1
|
Adachi Y, Noguchi R, Osaki J, Ono T, Iwata S, Akiyama T, Tsuchiya R, Toda Y, Tetsuya S, Iwata S, Kobayashi E, Kojima N, Yoshida A, Yokoo H, Kawai A, Kondo T. Establishment and characterization of two novel patient-derived cell lines from myxofibrosarcoma: NCC-MFS7-C1 and NCC-MFS8-C1. Hum Cell 2024; 37:1742-1750. [PMID: 39214957 DOI: 10.1007/s13577-024-01124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Myxofibrosarcoma (MFS), an aggressive soft tissue sarcoma, presents a significant challenge because of its high recurrence rate, distal metastasis, and complex genetic background. Although surgical resection is the standard treatment for MFS, the outcomes are unsatisfactory and effective non-surgical treatment strategies, including drug therapy, are urgently warranted. MFS is a rare tumor that requires comprehensive preclinical research to develop promising drug therapies; however, only two MFS cell lines are publicly available worldwide. The present study reports two novel patient-derived MFS cell lines, NCC-MFS7-C1 and NCC-MFS8-C1. These cell lines have been extensively characterized for their genetic profile, proliferation, spheroid-forming capacity, and invasive behavior, confirming that they retain MFS hallmarks. Furthermore, we conducted comprehensive drug screening against these cell lines and six others previously established in our laboratory to identify potential therapeutic candidates for MFS. Among the screened agents, actinomycin D, bortezomib, and romidepsin demonstrated considerable antiproliferative effects that were superior to those of doxorubicin, a standard drug, highlighting their potential as novel drugs. In conclusion, NCC-MFS7-C1 and NCC-MFS8-C1 are valuable research resources that contribute to the understanding of the pathogenesis and development of novel therapies for MFS.
Collapse
Affiliation(s)
- Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Division of Hepato-Biliary-Pancreatic Surgery and Transplant Surgery, Department of Surgery, Asahikawa Medical University, 2-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| | - Yu Toda
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Sekita Tetsuya
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hideki Yokoo
- Division of Hepato-Biliary-Pancreatic Surgery and Transplant Surgery, Department of Surgery, Asahikawa Medical University, 2-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Drews-Elger K, Williams EA. Mesenchymal Tumors of the Skin: A Review. Adv Anat Pathol 2024; 31:442-450. [PMID: 39466699 DOI: 10.1097/pap.0000000000000465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Mesenchymal tumors of the skin are rare and clinically heterogeneous, and can represent diagnostic challenge for pathologists. Most of these lesions have overlapping clinical and histological features, thus the understanding of architectural patterns, cytoplasmic and stromal features can facilitate proper diagnosis. Anatomic site may be an important factor in the differential diagnosis, as are patient's age and sex. Ancillary tests are often required and can be useful to rule out other entities. Molecular diagnostics is playing an increasingly important role in the diagnosis of soft tissue neoplasms. Here, we review clinical, histological, and molecular features of some of the most common of these uncommon entities including benign and malignant lesions.
Collapse
Affiliation(s)
- Katherine Drews-Elger
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | | |
Collapse
|
3
|
Freeland J, Muñoz M, O’Donnell E, Langerman J, Darrow M, Bergonio J, Suarez-Navarro J, Thorpe S, Canter R, Randall RL, Plath K, Carraway KL, Witte ON, Graeber TG, Carr-Ascher JR. Genetic Screen in a Preclinical Model of Sarcoma Development Defines Drivers and Therapeutic Vulnerabilities. Clin Cancer Res 2024; 30:4957-4973. [PMID: 39177582 PMCID: PMC11530313 DOI: 10.1158/1078-0432.ccr-24-1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE High-grade complex karyotype sarcomas are a heterogeneous group of tumors with a uniformly poor prognosis. Within complex karyotype sarcomas, there are innumerable genetic changes but identifying those that are clinically relevant has been challenging. EXPERIMENTAL DESIGN To address this, we utilized a pooled genetic screening approach, informed by The Cancer Genome Atlas (TCGA) data, to identify key drivers and modifiers of sarcoma development that were validated in vivo. RESULTS YAP1 and wild-type KRAS were validated as drivers and transformed human mesenchymal stem cells into two distinct sarcoma subtypes, undifferentiated pleomorphic sarcoma and myxofibrosarcoma, respectively. A subset of tumors driven by CDK4 and PIK3CA reflected leiomyosarcoma and osteosarcoma demonstrating the plasticity of this approach and the potential to investigate sarcoma subtype heterogeneity. All generated tumors histologically reflected human sarcomas and had increased aneuploidy as compared to simple karyotype sarcomas. Comparing differential gene expression of TCGA samples to model data identified increased oxidative phosphorylation signaling in YAP1 tumors. Treatment of a panel of soft tissue sarcomas with a combination of YAP1 and oxidative phosphorylation inhibitors led to significantly decreased viability. CONCLUSIONS Transcriptional co-analysis of TCGA patient samples to YAP1 and KRAS model tumors supports that these sarcoma subtypes lie along a spectrum of disease and adds guidance for further transcriptome-based refinement of sarcoma subtyping. This approach can be used to begin to understand pathways and mechanisms driving human sarcoma development, the relationship between sarcoma subtypes, and to identify and validate new therapeutic vulnerabilities for this aggressive and heterogeneous disease.
Collapse
Affiliation(s)
- Jack Freeland
- These authors contributed equally and are listed alphabetically
- Department of Molecular and Medical Pharmacology, Molecular Biology Interdepartmental Program, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Maria Muñoz
- These authors contributed equally and are listed alphabetically
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
| | - Edmond O’Donnell
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Justin Langerman
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Morgan Darrow
- Department of Pathology and Laboratory Medicine, University of California, Davis; Sacramento, CA, 95817
| | - Jessica Bergonio
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
| | - Julissa Suarez-Navarro
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis; Davis, CA, 95616
| | - Steven Thorpe
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Robert Canter
- Department of Surgery, Division of Surgical Oncology, University of California, Davis; Sacramento, CA, 95817
| | - R. Lor Randall
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, University of California, Davis; Sacramento, CA, 95817
| | - Owen N. Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Janai R. Carr-Ascher
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| |
Collapse
|
4
|
Wang Z, Miao F, Gu L, Zhang R, Ma Y, Li Y, Zheng J, Lin Z, Gao Y, Huang L, Shen Y, Wu T, Luo F, Li W. Stimulator of Interferon Genes-Activated Biomimetic Dendritic Cell Nanovaccine as a Chemotherapeutic Booster to Enhance Systemic Fibrosarcoma Treatment. ACS NANO 2024; 18:24219-24235. [PMID: 39172516 DOI: 10.1021/acsnano.4c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fibrosarcoma, a malignant mesenchymal tumor, is characterized by aggressive invasiveness and a high recurrence rate, leading to poor prognosis. Anthracycline drugs, such as doxorubicin (DOX), represent the frontline chemotherapy for fibrosarcoma, but often exhibit suboptimal efficacy. Recently, exploiting the stimulator of interferon genes (STING)-mediated innate immunity has emerged as a hopeful strategy for cancer treatment. Integrating chemotherapy with immunomodulators in chemo-immunotherapy has shown potential for enhancing treatment outcomes. Herein, we introduce an advanced dendritic cell (DC) nanovaccine, cGAMP@PLGA@CRTM (GP@CRTM), combined with low-dose DOX to enhance fibrosarcoma chemo-immunotherapy. The nanovaccine consists of poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the STING agonist 2,3-cGAMP (cGAMP@PLGA, GP) as its core, and a calreticulin (CRT) high-expressing fibrosarcoma cell membrane (CRTM) as the shell. Exposing CRT on the vaccine surface aids in recruiting DCs and stimulating uptake, facilitating efficient simultaneous delivery of STING agonists and tumor antigens to DCs. This dual delivery method effectively activates the STING pathway in DCs, triggering sustained immune stimulation. Simultaneously, low-dose DOX reduces chemotherapy-related side effects, directly kills a subset of tumor cells, and increases tumor immunogenicity, thus further amplifying immune therapeutic performance. Hence, these findings demonstrate the potential of DC nanovaccine GP@CRTM as a booster for chemotherapy. Synergistically combining low-dose DOX with the DC nanovaccine emerges as a powerful chemo-immunotherapy strategy, optimizing systemic fibrosarcoma therapy.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Lingwei Gu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Ruyi Zhang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Ying Li
- Heji Hospital Affiliated with Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Yilai Gao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Liyong Huang
- Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350000, Fu Jian, China
| | - Ye Shen
- Shanghai Jiangxia Blood Technology Co., Ltd. Shanghai 200000, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Wengang Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
5
|
Laranga R, Pazzaglia L, Pedrini E, Sambri A, Ferrari C, Locatelli M, Sangiorgi L, Righi A, Scotlandi K, Bianchi G. p53 as a Potential Actionable Target in Myxofibrosarcoma: A Molecular and Pathologic Review of a Single-Institute Series. J Transl Med 2024; 104:102088. [PMID: 38825319 DOI: 10.1016/j.labinv.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Myxofibrosarcoma (MFS) is a common adult soft tissue sarcoma characterized by high-local recurrence rate, poorly understood molecular pathogenesis, lack of specific prognostic markers, and effective targeted therapies. To gain further insights into the disease, we analyzed a well-defined group of 133 primary MFS cases. Immunohistochemical (IHC) staining for p53, MET, RET, and RB was performed. Twenty-five cases were analyzed by targeted resequencing of known cancer driver hotspot mutations, whereas 66 and 64 MFSs were examined for the presence of genetic variants in TP53 and MET gene, respectively. All clinical, histologic, immunostaining, and genetic variables were analyzed for their impact on 5-years overall survival (OS) and 5-years event-free survival (EFS). In our series, no grade I tumors relapsed and high grade are related to a positive MET immunostaining (P = .034). Both local recurrence (P = .038) and distal metastases (P = .016) correlated to the presence of "single nucleotide variant (SNV) plus copy number variation (CNV)" in TP53. Multivariate analysis revealed that age (>60 years), metastasis at presentation, and positive IHC-p53 signal are risk factors for a poor OS (P = .003, P = .000, and P = .002), whereas age (>60 years), synchronous metastasis, and tumor size (>10 cm) predict an unfavorable 5-years EFS (P = .011, P = .000, and P = .023). Considering the smaller series (n = 66) that underwent molecular screening, the presence of "SNV+CNV" in TP53 represents a risk factor for a worse 5-years EFS (hazard ratio, 2.5; P = .017). The present series confirms that TP53 is frequently altered in MFS (86.4% of cases), appearing to play an important role in MFS tumorigenesis and being a potentially drugable target. A positive p53 immunostainings is related to a poor diagnosis, and it is the presence of a single nucleotide genetic alterations in TP53 that is essential in conferring MFS an aggressive phenotype, thus supporting the use of molecular profiling in MFS to better define the role of p53 as a prognostic factor.
Collapse
Affiliation(s)
- Roberta Laranga
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elena Pedrini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Andrea Sambri
- Orthopedic and Traumatology Unit, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| | - Cristina Ferrari
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Locatelli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Sangiorgi
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Anatomy and Pathological Histology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Bianchi
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
6
|
Osama MA, Chatterjee P, Singh S, Pandey A, Mohta A. Myxoid liposarcoma diagnosed on fine needle aspiration cytology: There is more to it than meets the eye. J Cancer Res Ther 2024:01363817-990000000-00095. [PMID: 39016314 DOI: 10.4103/jcrt.jcrt_419_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
ABSTRACT Liposarcoma is a rare mesenchymal neoplasm commonly involving deep soft tissues and the retroperitoneum. Among the various types of liposarcoma, myxoid liposarcoma is the most frequently encountered in adolescents and young adults, with a predilection for lower extremities. Fine needle aspiration allows easy assessment and rapid on-site evaluation for distinguishing benign from malignant lipomatous lesions. Here, we present a case of myxoid liposarcoma in the calf region of a 19-year-old boy, diagnosed via fine needle aspiration cytology, and subsequently confirmed by histopathological examination after surgical resection. The intention behind this case report is to highlight the cytological features of myxoid liposarcoma and to improve understanding of this tumor entity, aiming to prevent misdiagnosis by inexperienced pathologists when evaluating cytology specimens.
Collapse
Affiliation(s)
- Md Ali Osama
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Priti Chatterjee
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Smita Singh
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Ankita Pandey
- Department of Pathology, Lady Hardinge Medical College, New Delhi, India
| | - Anup Mohta
- Departments of Surgery, Lady Hardinge Medical College, New Delhi, India
| |
Collapse
|
7
|
Tae Hong K, Bin Park S, Murale DP, Hoon Lee J, Hwang J, Young Jang W, Lee JS. Disaggregation-Activated pan-COX Imaging Agents for Human Soft tissue Sarcoma. Angew Chem Int Ed Engl 2024; 63:e202405525. [PMID: 38607969 DOI: 10.1002/anie.202405525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Cancer stem cells are pivotal players in tumors initiation, growth, and metastasis. While several markers have been identified, there remain challenges particularly in heterogeneous malignancies like adult soft tissue sarcomas, where conventional markers are inherently overexpressed. Here, we designed BODIPY scaffold fluorescence probes (BD-IMC-1, BD-IMC-2) that activate via disaggregation targeting for cyclooxygenase (COX), a potential marker for CSCs in sarcoma in clinical pathology. Based on their structures, BD-IMC-1 showcased higher susceptibility to disaggregation compared to BD-IMC-2, consistent with their selective interaction with COX. Notably, the BD-IMC-1 revealed positive cooperativity binding to COX-2 at sub-micromolar ranges. Both probes showed significant fluorescence turn-on upon LPS or PMA triggered COX-2 upregulation in live RAW264.7, HeLa, and human sarcoma cell line (Saos-LM2) up to 2-fold increase with negligible toxicity. More importantly, the BD-IMC-1 demonstrated their practical imaging for COX-2 positive cells in paraffin-fixed human sarcoma tissue. Considering the fixed tissues are most practiced pathological sample, our finding suggests a potential of disaggregation activated chemosensor for clinical applications.
Collapse
Affiliation(s)
- Kyung Tae Hong
- Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, South Korea
- Chemical and Biological Integrative Research Center, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Seung Bin Park
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dhiraj P Murale
- Chemical and Biological Integrative Research Center, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jung Hoon Lee
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jangsun Hwang
- Department of Orthopedic Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
8
|
Williams EA, Vegas I, El-Senduny FF, Zhang J, Mata DA, Hiemenz MC, Hughes SR, Sa BC, Kraft GP, Gorbatov N, Foley-Peres K, Sanchez EZ, Milikowski C, Williams KJ, Ross JS, Kurzrock R, Montgomery EA, Lombard DB, Kumar S. Pan-cancer Genomic Analysis of AXL Mutations Reveals a Novel, Recurrent, Functionally Activating AXL W451C Alteration Specific to Myxofibrosarcoma. Am J Surg Pathol 2024; 48:699-707. [PMID: 38369783 PMCID: PMC11093512 DOI: 10.1097/pas.0000000000002191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Myxofibrosarcoma (MFS) is a common soft tissue sarcoma of the elderly that typically shows low tumor mutational burden, with mutations in TP53 and in genes associated with cell cycle checkpoints ( RB1 , CDKN2A ). Unfortunately, no alterations or markers specific to MFS have been identified and, as a consequence, there are no effective targeted therapies. The receptor tyrosine kinase AXL, which drives cellular proliferation, is targetable by new antibody-based therapeutics. Expression of AXL messenger RNA is elevated in a variety of sarcoma types, with the highest levels reported in MFS, but the pathogenic significance of this finding remains unknown. To assess a role for AXL abnormalities in MFS, we undertook a search for AXL genomic alterations in a comprehensive genomic profiling database of 463,546 unique tumors (including 19,879 sarcomas, of which 315 were MFS) interrogated by targeted next-generation DNA and/or RNA sequencing. Notably, the only genomic alterations recurrent in a specific sarcoma subtype were AXL W451C (n = 8) and AXL W450C (n = 2) mutations. The tumors involved predominantly older adults (age: 44 to 81 [median: 72] y) and histologically showed epithelioid and spindle-shaped cells in a variably myxoid stroma, with 6 cases diagnosed as MFS, 3 as undifferentiated pleomorphic sarcoma (UPS), and 1 as low-grade sarcoma. The AXL W451C mutation was not identified in any non-sarcoma malignancy. A review of publicly available data sets revealed a single AXL W451C-mutant case of UPS that clustered with MFS/UPS by methylation profiling. Functional studies revealed a novel activation mechanism: the W451C mutation causes abnormal unregulated dimerization of the AXL receptor tyrosine kinase through disulfide bond formation between pairs of mutant proteins expressing ectopic cysteine residues. This dimerization triggers AXL autophosphorylation and activation of downstream ERK signaling. We further report sarcomas of diverse histologic subtypes with AXL gene amplifications, with the highest frequency of amplification identified in MFS cases without the W451C mutation. In summary, the activating AXL W451C mutation appears highly specific to MFS, with a novel mechanism to drive unregulated signaling. Moreover, AXL gene amplifications and messenger RNA overexpression are far more frequent in MFS than in other sarcoma subtypes. We conclude that these aberrations in AXL are distinct features of MFS and may aid diagnosis, as well as the selection of available targeted therapies.
Collapse
Affiliation(s)
- Erik A. Williams
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
- Department of Pathology, Jackson Memorial Hospital, Miami, FL
| | - Isabella Vegas
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| | - Fardous F. El-Senduny
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| | - Jessica Zhang
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| | | | | | | | - Brianna C. Sa
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| | - Garrett P. Kraft
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| | - Nicole Gorbatov
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| | | | | | - Clara Milikowski
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| | - Kevin Jon Williams
- Departments of Physiology and Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jeffrey S. Ross
- Department of Pathology, Jackson Memorial Hospital, Miami, FL
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY
| | - Razelle Kurzrock
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| | - David B. Lombard
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
- Department of Pathology, Jackson Memorial Hospital, Miami, FL
- Department of Pathology, Miami VA Healthcare System, Miami, FL
| | - Surinder Kumar
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center
| |
Collapse
|
9
|
Henzinger H, Brčić I, Igrec J, Godschachner TM, Scheipl S, Szkandera J, Jurmeister P, Liegl-Atzwanger B. The Role of Methylation Analysis in Distinguishing Cellular Myxoma from Low-Grade Myxofibrosarcoma. Int J Mol Sci 2024; 25:5105. [PMID: 38791144 PMCID: PMC11121712 DOI: 10.3390/ijms25105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular myxoma is a benign soft tissue tumor frequently associated with GNAS mutation that may morphologically resemble low-grade myxofibrosarcoma. This study aimed to identify the undescribed methylation profile of cellular myxoma and compare it to myxofibrosarcoma. We performed molecular analysis on twenty cellular myxomas and nine myxofibrosarcomas and analyzed the results using the methylation-based DKFZ sarcoma classifier. A total of 90% of the cellular myxomas had GNAS mutations (four loci had not been previously described). Copy number variations were found in all myxofibrosarcomas but in none of the cellular myxomas. In the classifier, none of the cellular myxomas reached the 0.9 threshold. Unsupervised t-SNE analysis demonstrated that cellular myxomas form their own clusters, distinct from myxofibrosarcomas. Our study shows the diagnostic potential and the limitations of molecular analysis in cases where morphology and immunohistochemistry are not sufficient to distinguish cellular myxoma from myxofibrosarcoma, particularly regarding GNAS wild-type tumors. The DKFZ sarcoma classifier only provided a valid prediction for one myxofibrosarcoma case; this limitation could be improved by training the tool with a more considerable number of cases. Additionally, the classifier should be introduced to a broader spectrum of mesenchymal neoplasms, including benign tumors like cellular myxoma, whose distinct methylation pattern we demonstrated.
Collapse
Affiliation(s)
- Hanna Henzinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.G.); (B.L.-A.)
| | - Iva Brčić
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.G.); (B.L.-A.)
| | - Jasminka Igrec
- Division of General Radiology, Department of Radiology, Medical University of Graz, 8010 Graz, Austria;
| | - Theresa Marie Godschachner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.G.); (B.L.-A.)
| | - Susanne Scheipl
- Department of Orthopedics and Trauma, Medical University of Graz, 8010 Graz, Austria;
| | - Joanna Szkandera
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig Maximilians University Hospital Munich, 80336 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.G.); (B.L.-A.)
| |
Collapse
|
10
|
Dashti NK, Jebastin Thangaiah J, Gliem T, Knutson D, Kloft-Nelson S, Armstrong SM, Bakhshwin A, Greipp P, Fritchie KJ. MDM2 Amplification Status in a Cohort of Well-Characterized Myxofibrosarcoma: A Clinicopathologic Analysis of 22 Tumors. Int J Surg Pathol 2024; 32:478-485. [PMID: 37501528 DOI: 10.1177/10668969231186930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Myxofibrosarcomas (MFS) present as slowly enlarging superficial masses in elderly patients. Even though these tumors fail to exhibit a distinct immunophenotype, diagnosis is straightforward when they present in subcutaneous tissue. Intramuscular MFS, however, are more challenging to diagnose as the differential also includes dedifferentiated liposarcoma with myxoid features. The vast majority of dedifferentiated liposarcomas show MDM2 amplification, whereas limited data exists as to the MDM2 status of MFS. We sought to explore the rate of MDM2 amplification in cases of classic MFS. Our archives were searched for MFS; only subcutaneous well-sampled resections were included. FISH for MDM2 amplification was performed on each tumor. A cohort of myxoid dedifferentiated liposarcoma resections was studied for comparison. Twenty-two MFS arose in patients aged 44 to 85 years. All tumors contained an infiltrative population of atypical cells embedded in a myxoid stroma with curvilinear blood vessels. MDM2 amplification by FISH was identified in 3 (of 22; 14%) tumors. Available follow up on 17 patients (range 1-96 months; median 13 months) revealed 6 patients with local recurrence and 1 with distant metastasis. Of 3 patients with MDM2- amplified MFS, 1 experienced recurrence and died of unrelated causes, while the second was alive without disease 12 months after diagnosis. Even though the rate of MDM2 amplification by FISH in MFS appears to be low, a subset of cases may show this genetic alteration, which pathologists should be aware of to avoid misclassification as myxoid dedifferentiated liposarcomas. Further studies are necessary to determine if amplification status adds prognostic value.
Collapse
Affiliation(s)
- Nooshin K Dashti
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Troy Gliem
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Darlene Knutson
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Sara Kloft-Nelson
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Susan M Armstrong
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Bakhshwin
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patricia Greipp
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Karen J Fritchie
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Wachtel M, Surdez D, Grünewald TGP, Schäfer BW. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel) 2024; 16:1355. [PMID: 38611033 PMCID: PMC11010897 DOI: 10.3390/cancers16071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcomas comprise a heterogeneous group of malignant tumors of mesenchymal origin. More than 80 entities are associated with different mesenchymal lineages. Sarcomas with fibroblastic, muscle, bone, vascular, adipocytic, and other characteristics are distinguished. Nearly half of all entities contain specific chromosomal translocations that give rise to fusion proteins. These are mostly pathognomonic, and their detection by various molecular techniques supports histopathologic classification. Moreover, the fusion proteins act as oncogenic drivers, and their blockade represents a promising therapeutic approach. This review summarizes the current knowledge on fusion proteins in sarcoma. We categorize the different fusion proteins into functional classes, including kinases, epigenetic regulators, and transcription factors, and describe their mechanisms of action. Interestingly, while fusion proteins acting as transcription factors are found in all mesenchymal lineages, the others have a more restricted pattern. Most kinase-driven sarcomas belong to the fibroblastic/myofibroblastic lineage. Fusion proteins with an epigenetic function are mainly associated with sarcomas of unclear differentiation, suggesting that epigenetic dysregulation leads to a major change in cell identity. Comparison of mechanisms of action reveals recurrent functional modes, including antagonism of Polycomb activity by fusion proteins with epigenetic activity and recruitment of histone acetyltransferases by fusion transcription factors of the myogenic lineage. Finally, based on their biology, we describe potential approaches to block the activity of fusion proteins for therapeutic intervention. Overall, our work highlights differences as well as similarities in the biology of fusion proteins from different sarcomas and provides the basis for a functional classification.
Collapse
Affiliation(s)
- Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), CH-8008 Zurich, Switzerland
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| |
Collapse
|
12
|
Lucarelli E, De Vita A, Bellotti C, Frisoni T, Vanni S, Guerrieri AN, Pannella M, Mercatali L, Gambarotti M, Duchi S, Miserocchi G, Maioli M, Liverani C, Ibrahim T. Modeling Myxofibrosarcoma: Where Do We Stand and What Is Missing? Cancers (Basel) 2023; 15:5132. [PMID: 37958307 PMCID: PMC10650645 DOI: 10.3390/cancers15215132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Myxofibrosarcoma (MFS) is a malignant soft tissue sarcoma (STS) that originates in the body's connective tissues. It is characterized by the presence of myxoid (gel-like) and fibrous components and typically affects patients after the fifth decade of life. Considering the ongoing trend of increasing lifespans across many nations, MFS is likely to become the most common musculoskeletal sarcoma in the future. Although MFS patients have a lower risk of developing distant metastases compared with other STS cases, MFS is characterized by a high frequency of local recurrence. Notably, in 40-60% of the patients where the tumor recurs, it does so multiple times. Consequently, patients may undergo multiple local surgeries, removing the risk of potential amputation. Furthermore, because the tumor relapses generally have a higher grade, they exhibit a decreased response to radio and chemotherapy and an increased tendency to form metastases. Thus, a better understanding of MFS is required, and improved therapeutic options must be developed. Historically, preclinical models for other types of tumors have been instrumental in obtaining a better understanding of tumor development and in testing new therapeutic approaches. However, few MFS models are currently available. In this review, we will describe the MFS models available and will provide insights into the advantages and constraints of each model.
Collapse
Affiliation(s)
- Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Tommaso Frisoni
- Unit of 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.G.); (M.M.)
| | - Serena Duchi
- Department of Surgery-ACMD, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, VIC 3065, Australia;
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Margherita Maioli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.G.); (M.M.)
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| |
Collapse
|
13
|
Nishio J, Nakayama S. Biology and Management of High-Grade Myxofibrosarcoma: State of the Art and Future Perspectives. Diagnostics (Basel) 2023; 13:3022. [PMID: 37835765 PMCID: PMC10572210 DOI: 10.3390/diagnostics13193022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Myxofibrosarcoma (MFS) is one of the most common adult soft tissue sarcomas, typically arising in the extremities. Histologically, MFS is classified into three grades: low, intermediate, and high. Histological grades correlate with distant metastases and tumor-associated mortality. The diagnosis of MFS is challenging due to a lack of well-characterized immunohistochemical markers. High-grade MFS displays highly complex karyotypes with multiple copy number alterations. Recent integrated genomic studies have shown the predominance of somatic copy number aberrations. However, the molecular pathogenesis of high-grade MFS remains poorly understood. The standard treatment for localized MFS is surgical resection. The systemic treatment options for advanced disease are limited. This review provides an updated overview of the clinical and imaging features, pathogenesis, histopathology, and treatment of high-grade MFS.
Collapse
Affiliation(s)
- Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| |
Collapse
|
14
|
Makarov IA, Papko KA, Makarova TA, Bendov DV, Mitrofanova LB. Heart Transplantation as a Treatment Option for Recurrent Myxofibrosarcoma: A Clinical Case. EXP CLIN TRANSPLANT 2023; 21:784-789. [PMID: 37885296 DOI: 10.6002/ect.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Myxofibrosarcoma is one of the most rare tumors of the heart. Surgical resection is the principal method of treatment; however, in some cases, radical removal of the tumor is not possible. Here, we present a case of heart transplant in a patient who experienced recurrent myxofibrosarcoma of the left atrium and examine the morphological features of this tumor. A 40-year-old female patient presented for treatment for heart failure of a high functional class. An examination revealed a tumor in the left atrial cavity, which was subsequently surgically removed. Morphological examination revealed an inflammatory myofibroblastic tumor. After 2 years, the patient's tumor recurred. The tumor was removed, and a morphological study again diagnosed myxofibrosarcoma of the heart. A year later, recurrence was again diagnosed. Instrumental examination determined that the tumor had incurred into the mitral valve and possibly spread to the myocardium. Tumor resection was not possible, and the need to perform a heart transplant was determined. The given case contributes to the practical conclusion that heart transplant contributes to an increase in the life expectancy for patients with inoperable cases of cardiac sarcoma.
Collapse
|
15
|
Özgü E, Aydin E, Adibi A, Tokat ÜM, Tutar O, Hu J, Demiray I, Kurzrock R, Demiray M. Exceptional Response to MEK Inhibition in a Patient With RAF1-Mutant Myxofibrosarcoma: Case Report and Mechanistic Overview. JCO Precis Oncol 2023; 7:e2300299. [PMID: 38127827 PMCID: PMC10752463 DOI: 10.1200/po.23.00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Complete response to Trametinib in a heavily-pretreated sarcoma: RAF1 as a predictor of MEKi Response
Collapse
Affiliation(s)
- Eylül Özgü
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Esranur Aydin
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Ashkan Adibi
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
- Istanbul University, Institute of Oncology, Department of Basic Oncology, Division of Cancer Genetics, Istanbul, Turkey
| | - Ünal Metin Tokat
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| | - Onur Tutar
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Internal Medicine, Istanbul, Turkey
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, Singapore, Singapore
| | - Irem Demiray
- Koc University, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI
- WIN Consortium, Paris, France
| | - Mutlu Demiray
- Medicana International Atasehir Hospital, Demiray Precision Oncology Center, Istanbul, Turkey
| |
Collapse
|
16
|
Chen Y, Herzog M, Pliego-Mendieta A, Bühler MM, Harnisch KJ, Haberecker M, Arnold F, Planas-Paz L, Pauli C. Addressing Modern Diagnostic Pathology for Patient-Derived Soft Tissue Sarcosphere Models in the Era of Functional Precision Oncology. J Transl Med 2023; 103:100039. [PMID: 36870294 DOI: 10.1016/j.labinv.2022.100039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 01/11/2023] Open
Abstract
Responses to therapy often cannot be exclusively predicted by molecular markers, thus evidencing a critical need to develop tools for better patient selection based on relations between tumor phenotype and genotype. Patient-derived cell models could help to better refine patient stratification procedures and lead to improved clinical management. So far, such ex vivo cell models have been used for addressing basic research questions and in preclinical studies. As they now enter the era of functional precision oncology, it is of utmost importance that they meet quality standards to fully represent the molecular and phenotypical architecture of patients' tumors. Well-characterized ex vivo models are imperative for rare cancer types with high patient heterogeneity and unknown driver mutations. Soft tissue sarcomas account for a very rare, heterogeneous group of malignancies that are challenging from a diagnostic standpoint and difficult to treat in a metastatic setting because of chemotherapy resistance and a lack of targeted treatment options. Functional drug screening in patient-derived cancer cell models is a more recent approach for discovering novel therapeutic candidate drugs. However, because of the rarity and heterogeneity of soft tissue sarcomas, the number of well-established and characterized sarcoma cell models is extremely limited. Within our hospital-based platform we establish high-fidelity patient-derived ex vivo cancer models from solid tumors for enabling functional precision oncology and addressing research questions to overcome this problem. We here present 5 novel, well-characterized, complex-karyotype ex vivo soft tissue sarcosphere models, which are effective tools to study molecular pathogenesis and identify the novel drug sensitivities of these genetically complex diseases. We addressed the quality standards that should be generally considered for the characterization of such ex vivo models. More broadly, we suggest a scalable platform to provide high-fidelity ex vivo models to the scientific community and enable functional precision oncology.
Collapse
Affiliation(s)
- Yanjiang Chen
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marius Herzog
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Alicia Pliego-Mendieta
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marco Matteo Bühler
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Kim Jannis Harnisch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Fabian Arnold
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Lara Planas-Paz
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland; Medical Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Nakayama S, Nishio J, Aoki M, Koga K, Nabeshima K, Yamamoto T. GLUT-1 expression is helpful to distinguish myxofibrosarcoma from nodular fasciitis. Histol Histopathol 2023; 38:47-51. [PMID: 35792526 DOI: 10.14670/hh-18-490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Myxofibrosarcoma (MFS) is a fibroblastic/myofibroblastic neoplasm with a variably myxoid stroma. Histologically, MFS shows a wide spectrum of cellularity, pleomorphism and proliferative activity. Because of its variable morphology and lack of discriminatory markers, MFS can be difficult to distinguish from some benign soft-tissue tumors, especially nodular fasciitis (NF). Glucose transporter 1 (GLUT-1) is expressed in a variety of malignant mesenchymal tumors. In the current study, we evaluated GLUT-1 expression to determine its value in distinguishing MFS from NF. Tissue specimens from 14 MFS cases and 16 NF cases were sectioned and stained for GLUT-1 using immunohistochemistry. The percentage of GLUT-1-positive cells was scored as follows: 0 (no staining), 1+ (1-19%), 2+ (20-50%) and 3+ (>50%). Samples with a score of 1+ were defined as GLUT1-expressing samples. GLUT-1 expression was seen in all 14 MFS cases, whereas only 6 NF cases (37.5%) were positive for GLUT-1 and were scored 1+. Notably, 2-3+ GLUT-1 expression was found in 86% of MFS cases and 0% of NF cases. Our results indicate that GLUT-1 is a highly sensitive immunohistochemical marker for MFS and may be useful for the differential diagnosis of MFS and NF.
Collapse
Affiliation(s)
- Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Pathological Diagnosis Center, Fukuoka Tokushukai Hospital, Fukuoka, Japan
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
18
|
Yoshimatsu Y, Noguchi R, Sin Y, Tsuchiya R, Ono T, Akiyama T, Sato C, Kobayashi E, Kojima N, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-MFS6-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell 2022; 35:1993-2001. [PMID: 35947340 DOI: 10.1007/s13577-022-00749-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
Abstract
Myxofibrosarcoma (MFS) is a rare and aggressive mesenchymal malignancy characterized by complex karyotypes with heterogeneous clinical features. The standard treatment for primary MFS is curative resection; however, the utility of systemic chemotherapy and radiotherapy has not been established. Although patient-derived cancer cell lines are a key bioresource for developing novel therapies, the number of MFS cell lines available from public cell banks is limited by the rarity of the disease, and large-scale drug screening has not yet been performed. To address this issue, we aimed to establish and characterize a novel MFS cell line. We successfully established a cell line, NCC-MFS6-C1, which harbors genetic abnormalities common in MFS and exhibits aggressive phenotypes such as continuous growth, spheroid formation, and invasion in tissue culture conditions. We performed drug screening using NCC-MFS6-C1 along with five MFS cell lines established in our laboratory and clarified the response spectrum of 214 existing anticancer agents. We found that two anticancer agents, gemcitabine and romidepsin, showed considerable antiproliferative effects, and these observations were concordant with the findings of our previous report, in which these agents attenuated the proliferation of five previously reported MFS cell lines. We conclude that NCC-MFS6-C1 is a useful resource for studying MFS.
Collapse
Affiliation(s)
- Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chiaki Sato
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
19
|
Thiel JT, Daigeler A, Kolbenschlag J, Rachunek K, Hoffmann S. The Role of CDK Pathway Dysregulation and Its Therapeutic Potential in Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:3380. [PMID: 35884441 PMCID: PMC9323700 DOI: 10.3390/cancers14143380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Soft tissue sarcomas (STSs) are tumors that are challenging to treat due to their pathologic and molecular heterogeneity and their tumor biology that is not yet fully understood. Recent research indicates that dysregulation of cyclin-dependent kinase (CDK) signaling pathways can be a strong driver of sarcogenesis. CDKs are enzyme forms that play a crucial role in cell-cycle control and transcription. They belong to the protein kinases group and to the serine/threonine kinases subgroup. Recently identified CDK/cyclin complexes and established CDK/cyclin complexes that regulate the cell cycle are involved in the regulation of gene expression through phosphorylation of critical components of transcription and pre-mRNA processing mechanisms. The current and continually growing body of data shows that CDKs play a decisive role in tumor development and are involved in the proliferation and growth of sarcoma cells. Since the abnormal expression or activation of large numbers of CDKs is considered to be characteristic of cancer development and progression, dysregulation of the CDK signaling pathways occurs in many subtypes of STSs. This review discusses how reversal and regulation can be achieved with new therapeutics and summarizes the current evidence from studies regarding CDK modulation for STS treatment.
Collapse
Affiliation(s)
- Johannes Tobias Thiel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany; (A.D.); (J.K.); (K.R.); (S.H.)
| | | | | | | | | |
Collapse
|
20
|
Vanni S, De Vita A, Gurrieri L, Fausti V, Miserocchi G, Spadazzi C, Liverani C, Cocchi C, Calabrese C, Bongiovanni A, Riva N, Mercatali L, Pieri F, Casadei R, Lucarelli E, Ibrahim T. Myxofibrosarcoma landscape: diagnostic pitfalls, clinical management and future perspectives. Ther Adv Med Oncol 2022; 14:17588359221093973. [PMID: 35782752 PMCID: PMC9244941 DOI: 10.1177/17588359221093973] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
Myxofibrosarcoma (MFS) is a common entity of adult soft tissue sarcomas (STS) characterized by a predilection of the extremities and a high local recurrence rate. Originally classified as a myxoid variant of malignant fibrous histiocytoma, this musculoskeletal tumor has been recognized since 2002 as a distinct histotype showing a spectrum of malignant fibroblastic lesions with myxoid stroma, pleomorphism and curvilinear vessels. Currently, the molecular pathogenesis of MFS is still poorly understood and its genomic profile exhibits a complex karyotype with a number of aberrations including amplifications, deletions and loss of function. The diagnosis is challenging due to the unavailability of specific immunohistochemical markers and is based on the analysis of cytomorphologic features. The mainstay of treatment for localized disease is represented by surgical resection, with (neo)-adjuvant radio- and chemotherapy. In the metastatic setting, chemotherapy represents the backbone of treatments, however its role is still controversial and the outcome is very poor. Recent advent of genomic profiling, targeted therapies and larger enrollment of patients in translational and clinical studies, have improved the understanding of biological behavior and clinical outcome of such a disease. This review will provide an overview of current diagnostic pitfalls and clinical management of MFS. Finally, a look at future directions will be discussed.
Collapse
Affiliation(s)
- Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Via P. Maroncelli 40, Meldola 47014, Forlì-Cesena, Italy
| | - Lorena Gurrieri
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Valentina Fausti
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Nada Riva
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Federica Pieri
- Pathology Unit, 'Morgagni-Pierantoni' Hospital, Forlì, Italy
| | - Roberto Casadei
- Orthopedic Unit, 'Morgagni-Pierantoni' Hospital, Forlì, Italy
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
21
|
Yamashita A, Suehara Y, Hayashi T, Takagi T, Kubota D, Sasa K, Hasegawa N, Ishijima M, Yao T, Saito T. Molecular and clinicopathological analysis revealed an immuno-checkpoint inhibitor as a potential therapeutic target in a subset of high-grade myxofibrosarcoma. Virchows Arch 2022; 481:1-17. [PMID: 35705750 DOI: 10.1007/s00428-022-03358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to identify differences in genetic alterations between low- and high-grade lesions in myxofibrosarcoma (MFS) and to examine the efficacy of immune checkpoint inhibitors in 45 patients with MFS. First, genetic differences between low- and high-grade components within the same tumor were analyzed in 11 cases using next-generation sequencing. Based on the obtained data, Sanger sequencing was performed for TP53 mutations in the remaining 34 patients. Loss of heterozygosity (LOH) analysis was performed at the TP53 and RB1 loci. Immunohistochemistry was performed for FGFR3, KIT, MET, programmed death receptor ligand 1 (PD-L1), CD8, FOXP3, and mismatch repair proteins. The microsatellite instability status was also evaluated in all cases. TP53 deleterious mutations and LOH at TP53 and RB1 loci were detected significantly more frequently in high-grade than in low-grade MFS (P = 0.0423, 0.0455, and 0.0455, respectively). LOH at the RB1 locus was significantly associated with shorter recurrence-free survival in both univariate and multivariate analyses. TP53 alterations, such as mutation and LOH, were more frequently observed in low-grade areas within high-grade MFS than in pure low-grade MFS. The positive PD-L1 expression rate was 35.6% (16/45), and all these 16 cases were high-grade. A high density of both CD8+ and FOXP3+ tumor-infiltrating lymphocytes was associated with PD-L1 positivity. LOH at the RB1 locus was identified an independent adverse prognostic factor for recurrence-free survival in patients with MFS. Immune checkpoint inhibitors may be a therapeutic option for a subset of high-grade MFS.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Kubota
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Keita Sasa
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan. .,Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Takeuchi Y, Yoshida K, Halik A, Kunitz A, Suzuki H, Kakiuchi N, Shiozawa Y, Yokoyama A, Inoue Y, Hirano T, Yoshizato T, Aoki K, Fujii Y, Nannya Y, Makishima H, Pfitzner BM, Bullinger L, Hirata M, Jinnouchi K, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Okamoto T, Haga H, Ogawa S, Damm F. The landscape of genetic aberrations in myxofibrosarcoma. Int J Cancer 2022; 151:565-577. [PMID: 35484982 DOI: 10.1002/ijc.34051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Myxofibrosarcoma (MFS) is a rare subtype of sarcoma, whose genetic basis is poorly understood. We analyzed 69 MFS cases using whole-genome (WGS), whole-exome (WES), and/or targeted-sequencing (TS). Newly sequenced genomic data were combined with additional deposited 116 MFS samples. WGS identified a high number of structural variations (SVs) per tumor most frequently affecting the TP53 and RB1 loci, 40% of tumors showed a BRCAness-associated mutation signature, and evidence of chromothripsis was found in all cases. Most frequently mutated /copy number altered genes affected known disease drivers such as TP53 (56.2%), CDKN2A/B (29.7%), RB1 (27.0%), ATRX (19.5%), and HDLBP (18.9%). Several previously unappreciated genetic aberrations including MUC17, FLG, and ZNF780A were identified in more than 20% of patients. Longitudinal analysis of paired diagnosis and relapse time points revealed a 1.2-fold mutation number increase accompanied with substantial changes in clonal composition over time. This study highlights the genetic complexity underlying sarcomagenesis of MFS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.,Research Fellowships of Japan Society for the Promotion of Science for Young Scientists
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Adriane Halik
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Annegret Kunitz
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Yokoyama
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Aoki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Fujii
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Keita Jinnouchi
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yuichi Shiraishi
- Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Kenichi Chiba
- Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Okamoto
- Department of Orthopaedic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Cui Y, Han L, Shang J, Fang W, Zhao M, Chen D, Liu H. Primary cardiac undifferentiated pleomorphic sarcoma is associated with TP53 mutation during lack of MDM2 amplification, and targeted sequencing analysis reveals potentially actionable targets. Hum Pathol 2022; 123:113-122. [PMID: 35181378 DOI: 10.1016/j.humpath.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Cardiac undifferentiated pleomorphic sarcoma (UPS) is a rare malignancy. Several studies have revealed frequent MDM2, CDK4, PDFGRA, and KIT amplifications and CDKN2A and CDKN2B deletions. Cases lacking the above copy number alterations may harbor alternative driver mutations; however, little is known about such occurrences. This study was conducted to gain further insights into the molecular features of cardiac UPS using targeted sequencing of 560 cancer-related genes, and fluorescence in situ hybridization and immunohistochemistry of MDM2, CDK4, CDKN2A, TP53, and RB1 in 9 cardiac UPS cases. TP53 mutation or CDKN2A deletion was found in cases lacking MDM2 amplification. Further, p53 overexpression was detected in the case with TP53 mutation, while p16 expression was completely lost in the case with CDKN2A homozygous deletion. p16 overexpression was found in cases with MDM2 and CDK4 amplification but without CDKN2A deletion. Immunohistochemistry of MDM2, CDK4, p53, and p16 is expected to be preliminarily used for gene status analysis. As cardiac UPS and intimal sarcomas are merging into a single spectrum, mutation data for 3 cardiac UPS and 9 intimal sarcomas from the literature, as well as data for 5 cardiac UPS in our study were evaluated, and known recurrently mutated cancer driver genes, including PDGFRB, TP53, ALK, PTCH1, RET, ERBB4, JAK3, GATA1, PIK3CG, and RARA, were identified. Several new potentially actionable mutations, including those in RARA, ALK, PTCH1, RET, ROS1, ABL1, and MET, were also found. These findings improve the molecular understanding of this rare malignancy and are expected to provide a basis for developing precision therapeutics for cardiac UPS and intimal sarcomas.
Collapse
Affiliation(s)
- Yayan Cui
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing, 100005, China; Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Liyuan Han
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jianfeng Shang
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Wei Fang
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Meng Zhao
- The Scientific and Technical Department, Novogene Bioinformatics Institute, Beijing, 102206, China
| | - Dong Chen
- Department of Pathology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Honggang Liu
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing, 100005, China.
| |
Collapse
|
24
|
Hsu JY, Seligson ND, Hays JL, Miles WO, Chen JL. Clinical Utility of CDK4/6 Inhibitors in Sarcoma: Successes and Future Challenges. JCO Precis Oncol 2022; 6:e2100211. [PMID: 35108033 PMCID: PMC8820917 DOI: 10.1200/po.21.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Soft tissue and bone sarcomas are rare malignancies that exhibit significant pathologic and molecular heterogeneity. Deregulation of the CDKN2A-CCND-CDK4/6-retinoblastoma 1 (Rb) pathway is frequently observed in about 25% of unselected sarcomas and is pathognomonic for specific sarcoma subtypes. This genomic specificity has fueled the clinical evaluation of selective CDK4/6 inhibitors in sarcomas. Here, we highlight successes, opportunities, and future challenges for using CDK4/6 inhibitors to treat sarcoma. MATERIALS AND METHODS This review summarizes the current evidence for the use of CDK4/6 inhibitors in sarcoma while identifying molecular rationale and predictive biomarkers that provide the foundation for targeting the CDK4/6 pathway in sarcoma. A systematic review was performed of articles indexed in the PubMed database and the National Institutes of Health Clinical Trials Registry (ClinicalTrials.gov). For each sarcoma subtype, we discuss the preclinical rationale, case reports, and available clinical trials data. RESULTS Despite promising clinical outcomes in a subset of sarcomas, resistance to CDK4/6 inhibitors results in highly heterogeneous clinical outcomes. Current clinical data support the use of CDK4/6 inhibitors in subsets of sarcoma primarily driven by CDK4/6 deregulation. When dysregulation of the Rb pathway is a secondary driver of sarcoma, combination therapy with CDK4/6 inhibition may be an option. Developing strategies to identify responders and the mechanisms that drive resistance is important to maximize the clinical utility of these drugs in patients with sarcoma. Potential biomarkers that indicate CDK4/6 inhibitor sensitivity in sarcoma include CDK4, CCND, CCNE, RB1, E2F1, and CDKN2A. CONCLUSION CDK4/6 inhibitors represent a major breakthrough for targeted cancer treatment. CDK4/6 inhibitor use in sarcoma has led to limited, but significant, early clinical success. Targeted future clinical research will be key to unlocking the potential of CDK4/6 inhibition in sarcoma.
Collapse
Affiliation(s)
- Jocelyn Y. Hsu
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Nathan D. Seligson
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Department of Pharmacotherapy and Translational Research, University of Florida, Jacksonville, FL
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL
| | - John L. Hays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH
| | - Wayne O. Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, OH
| | - James L. Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Division of Bioinformatics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| |
Collapse
|
25
|
Pauli C, De Boni L, Pauwels JE, Chen Y, Planas-Paz L, Shaw R, Emerling BM, Grandori C, Hopkins BD, Rubin MA. A Functional Precision Oncology Approach to Identify Treatment Strategies for Myxofibrosarcoma Patients. Mol Cancer Res 2022; 20:244-252. [PMID: 34728552 PMCID: PMC8900059 DOI: 10.1158/1541-7786.mcr-21-0255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 01/09/2023]
Abstract
In this era of precision medicine, numerous workflows for the targeting of high-recurrent mutations in common tumor types have been developed, leaving patients with rare diseases with few options. Here, we implement a functional precision oncology approach utilizing comprehensive genomic profiling in combination with high-throughput drug screening, to identify tumor-specific drug sensitivities for patients with rare tumor types such as myxofibrosarcoma. From a patient with a high-grade myxofibrosarcoma, who was enrolled in the Englander Institute for Precision Medicine (EIPM) program, we established patient-derived 3D sarco-spheres and xenograft models for functional testing. In the absence of a large cohort of clinically similar cases, high-throughput drug screening was performed on the patient-derived cells, and compared with two other myxofibrosarcoma lines and a benign fibroblast line to functionally identify tumor-specific drug sensitivities. The addition of functional drug sensitivity testing to complement genomic profiling identified multiple therapeutic options that were further validated in patient derived xenograft models. Genomic analyses detected the frequently known codeletion of the tumor suppressors CDKN2A/B together with the methylthioadenosine phosphorylase (MTAP) and a TP53 E286fs*50 mutation. High-throughput drug screening demonstrated tumor-specific sensitivity to compounds targeting the cell cycle. Based on genomic analysis and high-throughput drug screening, we show that targeting the cell cycle in these tumors is a powerful approach. IMPLICATIONS: This study demonstrates the potential of functional testing to aid clinical decision making for patients with rare or molecularly complex malignancies when combined with comprehensive genomic profiling.
Collapse
Affiliation(s)
- Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.
| | - Lamberto De Boni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan E Pauwels
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital. New York, New York
| | - Yanjiang Chen
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Lara Planas-Paz
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Reid Shaw
- SEngine Precision Medicine, Seattle, Washington
| | - Brooke M Emerling
- Cancer Metabolism and Signaling Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark A Rubin
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital. New York, New York
- Department for BioMedical Research, Bern, Switzerland
| |
Collapse
|
26
|
Feng X, Zhao Z, Zhao Y, Song Z, Ma Y, Wang W. Development of Personalized Signature Based on the Immune Landscape to Predict the Prognosis of Osteosarcoma and the Response to Immunotherapy and Targeted Therapy. Front Mol Biosci 2022; 8:783915. [PMID: 35127816 PMCID: PMC8811188 DOI: 10.3389/fmolb.2021.783915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
As a heterogeneous and aggressive disease, osteosarcoma (OS) faces great challenges to prognosis and individualized treatment. Hence, we explore the role of immune-related genes in predicting prognosis and responsiveness to immunotherapy and targeted therapies in patients with OS based on the immunological landscape of osteosarcoma. Based on the database of the Therapeutical Applicable Research to Generate Effective Treatments (TARGET), single-sample gene set enrichment analysis (ssGSEA) was used to obtain the enrichment scores of 29 immune characteristics. A series of bioinformatics methods were performed to construct the immune-related prognostic signature (IRPS). Gene set enrichment analysis and gene set variation analysis were used to explore the biological functions of IRPS. We also analyzed the relationship between IRPS and tumor microenvironment. Lastly, the reactivity of IRPS to immune checkpoint therapy and targeted drugs was explored. The ssGSEA algorithm was used to define two immune subtypes, namely Immunity_High and Immunity_Low. Immunity_High was associated with a good prognosis and was an independent prognostic factor of OS. The IRPS containing 7 genes was constructed by the least absolute shrinkage and selection operator Cox regression. The IRPS can divide patients into low- and high-risk patients. Compared with high-risk patients, low-risk patients had a better prognosis and were positively correlated with immune cell infiltration and immune function. Low-risk patients benefited more from immunotherapy, and the sensitivity of targeted drugs in high- and low-risk groups was determined. IRPS can be used to predict the prognosis of OS patients, and provide therapeutic responsiveness to immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Xiaofei Feng
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Gansu, China
| | - Zhenrui Zhao
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Gansu, China
| | - Yuhao Zhao
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Gansu, China
| | - Zhengdong Song
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Gansu, China
| | - Yao Ma
- Clinical Laboratory Center, Gansu Provincial Maternity and Child-Care Hospital, Gansu, China
| | - Wenji Wang
- Department of Orthopedics, Lanzhou University First Affiliated Hospital, Gansu, China
- *Correspondence: Wenji Wang,
| |
Collapse
|
27
|
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Akiyama T, Sugaya J, Kobayashi E, Kojima N, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and Characterization of NCC-MFS5-C1: A Novel Patient-Derived Cell Line of Myxofibrosarcoma. Cells 2022; 11:207. [PMID: 35053323 PMCID: PMC8773631 DOI: 10.3390/cells11020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/22/2023] Open
Abstract
Myxofibrosarcoma (MFS) is a highly aggressive malignancy with complex karyotypes and a postoperative recurrence tendency, owing to its strong invasiveness. Although systemic chemotherapy is considered in patients with unresectable MFS, the efficacy of conventional chemotherapy is hitherto unclear. Recently, drug screening analysis using a large number of tumor cell lines has been attempted to discover novel therapeutic candidate drugs for common cancers. However, the number of MFS cell lines is extremely small because of its low incidence-this hinders the conduction of screening studies and slows down the development of therapeutic drugs. To overcome this problem, we established a novel MFS cell line, NCC-MFS5-C1, which was shown to harbor typical MFS genetic abnormalities and thus had useful properties for in vitro studies. We conducted the largest integrated screening analysis of 210 drugs using NCC-MFS5-C1 cells along with four MFS cell lines, which we previously reported. Bortezomib (a proteasome inhibitor) and romidepsin (a histone deacetylase inhibitor) showed stronger antitumor effects than the standard drug, doxorubicin. Therefore, the NCC-MFS5-C1 cell line can potentially contribute to elucidating MFS pathogenesis and developing a novel MFS treatment.
Collapse
Affiliation(s)
- Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (J.S.); (E.K.); (A.K.)
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (J.S.); (E.K.); (A.K.)
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (N.K.); (A.Y.)
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (N.K.); (A.Y.)
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (J.S.); (E.K.); (A.K.)
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| |
Collapse
|
28
|
Fioravanzo A, Martignoni G, Brunelli M, Segala D, Erdini F. Report of two primary renal tumors with myxoid features. Differential diagnosis between benign and malignant entities. Pathologica 2022; 113:427-435. [PMID: 34974548 PMCID: PMC8720392 DOI: 10.32074/1591-951x-180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
Renal mesenchymal neoplasms are rare entities which can have a benign or a malignant behavior. Herein we describe two renal mesenchymal tumors with myxoid stroma, investigating the wide spectrum of differential diagnosis. With our first case we considered some benign entities such as myxoma, myxoid leiomyoma, and mixed epithelial and stromal tumor; with our second case we considered some sarcomas with myxoid features such as myxofibrosarcoma, low-grade fibromyxoid sarcoma, dedifferentiated liposarcoma, and myxoid liposarcoma. During the diagnostic process, it is important to integrate histopathological, immunohistochemical, and molecular data in order to avoid misdiagnosis. We concluded our second case report was a myxofibrosarcoma grade 1. To the best of our knowledge, we described the fourth primary renal myxofibrosarcoma reported in literature.
Collapse
Affiliation(s)
- Adele Fioravanzo
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Guido Martignoni
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy.,Pathology Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Diego Segala
- Pathology Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Francesco Erdini
- Department of Diagnostics and Public Health, Section of Anatomical Pathology, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
29
|
Fatema K, Luelling S, Kirkham M, Pavek A, Heyneman AL, Barrott J. Epigenetics and precision medicine in bone and soft tissue sarcomas. EPIGENETICS IN PRECISION MEDICINE 2022:147-191. [DOI: 10.1016/b978-0-12-823008-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Prognostic value of CD34 expression status in patients with myxofibrosarcomas and undifferentiated pleomorphic sarcomas. Sci Rep 2021; 11:15494. [PMID: 34326362 PMCID: PMC8322140 DOI: 10.1038/s41598-021-94834-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It is controversial whether patients with myxofibrosarcomas (MFSs) have better prognoses than those with undifferentiated pleomorphic sarcomas (UPSs). No useful prognostic factors have been established to date. We therefore aimed to evaluate the prognostic value of CD34 expression status in 192 patients with MFSs and UPSs. Using the log-rank test, we showed that patients with MFSs had a significantly better overall survival than did those with UPSs when defining the former as having a > 10% myxoid component (p = 0.03), but not when defining it as having a > 50% myxoid component (p = 0.1). Under the definition of MFSs as > 10% myxoid component, the log-rank test revealed that the diagnosis of the UPS and the CD34 loss (p < 0.001) were significant adverse predictors of overall survival. As per the Cox model, the CD34 loss remained an independent prognostic factor (hazard ratio = 3.327; 95% confidence interval 1.334-8.295), while the diagnosis of the UPS was a nonsignificant confounding factor (hazard ratio = 1.084; 95% confidence interval 0.679-1.727). In conclusion, CD34 expression status is a useful prognostic factor in patients with MFS and UPS, and it should be incorporated into grading systems that are used to predict outcomes.
Collapse
|
31
|
Tazzari M, Bergamaschi L, De Vita A, Collini P, Barisella M, Bertolotti A, Ibrahim T, Pasquali S, Castelli C, Vallacchi V. Molecular Determinants of Soft Tissue Sarcoma Immunity: Targets for Immune Intervention. Int J Mol Sci 2021; 22:ijms22147518. [PMID: 34299136 PMCID: PMC8303572 DOI: 10.3390/ijms22147518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a family of rare malignant tumors encompassing more than 80 histologies. Current therapies for metastatic STS, a condition that affects roughly half of patients, have limited efficacy, making innovative therapeutic strategies urgently needed. From a molecular point of view, STSs can be classified as translocation-related and those with a heavily rearranged genotype. Although only the latter display an increased mutational burden, molecular profiles suggestive of an “immune hot” tumor microenvironment are observed across STS histologies, and response to immunotherapy has been reported in both translocation-related and genetic complex STSs. These data reinforce the notion that immunity in STSs is multifaceted and influenced by both genetic and epigenetic determinants. Cumulative evidence indicates that a fine characterization of STSs at different levels is required to identify biomarkers predictive of immunotherapy response and to discover targetable pathways to switch on the immune sensitivity of “immune cold” tumors. In this review, we will summarize recent findings on the interplay between genetic landscape, molecular profiling and immunity in STSs. Immunological and molecular features will be discussed for their prognostic value in selected STS histologies. Finally, the local and systemic immunomodulatory effects of the targeted drugs imatinib and sunitinib will be discussed.
Collapse
Affiliation(s)
- Marcella Tazzari
- Immunotherapy-Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (T.I.)
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Marta Barisella
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Alessia Bertolotti
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.C.); (M.B.); (A.B.)
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (T.I.)
| | - Sandro Pasquali
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
- Correspondence:
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.B.); (V.V.)
| |
Collapse
|
32
|
Martínez-Trufero J, Cruz Jurado J, Gómez-Mateo MC, Bernabeu D, Floría LJ, Lavernia J, Sebio A, García Del Muro X, Álvarez R, Correa R, Hernández-León CN, Marquina G, Hindi N, Redondo A, Martínez V, Asencio JM, Mata C, Valverde Morales CM, Martin-Broto J. Uncommon and peculiar soft tissue sarcomas: Multidisciplinary review and practical recommendations for diagnosis and treatment. Spanish group for Sarcoma research (GEIS - GROUP). Part I. Cancer Treat Rev 2021; 99:102259. [PMID: 34311246 DOI: 10.1016/j.ctrv.2021.102259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Affiliation(s)
| | - Josefina Cruz Jurado
- Hospital Universitario Canarias, Medical Oncology Department, Santa Cruz de Tenerife, Spain
| | | | - Daniel Bernabeu
- Hospital Universitario La Paz, Radiology Department, Madrid, Spain
| | - Luis Javier Floría
- Hospital Universitario Miguel Servet, Orthopedic and Traumatology Department, Zaragoza, Spain
| | - Javier Lavernia
- Instituto Valenciano de Oncología, Medical Oncology Department, Valencia, Spain
| | - Ana Sebio
- Hospital Universitario Santa Creu i Sant Pau, Medical Oncology Department, Barcelona, Spain
| | | | - Rosa Álvarez
- Hospital Universitario Gregorio Marañón, Medical Oncology Department, Madrid, Spain
| | - Raquel Correa
- Hospital Virgen de la Victoria, Radiation Oncology Department, Malaga, Spain
| | | | - Gloria Marquina
- Hospital Universitario Clínico San Carlos, Medical Oncology Department, Madrid, Spain
| | - Nadia Hindi
- University Hospital "Fundacion Jimenez Diaz" Madrid, Medical Oncology Department, Madrid, Research Institute FJD-UAM, Madrid (Spain), TBsarc, CITIUS III, Seville, Spain
| | - Andrés Redondo
- Hospital Universitario La Paz, Medical Oncology Department, Madrid, Spain
| | - Virginia Martínez
- Hospital Universitario La Paz, Medical Oncology Department, Madrid, Spain
| | | | - Cristina Mata
- Hospital Universitario Gregorio Marañón, Pediatric and Adolescent Hemato-oncology Department, Madrid, Spain
| | | | - Javier Martin-Broto
- University Hospital "Fundacion Jimenez Diaz" Madrid, Medical Oncology Department, Madrid, Research Institute FJD-UAM, Madrid (Spain), TBsarc, CITIUS III, Seville, Spain
| |
Collapse
|
33
|
Hashimoto K, Nishimura S, Ito T, Akagi M. Characterization of PD-1/PD-L1 immune checkpoint expression in soft tissue sarcomas. Eur J Histochem 2021; 65. [PMID: 34218652 PMCID: PMC8273625 DOI: 10.4081/ejh.2021.3203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/25/2021] [Indexed: 02/08/2023] Open
Abstract
Inhibitors of the programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint system are used for treating various malignancies. However, evidence on their use in soft tissue sarcomas (STS) is limited. This study aimed to retrospectively investigate the relationship between the expression of PD-1/PD-L1 and related antigens in STS, and their association with clinical characteristics. Immunostaining for CD4, CD8, PD-1, PD-L1, IL-2, and IFN-γ was performed using pathological specimens harvested at the time of biopsy from 10 patients with undifferentiated pleomorphic sarcoma (UPS), nine with myxofibrosarcoma (MFS), and three with malignant peripheral nerve sheath tumor (MPNST) who were treated at our hospital. Subsequently, the positive immunostaining cell rates were calculated. We also examined the correlation between each immune positive cell rate and age, tissue grade, size, and maximum standardized uptake (SUV-max) values. The 3-year event-free survival (EFS) and overall survival (OS) rates were compared between the positive and negative groups (positive rate >10%; negative <10%) for various immune stains. The positive rates were also compared between the presence and absence of events groups. There was positive staining for the immune checkpoint molecules in every STS type except for PD-1 in MPNST. CD4, CD8, and PD-1 stained lymphocytes in close proximity to the tumor in adjacent tissue sections. A positive correlation was observed between the positive cell rates of each immune component including inflammatory cytokines such as IL-2 and IFN-γ. Additionally, the clinical features positively correlated with the positive PD-1/PD-L1 expression rates. No significant differences in the 3-EFS and OS rates were observed between the PD-1/PD-L1 positive and negative groups. Our results suggest that an inducible immune checkpoint mechanism may be involved in UPS, MFS, and MPNST.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Tomohiko Ito
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| |
Collapse
|
34
|
Lyskjær I, De Noon S, Tirabosco R, Rocha AM, Lindsay D, Amary F, Ye H, Schrimpf D, Stichel D, Sill M, Koelsche C, Pillay N, Von Deimling A, Beck S, Flanagan AM. DNA methylation-based profiling of bone and soft tissue tumours: a validation study of the 'DKFZ Sarcoma Classifier'. J Pathol Clin Res 2021; 7:350-360. [PMID: 33949149 PMCID: PMC8185366 DOI: 10.1002/cjp2.215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Diagnosing bone and soft tissue neoplasms remains challenging because of the large number of subtypes, many of which lack diagnostic biomarkers. DNA methylation profiles have proven to be a reliable basis for the classification of brain tumours and, following this success, a DNA methylation-based sarcoma classification tool from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg has been developed. In this study, we assessed the performance of their classifier on DNA methylation profiles of an independent data set of 986 bone and soft tissue tumours and controls. We found that the 'DKFZ Sarcoma Classifier' was able to produce a diagnostic prediction for 55% of the 986 samples, with 83% of these predictions concordant with the histological diagnosis. On limiting the validation to the 820 cases with histological diagnoses for which the DKFZ Classifier was trained, 61% of cases received a prediction, and the histological diagnosis was concordant with the predicted methylation class in 88% of these cases, findings comparable to those reported in the DKFZ Classifier paper. The classifier performed best when diagnosing mesenchymal chondrosarcomas (CHSs, 88% sensitivity), chordomas (85% sensitivity), and fibrous dysplasia (83% sensitivity). Amongst the subtypes least often classified correctly were clear cell CHSs (14% sensitivity), malignant peripheral nerve sheath tumours (27% sensitivity), and pleomorphic liposarcomas (29% sensitivity). The classifier predictions resulted in revision of the histological diagnosis in six of our cases. We observed that, although a higher tumour purity resulted in a greater likelihood of a prediction being made, it did not correlate with classifier accuracy. Our results show that the DKFZ Classifier represents a powerful research tool for exploring the pathogenesis of sarcoma; with refinement, it has the potential to be a valuable diagnostic tool.
Collapse
Affiliation(s)
- Iben Lyskjær
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Solange De Noon
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Roberto Tirabosco
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Ana Maia Rocha
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Daniel Lindsay
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Fernanda Amary
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Hongtao Ye
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Daniel Schrimpf
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Martin Sill
- Hopp‐Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Christian Koelsche
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of General PathologyUniversity of HeidelbergHeidelbergGermany
| | - Nischalan Pillay
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
| | - Andreas Von Deimling
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stephan Beck
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Adrienne M Flanagan
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| |
Collapse
|
35
|
Toward a Personalized Therapy in Soft-Tissue Sarcomas: State of the Art and Future Directions. Cancers (Basel) 2021; 13:cancers13102359. [PMID: 34068344 PMCID: PMC8153286 DOI: 10.3390/cancers13102359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
Soft-tissue sarcomas are rare tumors characterized by pathogenetic, morphological, and clinical intrinsic variability. Median survival of patients with advanced tumors are usually chemo- and radio-resistant, and standard treatments yield low response rates and poor survival results. The identification of defined genomic alterations in sarcoma could represent the premise for targeted treatments. Summarizing, soft-tissue sarcomas can be differentiated into histotypes with reciprocal chromosomal translocations, with defined oncogenic mutations and complex karyotypes. If the latter are improbably approached with targeted treatments, many suggest that innovative therapies interfering with the identified fusion oncoproteins and altered pathways could be potentially resolutive. In most cases, the characteristic genetic signature is discouragingly defined as "undruggable", which poses a challenge for the development of novel pharmacological approaches. In this review, a summary of genomic alterations recognized in most common soft-tissue sarcoma is reported together with current and future therapeutic opportunities.
Collapse
|
36
|
Germinal GLT8D1, GATAD2A and SLC25A39 mutations in a patient with a glomangiopericytal tumor and five different sarcomas over a 10-year period. Sci Rep 2021; 11:9765. [PMID: 33963205 PMCID: PMC8105326 DOI: 10.1038/s41598-021-88671-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022] Open
Abstract
Soft tissue sarcoma represents about 1% of all adult cancers. Occurrence of multiple sarcomas in a same individual cannot be fortuitous. A 72-year-old patient had between 2007 and 2016 a glomangiopericytal tumor of the right forearm and a succession of sarcomas of the extremities: a leiomyosarcoma of the left buttock, a myxofibrosarcoma (MFS) of the right forearm, a MFS of the left scapula, a left latero-thoracic MFS and two undifferentiated sarcomas on the left forearm. Pathological examination of the six locations was not in favor of disease with local/distant recurrences but could not confirm different diseases. An extensive molecular analysis including DNA-array, RNA-sequencing and DNA-Sanger-sequencing, was thus performed to determine the link between them. The genomic profile of the glomangiopericytal tumor and the six sarcomas revealed that five sarcomas were different diseases and one was the local recurrence of the glomangiopericytal tumor. While the chromosomal alterations in the six tumors were different, a common somatic CDKN2A/CDKN2B deletion was identified. RNA-sequencing of five tumors identified mutations in GLT8D1, GATAD2A and SLC25A39 in all samples. The germline origin of these mutations was confirmed by Sanger-sequencing. Innovative molecular analysis methods have made possible a better understanding of the complex tumorigenesis of multiple sarcomas.
Collapse
|
37
|
Fan J, Qin X, He R, Ma J, Wei Q. Gene expression profiles for an immunoscore model in bone and soft tissue sarcoma. Aging (Albany NY) 2021; 13:13708-13725. [PMID: 33946044 PMCID: PMC8202872 DOI: 10.18632/aging.202956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Background: Immune infiltration is a prognostic marker to clinical outcomes in various solid tumors. However, reports that focus on bone and soft tissue sarcoma are rare. The study aimed to analyze and identify how immune components influence prognosis and develop a novel prognostic system for sarcomas. Methods: We retrieved the gene expression data from 3 online databases (GEO, TCGA, and TARGET). The immune fraction was estimated using the CIBERSORT algorithm. After that, we re-clustered samples by K-means and constructed immunoscore by the least absolute shrinkage and selection operator (LASSO) Cox regression model. Next, to confirm the prognostic value, nomograms were constructed. Results: 334 samples diagnosed with 8 tumor types (including osteosarcoma) were involved in our analysis. Patients were next re-clustered into three subgroups (OS, SAR1, and SAR2) through immune composition. Survival analysis showed a significant difference between the two soft tissue groups: patients with a higher proportion of CD8+ T cells, macrophages M1, and mast cells had favorable outcomes (p=0.0018). Immunoscore models were successfully established in OS and SAR2 groups consisting of 12 and 9 cell fractions, respectively. We found immunosocre was an independent factor for overall survival time. Patients with higher immunoscore had poor prognosis (p<0.0001). Patients with metastatic lesions scored higher than those counterparts with localized tumors (p<0.05). Conclusions: Immune fractions could be a useful tool for the classification and prognosis of bone and soft tissue sarcoma patients. This proposed immunoscore showed a promising impact on survival prediction.
Collapse
Affiliation(s)
- Jingyuan Fan
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinyi Qin
- School of Graduate, Guangxi Medical University, Nanning, Guangxi, China
| | - Rongquan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Ma
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingjun Wei
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
38
|
Xu L, Xie X, Shi X, Zhang P, Liu A, Wang J, Zhang B. Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncol Lett 2021; 21:353. [PMID: 33747210 PMCID: PMC7967939 DOI: 10.3892/ol.2021.12614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Sarcomas represent a heterogeneous group of mesenchymal malignancies arising at various locations in the soft tissue and bone. Though a rare disease, sarcoma affects ~200,000 patients worldwide every year. The prognosis of patients with sarcoma is poor, and targeted therapy options are limited; therefore, accurate diagnosis and classification are essential for effective treatment. Sarcoma samples were acquired from 199 patients, in which TP53 (39.70%, 79/199), CDKN2A (19.10%, 38/199), CDKN2B (15.08%, 30/199), KIT (14.07%, 28/199), ATRX (10.05%, 20/199) and RB1 (10.05%, 20/199) were identified as the most commonly mutated genes (>10% incidence). Among 64 soft-tissue sarcomas that were unclassified by immunohistochemistry, 15 (23.44%, 15/64) were subsequently classified using next-generation sequencing (NGS). For the most part, the sarcoma subtypes were evenly distributed between male and female patients, while a significant association with sex was detected in leiomyosarcomas. Statistical analysis showed that osteosarcoma, Ewing's sarcoma, gastrointestinal stromal tumors and liposarcoma were all significantly associated with the patient age, and that angiosarcoma was significantly associated with high tumor mutational burden. Furthermore, serially mutated genes associated with myxofibrosarcoma, gastrointestinal stromal tumor, osteosarcoma, liposarcoma, leiomyosarcoma, synovial sarcoma and Ewing's sarcoma were identified, as well as neurotrophic tropomyosin-related kinase (NTRK) fusions of IRF2BP2-NTRK1, MEF2A-NTRK3 and ITFG1-NTRK3. Collectively, the results of the present study suggest that NGS-targeting provides potential new biomarkers for sarcoma diagnosis, and may guide more precise therapeutic strategies for patients with bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Libin Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | - Peng Zhang
- OrigiMed Co. Ltd., Shanghai 201114, P.R. China
| | - Angen Liu
- OrigiMed Co. Ltd., Shanghai 201114, P.R. China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Bo Zhang
- Department of Pathology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
39
|
Cao S, Li J, Zhang J, Li H. Development and validation of a prognostic nomogram for predicting the overall survival of myxofibrosarcoma patients: a large population-based study. Transl Cancer Res 2021; 10:923-937. [PMID: 35116421 PMCID: PMC8798403 DOI: 10.21037/tcr-20-2588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Background Although some studies have explored prognostic factors of myxofibrosarcoma (MFS), the sample sizes were small, generally fewer than 100 patients. There is still no effective prognostic model for MFS patients based on a large population and comprehensive factors. The present study was designed to establish and validate a large population-based, clinically relevant prognostic nomogram for predicting 3- and 5-year overall survival (OS) in patients with MFS. Methods We identified patients with MFS (ICD-O-3 code: 8811/3) who were diagnosed between 2004 and 2015 from the Surveillance, Epidemiology, and End Results database and separated them into training and validation cohorts (7:3 ratio). Survival was described using the Kaplan-Meier method. Univariate and multivariate Cox regression analyses were used to identify prognostic factors of survival. An individual nomogram was established to predict OS at 3 and 5 years in MFS patients. The discriminative ability and predictive accuracy of the nomogram were compared to those of the traditional American Joint Committee on Cancer (AJCC) staging system in the training and validation cohorts. Finally, MFS patients were divided into two subgroups based on the prognostic index (PI) score of the nomogram, and the survival outcomes of the subgroups were compared. Results A total of 1,270 patients were included. Age at diagnosis, total number of in situ or malignant tumors, tumor size, tumor site, tumor extension, AJCC stage, surgical status, chemotherapy, and radiotherapy were the independent predictors of survival and were included in the nomogram. The nomogram had C-indexes of 0.806 in the training cohort and 0.783 in the validation cohort, which were greater than those of the sixth edition of the AJCC staging system (training cohort, 0.669 and validation cohort, 0.674). Decision curve analysis (DCA) revealed that the nomogram was useful with high clinical net benefits. Survival outcomes were significantly different between the different risk subgroups (P<0.001). Conclusions A novel nomogram based on a large population was constructed to evaluate survival outcomes for MFS. Its predictive efficacy was markedly superior than that of the traditional sixth edition of the AJCC staging system.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jun Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haopeng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
40
|
Zhu Z, Liu X, Li W, Wen Z, Ji X, Zhou R, Tuo X, Chen Y, Gong X, Liu G, Zhou Y, Chen S, Song L, Huang J. A rare multiple primary sarcomatoid carcinoma (SCA) of small intestine harboring driver gene mutations: a case report and a literature review. Transl Cancer Res 2021; 10:1150-1161. [PMID: 35116442 PMCID: PMC8798874 DOI: 10.21037/tcr-20-2829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Primary sarcomatoid carcinoma (SCA) is a type of rare tumor consisting of both malignant epithelial and mesenchymal components. Only 32 cases of SCA of the small bowel have been reported in the literature to date. Due to its rarity and complexity, this cancer has not been genetically studied and its diagnosis and treatment remain difficult. Here we report a 54-year-old male underwent emergency surgical resection in the small intestine due to severe obstruction and was diagnosed with multiple SCA based on postoperative pathological examination. Over 100 polypoid tumors scattered along his whole jejunum and proximal ileum. Chemotherapy (IFO+Epirubicin) was performed after surgery while the patient died two months after the surgery due to severe malnutrition. Whole-exome sequencing was performed for the tumor tissue with normal tissue as the control. Important cancer-related gene mutations, including KRAS (c.37G>T, p.G13C), TP53 (c.871A>T, p.K291*), EGFR (c.1351C>T, p.R451C), and CDKN2A (c.104_138del, p.G35fs), were found among 286 nonsynonymous somatic mutations (SNV and Indel). Copy-number amplified genes mainly gathered in chromosome 6, 7, 16 and 20. Mutation clustering analysis showed that main genetic abnormalities included DNA methylation, DNA alkylation, cellular homeostasis, and shared similarities with melanoma, glioma, prostate cancer, bladder cancer, non-small cell lung cancer, and pancreatic cancer. In summary, the genomic features of the small intestine SCA were explored at whole-exome level for the first time, and over 200 somatic mutations were identified in the tumor tissue. Key tumor driver gene mutations were revealed, as well as several aberrant functional pathways. These results contribute to further understanding of the pathogenesis and molecular mechanism of this rare tumor.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyi Liu
- HaploX Biotechnology, Shenzhen, China
| | - Wenliang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhengqi Wen
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiang Ji
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruize Zhou
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyu Tuo
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaru Chen
- HaploX Biotechnology, Shenzhen, China
| | - Xian Gong
- HaploX Biotechnology, Shenzhen, China
| | | | | | | | - Lele Song
- HaploX Biotechnology, Shenzhen, China
| | - Jian Huang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
41
|
Li CF, Chan TC, Wang CI, Fang FM, Lin PC, Yu SC, Huang HY. RSF1 requires CEBP/β and hSNF2H to promote IL-1β-mediated angiogenesis: the clinical and therapeutic relevance of RSF1 overexpression and amplification in myxofibrosarcomas. Angiogenesis 2021; 24:533-548. [PMID: 33496909 DOI: 10.1007/s10456-020-09764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
Myxofibrosarcoma is genetically complex and lacks effective nonsurgical treatment strategies; thus, elucidation of novel molecular drivers is urgently needed. Reanalyzing public myxofibrosarcoma datasets, we identified mRNA upregulation and recurrent gain of RSF1 and characterized this chromatin remodeling gene. Myxofibrosarcoma cell lines were employed to elucidate the oncogenic mechanisms of RSF1 by genetic manipulation and two IL-1β-neutralizing antibodies (RD24, P2D7KK), highlighting the regulatory basis and targetability of downstream IL-1β-mediated angiogenesis. Tumor samples were assessed for RSF1, IL-1β, and microvascular density (MVD) by immunohistochemistry and for RSF1 gene status by FISH. In vivo, RSF1-silenced and P2D7KK-treated xenografts were analyzed for tumor-promoting effects and the IL-1β-linked therapeutic relevance of RSF1, respectively. In vitro, RSF1 overexpression promoted invasive and angiogenic phenotypes with a stronger proangiogenic effect. RT-PCR profiling identified IL1B as a top-ranking candidate upregulated by RSF1. RSF1 required hSNF2H and CEBP/β to cotransactivate the IL1B promoter, which increased the IL1B mRNA level, IL-1β secretion and angiogenic capacity. Angiogenesis induced by RSF1-upregulated IL-1β was counteracted by IL1B knockdown and both IL-1β-neutralizing antibodies. Clinically, RSF1 overexpression was highly associated with RSF1 amplification, IL-1β overexpression, increased MVD and higher grades (all P ≤ 0.01) and independently predicted shorter disease-specific survival (P = 0.019, hazard ratio: 4.556). In vivo, both RSF1 knockdown and anti-IL-1β P2D7KK (200 μg twice weekly) enabled significant growth inhibition and devascularization in xenografts. In conclusion, RSF1 overexpression, partly attributable to RSF1 amplification, contributes a novel proangiogenic function by partnering with CEBP/β to cotransactivate IL1B, highlighting its prognostic, pathogenetic, and therapeutic relevance in myxofibrosarcomas.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ti-Chen Chan
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network; Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Chun Lin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Chen Yu
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-Pei Rd., Niao-Sung District, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-Pei Rd., Niao-Sung District, Kaohsiung, Taiwan.
| |
Collapse
|
42
|
Genome wide methylation profiling of selected matched soft tissue sarcomas identifies methylation changes in metastatic and recurrent disease. Sci Rep 2021; 11:667. [PMID: 33436720 PMCID: PMC7804318 DOI: 10.1038/s41598-020-79648-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this study we used the Illumina Infinium Methylation array to investigate in a cohort of matched archival human tissue samples (n = 32) from 14 individuals with soft tissue sarcomas if genome-wide methylation changes occur during metastatic and recurrent (Met/Rec) disease. A range of sarcoma types were selected for this study: leiomyosarcoma (LMS), myxofibrosarcoma (MFS), rhabdomyosarcoma (RMS) and synovial sarcoma (SS). We identified differential methylation in all Met/Rec matched samples, demonstrating that epigenomic differences develop during the clonal evolution of sarcomas. Differentially methylated regions and genes were detected, not been previously implicated in sarcoma progression, including at PTPRN2 and DAXX in LMS, WT1-AS and TNXB in SS, VENTX and NTRK3 in pleomorphic RMS and MEST and the C14MC / miR-379/miR-656 in MFS. Our overall findings indicate the presence of objective epigenetic differences across primary and Met/Rec human tissue samples not previously reported.
Collapse
|
43
|
Urasaki T, Nakano K, Tomomatsu J, Komai Y, Yuasa T, Yamashita K, Takazawa Y, Yamamoto S, Yonese J, Takahashi S. Adult genitourinary sarcoma: The era of optional chemotherapeutic agents for soft tissue sarcoma. Int J Urol 2021; 28:91-97. [PMID: 33169456 DOI: 10.1111/iju.14417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To report our institutional experience with treatment of primary genitourinary soft tissue sarcoma. METHODS We retrospectively reviewed the medical records of adult soft tissue sarcoma patients treated between March 2005 and May 2019. The primary tumor sites included the prostate, kidney, urinary bladder and the paratesticular structures. RESULTS A total of 19 patients - 16 men (84%) and three women (16%) - were enrolled in the study. The median age was 41 years (range 20-79 years). The most common primary site was the prostate (in eight patients; 42%), and prostatic sarcoma patients were younger than patients with sarcomas of other origins. The most common histological subtype was leiomyosarcoma (in five patients; 26%). The overall survival rates after 1, 3 and 5 years were 61.5%, 34.4% and 25.8%, respectively. The median survival time was 20.7 months (95% confidence interval 5.9-35.5 months). Univariate analysis showed that an absence of metastasis at diagnosis and complete surgical resection were predictive of favorable survival. In the chemotherapy group, the objective response rate was 20.5%. Pazopanib was administered to nine patients in the late-line setting, and the objective response rate was 11.1%; six grade ≥3 adverse events were observed in three patients. CONCLUSIONS Inoperable metastatic genitourinary soft tissue sarcoma remains difficult to treat, as previously reported. Further investigation on this malignancy, including optimization of currently available antitumor drugs and the development of novel therapeutic agents, is required.
Collapse
Affiliation(s)
- Tetsuya Urasaki
- Departments of, Department of, Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kenji Nakano
- Departments of, Department of, Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Junichi Tomomatsu
- Departments of, Department of, Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshinobu Komai
- Department of, Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Yuasa
- Department of, Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kyoko Yamashita
- Department of, Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yutaka Takazawa
- Department of, Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinya Yamamoto
- Department of, Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Junji Yonese
- Department of, Urology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shunji Takahashi
- Departments of, Department of, Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
44
|
OSmfs: An Online Interactive Tool to Evaluate Prognostic Markers for Myxofibrosarcoma. Genes (Basel) 2020; 11:genes11121523. [PMID: 33352742 PMCID: PMC7766036 DOI: 10.3390/genes11121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Myxofibrosarcoma is a complex genetic disease with poor prognosis. However, more effective biomarkers that forebode poor prognosis in Myxofibrosarcoma remain to be determined. Herein, utilizing gene expression profiling data and clinical follow-up data of Myxofibrosarcoma cases in three independent cohorts with a total of 128 Myxofibrosarcoma samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we constructed an easy-to-use web tool, named Online consensus Survival analysis for Myxofibrosarcoma (OSmfs) to analyze the prognostic value of certain genes. Through retrieving the database, users generate a Kaplan–Meier plot with log-rank test and hazard ratio (HR) to assess prognostic-related genes or discover novel Myxofibrosarcoma prognostic biomarkers. The effectiveness and availability of OSmfs were validated using genes in ever reports predicting the prognosis of Myxofibrosarcoma patients. Furthermore, utilizing the cox analysis data and transcriptome data establishing OSmfs, seven genes were selected and considered as more potentially prognostic biomarkers through overlapping and ROC analysis. In conclusion, OSmfs is a promising web tool to evaluate the prognostic potency and reliability of genes in Myxofibrosarcoma, which may significantly contribute to the enrichment of novelly potential prognostic biomarkers and therapeutic targets for Myxofibrosarcoma.
Collapse
|
45
|
Wang XQ, Wang XQ, Hsu ATYW, Goytain A, Ng TLT, Nielsen TO. A Rapid and Cost-Effective Gene Expression Assay for the Diagnosis of Well-Differentiated and Dedifferentiated Liposarcomas. J Mol Diagn 2020; 23:274-284. [PMID: 33346147 DOI: 10.1016/j.jmoldx.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Histologic examination neither reliably distinguishes benign lipomas from atypical lipomatous tumor/well-differentiated liposarcoma, nor dedifferentiated liposarcoma from other pleomorphic sarcomas, entities with different prognoses and management. Molecular confirmation of pathognomonic 12q13-15 amplifications leading to MDM2 overexpression is a diagnostic gold standard. Currently the most commonly used assay for this purpose is fluorescence in situ hybridization (FISH), but this is labor intensive. This study assessed whether newer NanoString-based technology could allow for more rapid and cost-efficient diagnosis of liposarcomas on standard formalin-fixed tissues through gene expression. Leveraging large-scale transcriptome data from The Cancer Genome Atlas, 20 genes were identified, most from the 12q13-15 amplicon, that distinguish dedifferentiated liposarcoma from other sarcomas and can be measured within a single NanoString assay. Using 21 cases of histologically ambiguous low-grade adipocytic tumors with available MDM2 amplification status, a machine learning-based analytical pipeline was built that assigns a given sample as negative or positive for liposarcoma based on quantitative gene expression. The effectiveness of the assay was validated on an independent set of 100 sarcoma samples (including 40 incident prospective cases), where histologic examination was considered insufficient for clinical diagnosis. The NanoString assay had a 93% technical success rate, and an accuracy of 97.8% versus an MDM2 amplification FISH gold standard. NanoString had a considerably faster turnaround time and was cheaper than FISH.
Collapse
Affiliation(s)
- Xiu Q Wang
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xue Q Wang
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anika T Y W Hsu
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Goytain
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tony L T Ng
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada.
| |
Collapse
|
46
|
Radman M, Milicevic T. A novel mutation of the MEN1 gene in a patient with multiple endocrine neoplasia type 1 and recurrent fibromyxoid sarcoma - a case report. BMC MEDICAL GENETICS 2020; 21:190. [PMID: 32993530 PMCID: PMC7526371 DOI: 10.1186/s12881-020-01129-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Background Multiple endocrine neoplasia type 1 (MEN1) syndrome is usually accompanied by endocrine tumors, but non-endocrine tumors can occur as well. However, the coexistence of MEN1 syndrome and malignant tumor such as low-grade fibromyxoid sarcoma has not been described in the literature. Moreover, the MEN1 gene mutations have not been identified in patients with fibromyxoid sarcoma, so far. Case presentation We present a patient with a long-year endocrine follow-up due to multiple endocrine tumors. During his lifespan, he has been surgically treated for pancreatic gastrinoma, parathyroid hyperplasia, atypical pulmonary carcinoid, various benign mesenchymal, and several skin tumors (basocellular tumor, lipomas, and fibromas) which raised a high clinical suspicion of MEN1 syndrome but the patient refused genetic testing. Recently, he developed a novel malignant tumor – recurrent low-grade fibromyxoid sarcoma of the trunk and extremities with multiple subsequent operations. The patient eventually accepted the genetic testing which proved him to be a carrier of a novel mutation in the MEN1 gene. Conclusions Unlike some other syndromes where a genetic mutation can predict clinical course, there is no genotype-phenotype correlation in MEN1 syndrome. Therefore, these patients require lifelong and multidisciplinary surveillance, not only for typical endocrine and benign non-endocrine tumors but also for diverse and even more malignant forms. The atypical clinical presentation should pose suspicion about new gene mutation and serve as a warning in the further follow-up.
Collapse
Affiliation(s)
- Maja Radman
- Department of Endocrinology and Diabetology, University Hospital Centre Split, Soltanska 1, Split, Croatia.,University of Split, School of Medicine, Soltanska 2, Split, Croatia
| | - Tanja Milicevic
- Department of Endocrinology and Diabetology, University Hospital Centre Split, Soltanska 1, Split, Croatia.
| |
Collapse
|
47
|
Noguchi R, Yoshimatsu Y, Ono T, Sei A, Hirabayashi K, Ozawa I, Kikuta K, Kondo T. Establishment and characterization of NCC-MFS2-C1: a novel patient-derived cancer cell line of myxofibrosarcoma. Hum Cell 2020; 34:246-253. [PMID: 32870449 DOI: 10.1007/s13577-020-00420-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Myxofibrosarcoma (MFS) is among the most aggressive and complex sarcoma types that require novel therapeutic approaches for improved clinical outcomes. MFS displays highly complex karyotypes, and frequent alterations in p53 signaling and cell cycle checkpoint genes as well as loss-of-function mutations in NF1 and PTEN have been reported. The effects of radiotherapy and chemotherapy on MFS are limited, and complete surgical resection is the only curative treatment. Thus, the development of novel therapeutic strategies for MFS has long been long desired for MFS. Patient-derived cell lines are an essential tool for basic and translational research in oncology. However, public cell banks provide only a limited number of MFS cell lines. In this study, we aimed to develop a novel patient-derived MFS cell line, which was established from the primary tumor tissue of a 71-year-old male patient with MFS and was named NCC-MFS2-C1. A single-nucleotide polymorphism assay revealed that NCC-MFS2-C1 cells exhibited gain and loss of genetic loci. NCC-MFS2-C1 cells were maintained as a monolayer culture for over 24 passages for 10 months. The cells exhibited spindle-like morphology, continuous growth, and capacity for spheroid formation and invasion. Screening of 213 anticancer agents revealed that bortezomib, gemcitabine, romidepsin, and topotecan at low concentrations inhibited the proliferation of NCC-MFS2-C1 cells. In conclusion, we established a novel MFS cell line, NCC-MFS2-C1, which can be used for studying the molecular mechanisms underlying tumor development and for the in vitro screening of anti-cancer drugs.
Collapse
Affiliation(s)
- Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kaoru Hirabayashi
- Division of Diagnostic Pathology, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Iwao Ozawa
- Division of Hepato-Biliary-Pancreatic Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Kazutaka Kikuta
- Division of Musculoskeletal Oncology and Orthopaedics Surgery, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .,Division of Diagnostic Pathology, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan.
| |
Collapse
|
48
|
Sambri A, Zucchini R, Giannini C, Cevolani L, Fiore M, Spinnato P, Bianchi G, Donati DM, De Paolis M. Systemic Inflammation Is Associated with Oncological Outcome in Patients with High-Grade Myxofibrosarcoma of the Extremities: A Retrospective Analysis. Oncol Res Treat 2020; 43:531-538. [PMID: 32810863 DOI: 10.1159/000509429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this retrospective study is to verify whether preoperative systemic inflammatory markers (serum C-reactive protein [CRP] and neutrophil-lymphocyte ratio [NLR]) can help in predicting the disease-specific survival (DSS) and local recurrence (LR) rate in adult patients affected by localized myxofibrosarcoma (MFS) of the extremities. METHODS We reviewed 126 adult patients with primary, localized MFS of the limbs. We analyzed DSS and LR. RESULTS Median age at the time of surgery was 68 years (range 19-92). Median CRP was 0.4 mg/dL and median NLR was 2.8. A worse DSS was found in patients who had preoperative CRP >0.5 mg/dL (p = 0.002) and in those with NLR >3.5 (p < 0.001). In multivariate analysis, tumor size and grade as well as preoperative CRP values and NLR were confirmed to be prognostic factors in terms of DSS. An increased risk of LR was found in multivariate analysis in patients with a tail sign and with high gadolinium enhancement at preoperative MRI. CONCLUSIONS Patients with high preoperative CRP and NLR levels, as well as large and high-grade tumors, might be considered as candidates for additional, more aggressive treatment approaches or more stringent follow-up schedules.
Collapse
Affiliation(s)
- Andrea Sambri
- University of Bologna, Bologna, Italy, .,IRCCS Azienda Ospedaliera Universitaria Sant'Orsola-Malpighi, Bologna, Italy,
| | | | | | | | | | | | | | - Davide Maria Donati
- University of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | |
Collapse
|
49
|
Choudhary A, Garg D, Mukherjee SB, Anand R, Yadav P, Nangia A, Sharma S. Tuberous Sclerosis with Multiple Unusual Associations. Ann Indian Acad Neurol 2020; 24:307-309. [PMID: 34220103 PMCID: PMC8232473 DOI: 10.4103/aian.aian_266_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- Aakanksha Choudhary
- Department of Paediatrics, Neurology Division, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Sharmila B Mukherjee
- Department of Paediatrics, Neurology Division, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Rama Anand
- Department of Radiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Partap Yadav
- Department of Surgery, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Anita Nangia
- Department of Pathology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Suvasini Sharma
- Department of Paediatrics, Neurology Division, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|
50
|
Sambri A, De Paolis M, Spinnato P, Donati DM, Bianchi G. The Biology of Myxofibrosarcoma: State of the Art and Future Perspectives. Oncol Res Treat 2020; 43:314-322. [PMID: 32450554 DOI: 10.1159/000507334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Myxofibrosarcoma (MFS) is among the most highly complex sarcoma types. Molecular cytogenetic studies have identified a high level of genomic complexity. SUMMARY This review provides an update of the current research related to MFS, with particular emphasis on emerging mechanisms of tumorigenesis and their potential therapeutic impact. Many novel possible molecular markers have been identified, not only for prognostication in MFS, but also to serve as possible therapeutic targets, and thereby improve clinical outcomes. However, the molecular pathogenesis of MFS remains incompletely understood. Key Messages: Patients suffering from advanced MFS might benefit from expanded molecular evaluation in order to detect specific expression profiles and identify drug-able targets. Moreover, immunotherapy represents an intriguingly perspective due to the presence of "T-cell inflamed" tumor microenvironment.
Collapse
Affiliation(s)
- Andrea Sambri
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy, .,University of Bologna, Bologna, Italy,
| | | | | | - Davide Maria Donati
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,University of Bologna, Bologna, Italy
| | | |
Collapse
|