1
|
Dawod I, Patra K, Cardoch S, Jönsson HO, Sellberg JA, Martin AV, Binns J, Grånäs O, Mancuso AP, Caleman C, Timneanu N. Theoretical Studies of Anisotropic Melting of Ice Induced by Ultrafast Nonthermal Heating. ACS PHYSICAL CHEMISTRY AU 2024; 4:385-392. [PMID: 39069981 PMCID: PMC11274275 DOI: 10.1021/acsphyschemau.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 07/30/2024]
Abstract
Water and ice are routinely studied with X-rays to reveal their diverse structures and anomalous properties. We employ a hybrid collisional-radiative/molecular-dynamics method to explore how femtosecond X-ray pulses interact with hexagonal ice. We find that ice makes a phase transition into a crystalline plasma where its initial structure is maintained up to tens of femtoseconds. The ultrafast melting process occurs anisotropically, where different geometric configurations of the structure melt on different time scales. The transient state and anisotropic melting of crystals can be captured by X-ray diffraction, which impacts any study of crystalline structures probed by femtosecond X-ray lasers.
Collapse
Affiliation(s)
- Ibrahim Dawod
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- European
XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany
| | - Kajwal Patra
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Sebastian Cardoch
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - H. Olof Jönsson
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Jonas A. Sellberg
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-106 91 Stockholm, Sweden
| | - Andrew V. Martin
- School
of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jack Binns
- School
of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Oscar Grånäs
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Adrian P. Mancuso
- European
XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany
- Diamond
Light Source, Harwell Science
and Innovation Campus, Didcot OX11 0DE, U.K.
- Department
of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Carl Caleman
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center
for Free-Electron Laser Science, Deutsches
Elektronen-Synchrotron, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Nicusor Timneanu
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
2
|
Shinohara Y, Iwashita T, Nakanishi M, Dmowski W, Ryu CW, Abernathy DL, Ishikawa D, Baron AQR, Egami T. Real-space local self-motion of protonated and deuterated water. Phys Rev E 2024; 109:064608. [PMID: 39020980 DOI: 10.1103/physreve.109.064608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
We report on the self-part of the Van Hove correlation function, the correlation function describing the dynamics of a single molecule, of water and deuterated water. The correlation function is determined by transforming inelastic scattering spectra of neutrons or x rays over a wide range of momentum transfer Q and energy transfer E to space R and time t. The short-range diffusivity is estimated from the Van Hove correlation function in the framework of the Gaussian approximation. The diffusivity has been found to be different from the long-range macroscopic diffusivity, providing information about local atomic dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Takeshi Egami
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee, 37996 USA
- Department of Physics and Astronomy,The University of Tennessee, Knoxville, Tennessee, 37996 USA
| |
Collapse
|
3
|
Muhunthan P, Li H, Vignat G, Toro ER, Younes K, Sun Y, Sokaras D, Weiss T, Rajkovic I, Osaka T, Inoue I, Song S, Sato T, Zhu D, Fulton JL, Ihme M. A versatile pressure-cell design for studying ultrafast molecular-dynamics in supercritical fluids using coherent multi-pulse x-ray scattering. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:013901. [PMID: 38170817 PMCID: PMC10771079 DOI: 10.1063/5.0158497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Supercritical fluids (SCFs) can be found in a variety of environmental and industrial processes. They exhibit an anomalous thermodynamic behavior, which originates from their fluctuating heterogeneous micro-structure. Characterizing the dynamics of these fluids at high temperature and high pressure with nanometer spatial and picosecond temporal resolution has been very challenging. The advent of hard x-ray free electron lasers has enabled the development of novel multi-pulse ultrafast x-ray scattering techniques, such as x-ray photon correlation spectroscopy (XPCS) and x-ray pump x-ray probe (XPXP). These techniques offer new opportunities for resolving the ultrafast microscopic behavior in SCFs at unprecedented spatiotemporal resolution, unraveling the dynamics of their micro-structure. However, harnessing these capabilities requires a bespoke high-pressure and high-temperature sample system that is optimized to maximize signal intensity and address instrument-specific challenges, such as drift in beamline components, x-ray scattering background, and multi-x-ray-beam overlap. We present a pressure cell compatible with a wide range of SCFs with built-in optical access for XPCS and XPXP and discuss critical aspects of the pressure cell design, with a particular focus on the design optimization for XPCS.
Collapse
Affiliation(s)
- Priyanka Muhunthan
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Haoyuan Li
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Guillaume Vignat
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Edna R. Toro
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Khaled Younes
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Yanwen Sun
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Thomas Weiss
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ivan Rajkovic
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Sanghoon Song
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Takahiro Sato
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Diling Zhu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - John L. Fulton
- Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | | |
Collapse
|
4
|
Czajka T, Neuhaus C, Alfken J, Stammer M, Chushkin Y, Pontoni D, Hoffmann C, Milovanovic D, Salditt T. Lipid vesicle pools studied by passive X-ray microrheology. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:123. [PMID: 38060069 PMCID: PMC10703982 DOI: 10.1140/epje/s10189-023-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Vesicle pools can form by attractive interaction in a solution, mediated by proteins or divalent ions such as calcium. The pools, which are alternatively also denoted as vesicle clusters, form by liquid-liquid phase separation (LLPS) from an initially homogeneous solution. Due to the short range liquid-like order of vesicles in the pool or cluster, the vesicle-rich phase can also be regarded as a condensate, and one would like to better understand not only the structure of these systems, but also their dynamics. The diffusion of vesicles, in particular, is expected to change when vesicles are arrested in a pool. Here we investigate whether passive microrheology based on X-ray photon correlation spectroscopy (XPCS) is a suitable tool to study model systems of artificial lipid vesicles exhibiting LLPS, and more generally also other heterogeneous biomolecular fluids. We show that by adding highly scattering tracer particles to the solution, valuable information on the single vesicle as well as collective dynamics can be inferred. While the correlation functions reveal freely diffusing tracer particles in solutions at low CaCl[Formula: see text] concentrations, the relaxation rate [Formula: see text] shows a nonlinear dependence on [Formula: see text] at a higher concentration of around 8 mM CaCl[Formula: see text], characterised by two linear regimes with a broad cross-over. We explain this finding based on arrested diffusion in percolating vesicle clusters.
Collapse
Affiliation(s)
- Titus Czajka
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Moritz Stammer
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Diego Pontoni
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Welke N, Majernik N, Ash R, Moro A, Agustsson R, Manwani P, Li K, Sakdinawat A, Aquila A, Benediktovitch A, Halavanau A, Rosenzweig J, Bergmann U, Pellegrini C. Development of spinning-disk solid sample delivery system for high-repetition rate x-ray free electron laser experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:103005. [PMID: 37801013 DOI: 10.1063/5.0168125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
X-ray free-electron lasers (XFELs) deliver intense x-ray pulses that destroy the sample in a single shot by a Coulomb explosion. Experiments using XFEL pulse trains or the new generation of high-repetition rate XFELs require rapid sample replacement beyond those provided by the systems now used at low repletion-rate XFELs. We describe the development and characterization of a system based on a spinning disk to continuously deliver a solid sample into an XFEL interaction point at very high speeds. We tested our system at the Linac Coherent Light Source and European XFEL hard x-ray nano-focus instruments, employing it to deliver a 25 μm copper foil sample, which can be used as a gain medium for stimulated x-ray emission for the proposed x-ray laser oscillator.
Collapse
Affiliation(s)
- N Welke
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - N Majernik
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - R Ash
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - A Moro
- RadiaBeam Technologies, Santa Monica, California 90404, USA
| | - R Agustsson
- RadiaBeam Technologies, Santa Monica, California 90404, USA
| | - P Manwani
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - K Li
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Sakdinawat
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Aquila
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Benediktovitch
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Halavanau
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J Rosenzweig
- Department of Physics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - U Bergmann
- Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - C Pellegrini
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
6
|
Amann-Winkel K, Kim KH, Giovambattista N, Ladd-Parada M, Späh A, Perakis F, Pathak H, Yang C, Eklund T, Lane TJ, You S, Jeong S, Lee JH, Eom I, Kim M, Park J, Chun SH, Poole PH, Nilsson A. Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice. Nat Commun 2023; 14:442. [PMID: 36707522 PMCID: PMC9883474 DOI: 10.1038/s41467-023-36091-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Recent experiments continue to find evidence for a liquid-liquid phase transition (LLPT) in supercooled water, which would unify our understanding of the anomalous properties of liquid water and amorphous ice. These experiments are challenging because the proposed LLPT occurs under extreme metastable conditions where the liquid freezes to a crystal on a very short time scale. Here, we analyze models for the LLPT to show that coexistence of distinct high-density and low-density liquid phases may be observed by subjecting low-density amorphous (LDA) ice to ultrafast heating. We then describe experiments in which we heat LDA ice to near the predicted critical point of the LLPT by an ultrafast infrared laser pulse, following which we measure the structure factor using femtosecond x-ray laser pulses. Consistent with our predictions, we observe a LLPT occurring on a time scale < 100 ns and widely separated from ice formation, which begins at times >1 μs.
Collapse
Affiliation(s)
- Katrin Amann-Winkel
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden ,grid.419547.a0000 0001 1010 1663Max Planck Institute for Polymer Research and Johannes Gutenberg University, 55128 Mainz, Germany
| | - Kyung Hwan Kim
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, POSTECH, Pohang, 37673 Republic of Korea
| | - Nicolas Giovambattista
- grid.183006.c0000 0001 0671 7844Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210 USA ,grid.253482.a0000 0001 0170 7903The Graduate Center of the City University of New York, New York, NY 10016 USA
| | - Marjorie Ladd-Parada
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden ,grid.411313.50000 0004 0512 3288Present Address: Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| | - Alexander Späh
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Cheolhee Yang
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, POSTECH, Pohang, 37673 Republic of Korea
| | - Tobias Eklund
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Thomas J. Lane
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 USA
| | - Seonju You
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, POSTECH, Pohang, 37673 Republic of Korea
| | - Sangmin Jeong
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, POSTECH, Pohang, 37673 Republic of Korea
| | - Jae Hyuk Lee
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Intae Eom
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Minseok Kim
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jaeku Park
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Sae Hwan Chun
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Peter H. Poole
- grid.264060.60000 0004 1936 7363Department of Physics, St. Francis Xavier University, Antigonish, NS B2G2W5 Canada
| | - Anders Nilsson
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
7
|
Jo W, Stern S, Westermeier F, Rysov R, Riepp M, Schmehr J, Lange J, Becker J, Sprung M, Laurus T, Graafsma H, Lokteva I, Grübel G, Roseker W. Single and multi-pulse based X-ray photon correlation spectroscopy. OPTICS EXPRESS 2023; 31:3315-3324. [PMID: 36785327 DOI: 10.1364/oe.477774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
The ability of pulsed nature of synchrotron radiation opens up the possibility of studying microsecond dynamics in complex materials via speckle-based techniques. Here, we present the study of measuring the dynamics of a colloidal system by combining single and multiple X-ray pulses of a storage ring. In addition, we apply speckle correlation techniques at various pulse patterns to collect correlation functions from nanoseconds to milliseconds. The obtained sample dynamics from all correlation techniques at different pulse patterns are in very good agreement with the expected dynamics of Brownian motions of silica nanoparticles in water. Our study will pave the way for future pulsed X-ray investigations at various synchrotron X-ray sources using individual X-ray pulse patterns.
Collapse
|
8
|
Xu Y, Sikorski M, Fan J, Jiang H, Liu Z. Thermal effects of beam profiles on X-ray photon correlation spectroscopy at megahertz X-ray free-electron lasers. OPTICS EXPRESS 2022; 30:42639-42648. [PMID: 36366714 DOI: 10.1364/oe.464852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
X-ray free-electron lasers (XFELs) with megahertz repetition rates enable X-ray photon correlation spectroscopy (XPCS) studies of fast dynamics on microsecond and sub-microsecond time scales. Beam-induced sample heating is one of the central concerns in these studies, as the interval time is often insufficient for heat dissipation. Despite the great efforts devoted to this issue, few have evaluated the thermal effects of X-ray beam profiles. This work compares the effective dynamics of three common beam profiles using numerical methods. Results show that under the same fluence, the effective temperatures increase with the nonuniformity of the beam, such that the Gaussian beam profile yields a higher effective temperature than the donut-like and uniform profiles. Moreover, decreasing the beam sizes is found to reduce beam-induced thermal effects, in particular the effects of beam profiles.
Collapse
|
9
|
Comparing Microscopic and Macroscopic Dynamics in a Paradigmatic Model of Glass-Forming Molecular Liquid. Int J Mol Sci 2022; 23:ijms23073556. [PMID: 35408916 PMCID: PMC8998722 DOI: 10.3390/ijms23073556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Glass transition is a most intriguing and long-standing open issue in the field of molecular liquids. From a macroscopic perspective, glass-forming systems display a dramatic slowing-down of the dynamics, with the inverse diffusion coefficient and the structural relaxation times increasing by orders of magnitude upon even modest supercooling. At the microscopic level, single-molecule motion becomes strongly intermittent, and can be conveniently described in terms of “cage-jump” events. In this work, we investigate a paradigmatic glass-forming liquid, the Kob–Andersen Lennard–Jones model, by means of Molecular Dynamics simulations, and compare the macroscopic and microscopic descriptions of its dynamics on approaching the glass-transition. We find that clear changes in the relations between macroscopic timescales and cage-jump quantities occur at the crossover temperature where Mode Coupling-like description starts failing. In fact, Continuous Time Random Walk and lattice model predictions based on cage-jump statistics are also violated below the crossover temperature, suggesting the onset of a qualitative change in cage-jump motion. Interestingly, we show that a fully microscopic relation linking cage-jump time- and length-scales instead holds throughout the investigated temperature range.
Collapse
|
10
|
A Benchmark Protocol for DFT Approaches and Data-Driven Models for Halide-Water Clusters. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051654. [PMID: 35268757 PMCID: PMC8924895 DOI: 10.3390/molecules27051654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Dissolved ions in aqueous media are ubiquitous in many physicochemical processes, with a direct impact on research fields, such as chemistry, climate, biology, and industry. Ions play a crucial role in the structure of the surrounding network of water molecules as they can either weaken or strengthen it. Gaining a thorough understanding of the underlying forces from small clusters to bulk solutions is still challenging, which motivates further investigations. Through a systematic analysis of the interaction energies obtained from high-level electronic structure methodologies, we assessed various dispersion-corrected density functional approaches, as well as ab initio-based data-driven potential models for halide ion-water clusters. We introduced an active learning scheme to automate the generation of optimally weighted datasets, required for the development of efficient bottom-up anion-water models. Using an evolutionary programming procedure, we determined optimized and reference configurations for such polarizable and first-principles-based representation of the potentials, and we analyzed their structural characteristics and energetics in comparison with estimates from DF-MP2 and DFT+D quantum chemistry computations. Moreover, we presented new benchmark datasets, considering both equilibrium and non-equilibrium configurations of higher-order species with an increasing number of water molecules up to 54 for each F, Cl, Br, and I anions, and we proposed a validation protocol to cross-check methods and approaches. In this way, we aim to improve the predictive ability of future molecular computer simulations for determining the ongoing conflicting distribution of different ions in aqueous environments, as well as the transition from nanoscale clusters to macroscopic condensed phases.
Collapse
|
11
|
Design of a Hybrid Split-Delay Line for Hard X-ray Free-Electron Lasers. PHOTONICS 2022. [DOI: 10.3390/photonics9030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High repetition-rate X-ray free-electron lasers (XFELs) enable the study of fast dynamics on microsecond time scales. Split-delay lines (SDLs) further bring the time scale down to femtoseconds by splitting and delaying the XFEL pulses. Crystals and multilayers are two common types of optical elements in SDLs, offering either long delay ranges or high temporal accuracy. In this work, we introduce the design of a hybrid SDL for the coherent diffraction endstation of Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE). It uses crystals for the first branch and multilayers for the second one, thus simultaneously offering a relatively long delay range and high temporal accuracy. Moreover, a third branch can be installed to switch the SDL to the all-crystal configuration for longer delay ranges.
Collapse
|
12
|
Jo W, Rysov R, Westermeier F, Walther M, Müller L, Philippi-Kobs A, Riepp M, Marotzke S, Lokteva I, Sprung M, Grübel G, Roseker W. Demonstration of 3D photon correlation spectroscopy in the hard X-ray regime. OPTICS LETTERS 2022; 47:293-296. [PMID: 35030590 DOI: 10.1364/ol.444190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Three-dimensional photon correlation spectroscopy (3D PCS) is a well-known technique developed to suppress multiple scattering contributions in correlation functions, which are inevitably involved when an optical laser is employed to investigate dynamics in a turbid system. Here, we demonstrate a proof-of-principle study of 3D PCS in the hard X-ray regime. We employ an X-ray optical cross-correlator to measure the dynamics of silica colloidal nanoparticles dispersed in polypropylene glycol. The obtained cross correlation functions show very good agreement with auto-correlation measurements. This demonstration provides the foundation for X-ray speckle-based studies of very densely packed soft matter systems.
Collapse
|
13
|
Petersen J, Møller KB, Hynes JT, Rey R. Ultrafast Rotational and Translational Energy Relaxation in Neat Liquids. J Phys Chem B 2021; 125:12806-12819. [PMID: 34762424 DOI: 10.1021/acs.jpcb.1c08014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excess energy flow pathways during rotational and translational relaxation induced by rotational or translational excitation of a single molecule of and within each of four different neat liquids (H2O, MeOH, CCl4, and CH4) are studied using classical molecular dynamics simulations and energy flux analysis. For all four liquids, the relaxation processes for both types of excitation are ultrafast, but the energy flow is significantly faster for the polar, hydrogen-bonded (H-bonded) liquids H2O and MeOH. Whereas the majority of the initial excess energy is transferred into hindered rotations (librations) for rotational excitation in the H-bonded liquids, an almost equal efficiency for transfer to translational and rotational motions is observed in the nonpolar, non-H-bonded liquids CCl4 and CH4. For translational excitation, transfer to translational motions dominates for all liquids. In general, the energy flows are quite local; i.e., more than 70% of the energy flows directly to the first solvent shell molecules, reaching almost 100% for CCl4 and CH4. Finally, the determined validity of linear response theory for these nonequilibrium relaxation processes is quite solvent-dependent, with the deviation from linear response most marked for rotational excitation and for the nonpolar liquids.
Collapse
Affiliation(s)
- Jakob Petersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - James T Hynes
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Rossend Rey
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona 08034, Spain
| |
Collapse
|
14
|
Tetrahedral structure of supercooled water at ambient pressure and its influence on dynamic relaxation: Comparative study of water models. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Huang J, Huang G, Li S. A Machine Learning Model to Classify Dynamic Processes in Liquid Water*. Chemphyschem 2021; 23:e202100599. [PMID: 34661956 DOI: 10.1002/cphc.202100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/16/2021] [Indexed: 11/07/2022]
Abstract
The dynamics of water molecules plays a vital role in understanding water. We combined computer simulation and deep learning to study the dynamics of H-bonds between water molecules. Based on ab initio molecular dynamics simulations and a newly defined directed Hydrogen (H-) bond population operator, we studied a typical dynamic process in bulk water: interchange, in which the H-bond donor reverses roles with the acceptor. By designing a recurrent neural network-based model, we have successfully classified the interchange and breakage processes in water. We have found that the ratio between them is approximately 1 : 4, and it hardly depends on temperatures from 280 to 360 K. This work implies that deep learning has the great potential to help distinguish complex dynamic processes containing H-bonds in other systems.
Collapse
Affiliation(s)
- Jie Huang
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Gang Huang
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
16
|
Lin MF, Singh N, Liang S, Mo M, Nunes JPF, Ledbetter K, Yang J, Kozina M, Weathersby S, Shen X, Cordones AA, Wolf TJA, Pemmaraju CD, Ihme M, Wang XJ. Imaging the short-lived hydroxyl-hydronium pair in ionized liquid water. Science 2021; 374:92-95. [PMID: 34591617 DOI: 10.1126/science.abg3091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- M-F Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - N Singh
- Department of Mechanical Engineering, Stanford University , Stanford, CA 94305, USA
| | - S Liang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - M Mo
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J P F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - K Ledbetter
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - J Yang
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Kozina
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - X Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - T J A Wolf
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - C D Pemmaraju
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Ihme
- Department of Mechanical Engineering, Stanford University , Stanford, CA 94305, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
17
|
Pastore R, Kikutsuji T, Rusciano F, Matubayasi N, Kim K, Greco F. Breakdown of the Stokes-Einstein relation in supercooled liquids: A cage-jump perspective. J Chem Phys 2021; 155:114503. [PMID: 34551555 DOI: 10.1063/5.0059622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The breakdown of the Stokes-Einstein relation in supercooled liquids, which is the increase in the ratio τατD between the two macroscopic times for structural relaxation and diffusion on decreasing the temperature, is commonly ascribed to dynamic heterogeneities, but a clear-cut microscopic interpretation is still lacking. Here, we tackle this issue exploiting the single-particle cage-jump framework to analyze molecular dynamics simulations of soft disk assemblies and supercooled water. We find that τατD∝⟨tp⟩⟨tc⟩, where ⟨tp⟩ and ⟨tc⟩ are the cage-jump times characterizing slow and fast particles, respectively. We further clarify that this scaling does not arise from a simple term-by-term proportionality; rather, the relations τα∝⟨tp⟩⟨ΔrJ 2⟩ and τD∝⟨tc⟩⟨ΔrJ 2⟩ effectively connect the macroscopic and microscopic timescales, with the mean square jump length ⟨ΔrJ 2⟩ shrinking on cooling. Our work provides a microscopic perspective on the Stokes-Einstein breakdown and generalizes previous results on lattice models to the case of more realistic glass-formers.
Collapse
Affiliation(s)
- Raffaele Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Takuma Kikutsuji
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Francesco Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kang Kim
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Francesco Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Napoli 80125, Italy
| |
Collapse
|
18
|
Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature 2021; 596:531-535. [PMID: 34433948 DOI: 10.1038/s41586-021-03793-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Water is one of the most important, yet least understood, liquids in nature. Many anomalous properties of liquid water originate from its well-connected hydrogen bond network1, including unusually efficient vibrational energy redistribution and relaxation2. An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. Most existing knowledge of vibrational relaxation in water is built upon ultrafast spectroscopy experiments2-7. However, these experiments cannot directly resolve the motion of the atomic positions and require difficult translation of spectral dynamics into hydrogen bond dynamics. Here, we measure the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. We observed a transient hydrogen bond contraction of roughly 0.04 Å on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of approximately 1 picosecond. Molecular dynamics simulations reveal the need to treat the distribution of the shared proton in the hydrogen bond quantum mechanically to capture the structural dynamics on femtosecond timescales. Our experiment and simulations unveil the intermolecular character of the water vibration preceding the relaxation of the OH stretch.
Collapse
|
19
|
From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.
Collapse
|
20
|
Perakis F, Gutt C. Towards molecular movies with X-ray photon correlation spectroscopy. Phys Chem Chem Phys 2021; 22:19443-19453. [PMID: 32870200 DOI: 10.1039/d0cp03551c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective article we highlight research opportunities and challenges in probing structural dynamics of molecular systems using X-ray Photon Correlation Spectroscopy (XPCS). The development of new X-ray sources, such as 4th generation storage rings and X-ray free-electron lasers (XFELs), provides promising new insights into molecular motion. Employing XPCS at these sources allows to capture a very broad range of timescales and lengthscales, spanning from femtoseconds to minutes and atomic scales to the mesoscale. Here, we discuss the scientific questions that can be addressed with these novel tools for two prominent examples: the dynamics of proteins in biomolecular condensates and the dynamics of supercooled water. Finally, we provide practical tips for designing and estimating feasibility of XPCS experiments as well as on detecting and mitigating radiation damage.
Collapse
Affiliation(s)
- Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Christian Gutt
- Department Physik, Universität Siegen, D-57072 Siegen, Germany.
| |
Collapse
|
21
|
Jo W, Westermeier F, Rysov R, Leupold O, Schulz F, Tober S, Markmann V, Sprung M, Ricci A, Laurus T, Aschkan A, Klyuev A, Trunk U, Graafsma H, Grübel G, Roseker W. Nanosecond X-ray photon correlation spectroscopy using pulse time structure of a storage-ring source. IUCRJ 2021; 8:124-130. [PMID: 33520248 PMCID: PMC7792991 DOI: 10.1107/s2052252520015778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/02/2020] [Indexed: 05/12/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) is a routine technique to study slow dynamics in complex systems at storage-ring sources. Achieving nanosecond time resolution with the conventional XPCS technique is, however, still an experimentally challenging task requiring fast detectors and sufficient photon flux. Here, the result of a nanosecond XPCS study of fast colloidal dynamics is shown by employing an adaptive gain integrating pixel detector (AGIPD) operated at frame rates of the intrinsic pulse structure of the storage ring. Correlation functions from single-pulse speckle patterns with the shortest correlation time of 192 ns have been calculated. These studies provide an important step towards routine fast XPCS studies at storage rings.
Collapse
Affiliation(s)
- Wonhyuk Jo
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Rustam Rysov
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Olaf Leupold
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Florian Schulz
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Steffen Tober
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Allesandro Ricci
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Torsten Laurus
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Allahgholi Aschkan
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Alexander Klyuev
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Ulrich Trunk
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Heinz Graafsma
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
22
|
Shinohara Y, Osaka T, Inoue I, Iwashita T, Dmowski W, Ryu CW, Sarathchandran Y, Egami T. Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics. Nat Commun 2020; 11:6213. [PMID: 33277499 PMCID: PMC7718898 DOI: 10.1038/s41467-020-20036-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
With their brilliance and temporal structure, X-ray free-electron laser can unveil atomic-scale details of ultrafast phenomena. Recent progress in split-and-delay optics (SDO), which produces two X-ray pulses with time-delays, offers bright prospects for observing dynamics at the atomic-scale. However, their insufficient pulse energy has limited its application either to phenomena with longer correlation length or to measurement with a fixed delay-time. Here we show that the combination of the SDO and self-seeding of X-rays increases the pulse energy and makes it possible to observe the atomic-scale dynamics in a timescale of picoseconds. We show that the speckle contrast in scattering from water depends on the delay-time as expected. Our results demonstrate the capability of measurement using the SDO with seeded X-rays for resolving the dynamics in temporal and spatial scales that are not accessible by other techniques, opening opportunities for studying the atomic-level dynamics.
Collapse
Affiliation(s)
- Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Taito Osaka
- RIKEN SPring-8 Center, Sayo, Hyogo, 679-5198, Japan
| | - Ichiro Inoue
- RIKEN SPring-8 Center, Sayo, Hyogo, 679-5198, Japan
| | - Takuya Iwashita
- Department of Integrated Science and Technology, Oita University, Dannoharu, Oita, 870-1192, Japan
| | - Wojciech Dmowski
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Chae Woo Ryu
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yadu Sarathchandran
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Takeshi Egami
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
23
|
Hua N, Zaluzhnyy IA, Hrkac SB, Shabalin AG, Shpyrko OG. Extracting contrast in an X-ray speckle visibility spectroscopy experiment under imperfect conditions. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1626-1632. [PMID: 33147188 DOI: 10.1107/s1600577520012345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Pump-probe experiments at synchrotrons and free-electron lasers to study ultrafast dynamics in materials far from equilibrium have been well established, but techniques to investigate equilibrium dynamics on the nano- and pico-second timescales remain underdeveloped and experimentally challenging. A promising approach relies on a double-probe X-ray speckle visibility spectroscopy setup at split-and-delay beamlines of X-ray free-electron lasers. However, the logistics in consistently producing two collinear, perfectly overlapping pulses necessary to conduct a faithful experiment is difficult to achieve. In this paper, a method is introduced to extract contrast in the case where an angular misalignment and imperfect overlap exists between the two pulses. Numerical simulations of a dynamical system show that contrast can still be extracted for significant angular misalignments accompanied by partial overlap between the two pulses.
Collapse
Affiliation(s)
- Nelson Hua
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivan A Zaluzhnyy
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stjepan B Hrkac
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anatoly G Shabalin
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Oleg G Shpyrko
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proc Natl Acad Sci U S A 2020; 117:24110-24116. [PMID: 32934145 DOI: 10.1073/pnas.2003337117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 μs at high fluences. At short times up to 20 μs we observe that the dynamics do not obey the Stokes-Einstein predictions.
Collapse
|
25
|
Kim KH, Späh A, Pathak H, Yang C, Bonetti S, Amann-Winkel K, Mariedahl D, Schlesinger D, Sellberg JA, Mendez D, van der Schot G, Hwang HY, Clark J, Shigeki O, Tadashi T, Harada Y, Ogasawara H, Katayama T, Nilsson A, Perakis F. Anisotropic X-Ray Scattering of Transiently Oriented Water. PHYSICAL REVIEW LETTERS 2020; 125:076002. [PMID: 32857536 DOI: 10.1103/physrevlett.125.076002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We study the structural dynamics of liquid water by time-resolved anisotropic x-ray scattering under the optical Kerr effect condition. In this way, we can separate the anisotropic scattering decay of 160 fs from the delayed temperature increase of ∼0.1 K occurring at 1 ps and quantify transient changes in the O-O pair distribution function. Polarizable molecular dynamics simulations reproduce well the experiment, indicating transient alignment of molecules along the electric field, which shortens the nearest-neighbor distances. In addition, analysis of the simulated water local structure provides evidence that two hypothesized fluctuating water configurations exhibit different polarizability.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Cheolhee Yang
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Stefano Bonetti
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice-Mestre, Italy
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Mariedahl
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Schlesinger
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Environmental Science and Bolin Centre for Climate Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Jonas A Sellberg
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gijs van der Schot
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Uppsala University, SE-75124 Uppsala, Sweden
| | - Harold Y Hwang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jesse Clark
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Owada Shigeki
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Togashi Tadashi
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | | | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
26
|
Sun Y, Montana-Lopez J, Fuoss P, Sutton M, Zhu D. Accurate contrast determination for X-ray speckle visibility spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:999-1007. [PMID: 33566009 PMCID: PMC7336177 DOI: 10.1107/s1600577520006773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/20/2020] [Indexed: 05/31/2023]
Abstract
X-ray speckle visibility spectroscopy using X-ray free-electron lasers has long been proposed as a probe of fast dynamics in noncrystalline materials. In this paper, numerical modeling is presented to show how the data interpretation of visibility spectroscopy can be impacted by the nonidealities of real-life X-ray detectors. Using simulated detector data, this work provides a detailed analysis of the systematic errors of several contrast extraction algorithms in the context of low-count-rate X-ray speckle visibility spectroscopy and their origins are discussed. Here, it was found that the finite detector charge cloud and pixel size lead to an unavoidable `degeneracy' in photon position determination, and that the contrasts extracted using different algorithms can all be corrected by a simple linear model. The results suggest that experimental calibration of the correction coefficient at the count rate of interest is possible and essential. This allows computationally lightweight algorithms to be implemented for on-the-fly analysis.
Collapse
Affiliation(s)
- Yanwen Sun
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, USA
- Physics Department, Stanford University, USA
| | | | - Paul Fuoss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, USA
| | - Mark Sutton
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, USA
- Physics Department, McGill University, USA
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, USA
| |
Collapse
|
27
|
Double-pulse speckle contrast correlations with near Fourier transform limited free-electron laser light using hard X-ray split-and-delay. Sci Rep 2020; 10:5054. [PMID: 32193442 PMCID: PMC7081363 DOI: 10.1038/s41598-020-61926-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/04/2020] [Indexed: 11/08/2022] Open
Abstract
The ability to deliver two coherent X-ray pulses with precise time-delays ranging from a few femtoseconds to nanoseconds enables critical capabilities of probing ultra-fast phenomena in condensed matter systems at X-ray free electron laser (FEL) sources. Recent progress made in the hard X-ray split-and-delay optics developments now brings a very promising prospect for resolving atomic-scale motions that were not accessible by previous time-resolved techniques. Here, we report on characterizing the spatial and temporal coherence properties of the hard X-ray FEL beam after propagating through split-and-delay optics. Speckle contrast analysis of small-angle scattering measurements from nanoparticles reveals well-preserved transverse coherence of the beam. Measuring intensity fluctuations from successive X-ray pulses also reveals that only single or double temporal modes remain in the transmitted beam, corresponding to nearly Fourier transform limited pulses.
Collapse
|
28
|
Narayanan T, Konovalov O. Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E752. [PMID: 32041363 PMCID: PMC7040635 DOI: 10.3390/ma13030752] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
This article aims to provide an overview of broad range of applications of synchrotron scattering methods in the investigation of nanoscale materials. These scattering techniques allow the elucidation of the structure and dynamics of nanomaterials from sub-nm to micron size scales and down to sub-millisecond time ranges both in bulk and at interfaces. A major advantage of scattering methods is that they provide the ensemble averaged information under in situ and operando conditions. As a result, they are complementary to various imaging techniques which reveal more local information. Scattering methods are particularly suitable for probing buried structures that are difficult to image. Although, many qualitative features can be directly extracted from scattering data, derivation of detailed structural and dynamical information requires quantitative modeling. The fourth-generation synchrotron sources open new possibilities for investigating these complex systems by exploiting the enhanced brightness and coherence properties of X-rays.
Collapse
|
29
|
Weiss H, Cheng HW, Mars J, Li H, Merola C, Renner FU, Honkimäki V, Valtiner M, Mezger M. Structure and Dynamics of Confined Liquids: Challenges and Perspectives for the X-ray Surface Forces Apparatus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16679-16692. [PMID: 31614087 PMCID: PMC6933819 DOI: 10.1021/acs.langmuir.9b01215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/15/2019] [Indexed: 05/21/2023]
Abstract
The molecular-scale structure and dynamics of confined liquids has increasingly gained relevance for applications in nanotechnology. Thus, a detailed knowledge of the structure of confined liquids on molecular length scales is of great interest for fundamental and applied sciences. To study confined structures under dynamic conditions, we constructed an in situ X-ray surface forces apparatus (X-SFA). This novel device can create a precisely controlled slit-pore confinement down to dimensions on the 10 nm scale by using a cylinder-on-flat geometry for the first time. Complementary structural information can be obtained by simultaneous force measurements and X-ray scattering experiments. The in-plane structure of liquids parallel to the slit pore and density profiles perpendicular to the confining interfaces are studied by X-ray scattering and reflectivity. The normal load between the opposing interfaces can be modulated to study the structural dynamics of confined liquids. The confinement gap distance is tracked simultaneously with nanometer precision by analyzing optical interference fringes of equal chromatic order. Relaxation processes can be studied by driving the system out of equilibrium by shear stress or compression/decompression cycles of the slit pore. The capability of the new device is demonstrated on the liquid crystal 4'-octyl-4-cyano-biphenyl (8CB) in its smectic A (SmA) mesophase. Its molecular-scale structure and orientation confined in 100 nm to 1.7 μm slit pores was studied under static and dynamic nonequilibrium conditions.
Collapse
Affiliation(s)
- Henning Weiss
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hsiu-Wei Cheng
- Institute
of Applied Physics, Vienna Institute of
Technology, Wiedner Hauptstrasse 8-10/E134, 1040 Wien, Austria
| | - Julian Mars
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Physics, Johannes Gutenberg University
Mainz, 55128 Mainz, Germany
| | - Hailong Li
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Claudia Merola
- Institute
of Applied Physics, Vienna Institute of
Technology, Wiedner Hauptstrasse 8-10/E134, 1040 Wien, Austria
| | - Frank Uwe Renner
- Institute
for Materials Research, Hasselt University, 3590 Diepenbeek, Belgium
| | - Veijo Honkimäki
- ESRF-European
Synchrotron Radiation Facility, Avenue des Martyrs 71, 38043 Grenoble, Cedex 9, France
| | - Markus Valtiner
- Institute
of Applied Physics, Vienna Institute of
Technology, Wiedner Hauptstrasse 8-10/E134, 1040 Wien, Austria
- Max-Planck-Institut
für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
| | - Markus Mezger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Physics, Johannes Gutenberg University
Mainz, 55128 Mainz, Germany
| |
Collapse
|
30
|
de Oliveira GAP, Cordeiro Y, Silva JL, Vieira TCRG. Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:289-331. [PMID: 31928729 DOI: 10.1016/bs.apcsb.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) and phase transition (LLPT) of proteins and nucleic acids have emerged as a new paradigm in cell biology. Here we will describe the recent findings about LLPS and LLPT, including the molecular and physical determinants leading to their formation, the resulting functions and their implications in cell physiology and disease. Amyloid aggregation is implicated in many neurodegenerative diseases and cancer, and LLPS of proteins involved in these diseases appear to be related to their function in different cell contexts. Amyloid formation would correspond to an irreversible liquid-to-solid transition, as clearly observed in the case of PrP, TDP43, FUS/TLS and tau protein in neurodegenerative pathologies as well as with the mutant tumor suppressor p53 in cancer. Nucleic acids play a modulatory effect on both LLPS and amyloid aggregation. Understanding the molecular events regulating how the demixing process advances to solid-like fibril materials is crucial for the development of novel therapeutic strategies against cancer and neurodegenerative maladies.
Collapse
Affiliation(s)
- Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tuane C R G Vieira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
31
|
Möller J, Reiser M, Hallmann J, Boesenberg U, Zozulya A, Rahmann H, Becker AL, Westermeier F, Zinn T, Zontone F, Gutt C, Madsen A. Implications of disturbed photon-counting statistics of Eiger detectors for X-ray speckle visibility experiments. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1705-1715. [PMID: 31490162 DOI: 10.1107/s1600577519006349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/04/2019] [Indexed: 06/10/2023]
Abstract
This paper reports on coherent scattering experiments in the low-count regime with less than one photon per pixel per acquisition on average, conducted with two detectors based on the Eiger single-photon-counting chip. The obtained photon-count distributions show systematic deviations from the expected Poisson-gamma distribution, which result in a strong overestimation of the measured speckle contrast. It is shown that these deviations originate from an artificial increase of double-photon events, which is proportional to the detected intensity and inversely proportional to the exposure time. The observed miscounting effect may have important implications for new coherent scattering experiments emerging with the advent of high-brilliance X-ray sources. Different correction schemes are discussed in order to obtain the correct photon distributions from the data. A successful correction is demonstrated with the measurement of Brownian motion from colloidal particles using X-ray speckle visibility spectroscopy.
Collapse
Affiliation(s)
- Johannes Möller
- European X-ray Free Electron Laser Facility, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Mario Reiser
- European X-ray Free Electron Laser Facility, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Jörg Hallmann
- European X-ray Free Electron Laser Facility, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Ulrike Boesenberg
- European X-ray Free Electron Laser Facility, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Alexey Zozulya
- European X-ray Free Electron Laser Facility, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Hendrik Rahmann
- Department Physik, University Siegen, D-57072 Siegen, Germany
| | | | | | - Thomas Zinn
- ESRF - The European Synchrotron, F-38043 Grenoble, France
| | | | - Christian Gutt
- Department Physik, University Siegen, D-57072 Siegen, Germany
| | - Anders Madsen
- European X-ray Free Electron Laser Facility, Holzkoppel 4, D-22869 Schenefeld, Germany
| |
Collapse
|
32
|
Gañán-Calvo AM. Scaling Laws of an Exploding Liquid Column under an Intense Ultrashort X-Ray Pulse. PHYSICAL REVIEW LETTERS 2019; 123:064501. [PMID: 31491190 DOI: 10.1103/physrevlett.123.064501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 06/10/2023]
Abstract
A general formulation of the partial destruction of a liquid object in vacuum after the sudden deposition of a very large amount of energy is proposed. That energy instantaneously raises the pressure of a portion of the liquid to extreme values and changes its state, which causes its explosive expansion into vacuum and against the rest of the liquid object. When the deformable object is a liquid capillary column, the model reduces to a universal equation for the evolution of the expanding gap between the two sides of the exploding liquid column. The theoretical analysis contemplates two asymptotic stages for small and large times from the initiation of the blast, whose asymptotic solutions are fitted to available experimental data. A universal approximate analytical solution is obtained. A complete dimensional analysis of the problem and an optimal collapse of experimental data reveal that the proposed solution is in remarkable agreement with experiments of a jet exploding after being irradiated by an ultrashort and intense x-ray pulse from an x-ray free electron laser.
Collapse
Affiliation(s)
- Alfonso M Gañán-Calvo
- Departamento de Ingeniería Aerospacial y Mecánica de Fluidos, ETSI, Universidad de Sevilla, Camino de los Descubrimientos s/n 41092, Sevilla, Spain
| |
Collapse
|
33
|
Pathak H, Späh A, Amann-Winkel K, Perakis F, Kim KKH, Nilsson A. Temperature dependent anomalous fluctuations in water: shift of ≈1 kbar between experiment and classical force field simulations. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1649486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, Sweden
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, Sweden
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, Sweden
| | - Kyung Kyung Hwan Kim
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, Sweden
| |
Collapse
|
34
|
Camisasca G, Schlesinger D, Zhovtobriukh I, Pitsevich G, Pettersson LGM. A proposal for the structure of high- and low-density fluctuations in liquid water. J Chem Phys 2019; 151:034508. [PMID: 31325915 DOI: 10.1063/1.5100875] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Based on recent experimental data that can be interpreted as indicating the presence of specific structures in liquid water, we build and optimize two structural models which we compare with the available experimental data. To represent the proposed high-density liquid structures, we use a model consisting of chains of water molecules, and for low-density liquid, we investigate fused dodecahedra as templates for tetrahedral fluctuations. The computed infrared spectra of the models are in very good agreement with the extracted experimental spectra for the two components, while the extracted structures from molecular dynamics (MD) simulations give spectra that are intermediate between the experimentally derived spectra. Computed x-ray absorption and emission spectra as well as the O-O radial distribution functions of the proposed structures are not contradicted by experiment. The stability of the proposed dodecahedral template structures is investigated in MD simulations by seeding the starting structure, and remnants found to persist on an ∼30 ps time scale. We discuss the possible significance of such seeds in simulations and whether they can be viable candidates as templates for structural fluctuations below the compressibility minimum of liquid water.
Collapse
Affiliation(s)
- Gaia Camisasca
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Daniel Schlesinger
- Department of Environmental Science and Analytical Chemistry & Bolin Centre for Climate Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Iurii Zhovtobriukh
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - George Pitsevich
- Belarusian State University, Nezavisimosti Ave., 4, 220030 Minsk, Belarus
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
35
|
Camisasca G, Galamba N, Wikfeldt KT, Pettersson LGM. Translational and rotational dynamics of high and low density TIP4P/2005 water. J Chem Phys 2019; 150:224507. [PMID: 31202216 DOI: 10.1063/1.5079956] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use molecular dynamics simulations using TIP4P/2005 to investigate the self- and distinct-van Hove functions for different local environments of water, classified using the local structure index as an order parameter. The orientational dynamics were studied through the calculation of the time-correlation functions of different-order Legendre polynomials in the OH-bond unit vector. We found that the translational and orientational dynamics are slower for molecules in a low-density local environment and correspondingly the mobility is enhanced upon increasing the local density, consistent with some previous works, but opposite to a recent study on the van Hove function. From the analysis of the distinct dynamics, we find that the second and fourth peaks of the radial distribution function, previously identified as low density-like arrangements, show long persistence in time. The analysis of the time-dependent interparticle distance between the central molecule and the first coordination shell shows that particle identity persists longer than distinct van Hove correlations. The motion of two first-nearest-neighbor molecules thus remains coupled even when this correlation function has been completely decayed. With respect to the orientational dynamics, we show that correlation functions of molecules in a low-density environment decay exponentially, while molecules in a local high-density environment exhibit bi-exponential decay, indicating that dynamic heterogeneity of water is associated with the heterogeneity among high-density and between high-density and low-density species. This bi-exponential behavior is associated with the existence of interstitial waters and the collapse of the second coordination sphere in high-density arrangements, but not with H-bond strength.
Collapse
Affiliation(s)
- Gaia Camisasca
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Nuno Galamba
- Centre of Chemistry and Biochemistry and Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| | | | | |
Collapse
|
36
|
Bartels-Rausch T, Montagnat M. The physics and chemistry of ice. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190138. [PMID: 30982453 PMCID: PMC6501922 DOI: 10.1098/rsta.2019.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
|
37
|
Lehmkühler F, Valerio J, Sheyfer D, Roseker W, Schroer MA, Fischer B, Tono K, Yabashi M, Ishikawa T, Grübel G. Dynamics of soft nanoparticle suspensions at hard X-ray FEL sources below the radiation-damage threshold. IUCRJ 2018; 5:801-807. [PMID: 30443363 PMCID: PMC6211528 DOI: 10.1107/s2052252518013696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
The application of X-ray photon correlation spectroscopy (XPCS) at free-electron laser (FEL) facilities enables, for the first time, the study of dynamics on a (sub-)nanometre scale in an unreached time range between femtoseconds and seconds. For soft-matter materials, radiation damage is a major limitation when going beyond single-shot applications. Here, an XPCS study is presented at a hard X-ray FEL on radiation-sensitive polymeric poly(N-isopropylacrylamide) (PNIPAM) nanoparticles. The dynamics of aqueous suspensions of densely packed silica-PNIPAM core-shell particles and a PNIPAM nanogel below the radiation-damage threshold are determined. The XPCS data indicate non-diffusive behaviour, suggesting ballistic and stress-dominated heterogeneous particle motions. These results demonstrate the feasibility of XPCS experiments on radiation-sensitive soft-matter materials at FEL sources and pave the way for future applications at MHz repetition rates as well as ultrafast modes using split-pulse devices.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Joana Valerio
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Dina Sheyfer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin A. Schroer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Fischer
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
38
|
Lu W, Friedrich B, Noll T, Zhou K, Hallmann J, Ansaldi G, Roth T, Serkez S, Geloni G, Madsen A, Eisebitt S. Development of a hard X-ray split-and-delay line and performance simulations for two-color pump-probe experiments at the European XFEL. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:063121. [PMID: 29960553 DOI: 10.1063/1.5027071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A hard X-ray Split-and-Delay Line (SDL) under construction for the Materials Imaging and Dynamics station at the European X-Ray Free-Electron Laser (XFEL) is presented. This device aims at providing pairs of X-ray pulses with a variable time delay ranging from -10 ps to 800 ps in a photon energy range from 5 to 10 keV for photon correlation and X-ray pump-probe experiments. A custom designed mechanical motion system including active feedback control ensures that the high demands for stability and accuracy can be met and the design goals achieved. Using special radiation configurations of the European XFEL's SASE-2 undulator (SASE: Self-Amplified Spontaneous Emission), two-color hard x-ray pump-probe schemes with varying photon energy separations have been proposed. Simulations indicate that more than 109 photons on the sample per pulse-pair and up to about 10% photon energy separation can be achieved in the hard X-ray region using the SDL.
Collapse
Affiliation(s)
- W Lu
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - B Friedrich
- Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - T Noll
- Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - K Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, China
| | - J Hallmann
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G Ansaldi
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T Roth
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - S Serkez
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G Geloni
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A Madsen
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - S Eisebitt
- Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|