devised a flexible quantum dot (QD)-based photovoltaic biointerface that stimulates cells within the spectral tissue transparency window by using NIR light (λ = 780 nm). Integration of an ultrathin QD layer of 25 nm into a multilayered photovoltaic architecture enables transduction of NIR light to safe capacitive ionic currents that leads to reproducible action potentials on primary hippocampal neurons with high success rates. The biointerfaces exhibit low in vitro toxicity and robust photoelectrical performance under different stability tests. Our findings show that colloidal quantum dots can be used in wireless bioelectronic medicine for brain, heart, and retina.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department
of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Humeyra Nur Kaleli
- Research
Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | - Guncem Ozgun Eren
- Department
of Biomedical Science and Engineering, Koc
University, Istanbul 34450, Turkey
| | - Afsun Sahin
- Research
Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
- Department
of Ophthalmology, Medical School, Koc University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Department
of Biomedical Science and Engineering, Koc
University, Istanbul 34450, Turkey
| |
Collapse
|
50
|
Deepak CS, Krishnan A, Narayan KS. Light Controlled Signaling Initiated by Subretinal Semiconducting-Polymer Layer in Developing-Blind-Retina Mimics the Response of the Neonatal Retina. J Neural Eng 2022; 19. [PMID: 35561667 DOI: 10.1088/1741-2552/ac6f80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Optoelectronic semiconducting polymer material interfaced with a blind-developing chick-retina (E13-E18) in subretinal configuration reveals a response to full-field flash stimulus that resembles an elicited response from natural photoreceptors in a mature chick retina. The response manifests as evoked-firing of action potentials was recorded using a multi-electrode array in contact with the retinal ganglion layer. Characteristics of increasing features in the signal unfold during different retina-development stages and highlight the emerging network mediated pathways typically present in the vision process of the artificial photoreceptor interfaced retina.
Collapse
Affiliation(s)
- C S Deepak
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Molecular Electronics Lab, Bangalore, Karnataka, 560064, INDIA
| | - Abhijith Krishnan
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Molecular Electronics Lab, Bangalore, Karnataka, 560064, INDIA
| | - K S Narayan
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), JNCASR, Bangalore, Karnataka, 560064, INDIA
| |
Collapse
|