1
|
Niland S, Eble JA. Decoding the MMP14 integrin link: Key player in the secretome landscape. Matrix Biol 2025; 136:36-51. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
2
|
Pancheri NM, Daw JT, Ditton D, Schiele NR, Birks S, Uzer G, Jones CL, Penney BT, Theodossiou SK. The LINC Complex Regulates Tendon Elastic Modulus, Collagen Crimp, and Lateral Expansion During Early Postnatal Development. J Orthop Res 2025. [PMID: 40089904 DOI: 10.1002/jor.26069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 02/02/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
There is limited understanding of how mechanical signals regulate tendon development. The nucleus has emerged as a major regulator of cellular mechanosensation via the linker of nucleoskeleton and cytoskeleton (LINC) protein complex. Specific roles of LINC in tenogenesis have not been explored. In this study, we investigate how LINC regulates tendon development by disabling LINC-mediated mechanosensing via dominant negative (dn) overexpression of the Klarsicht, ANC-1, and Syne Homology (KASH) domain, which is necessary for LINC to function. We hypothesized that LINC regulates mechanotransduction in developing tendons and that disabling LINC would impact tendon's mechanical properties and structure in a mouse model of dnKASH. We used Achilles tendon (AT) and tail tendon (TT) as representative energy-storing and positional tendons, respectively. Mechanical testing at postnatal day 10 showed that disabling the LINC complex via dnKASH significantly impacted tendon mechanical properties and cross-sectional area and that the effects differed between ATs and TTs. Collagen crimp distance was also impacted in dnKASH tendons and was significantly decreased in ATs and increased in TTs. Overall, we show that disruption to the LINC complex specifically impacts tendon mechanics and collagen crimp structure, with unique responses between an energy-storing and limb-positioning tendon. This suggests that nuclear mechanotransduction through LINC plays a role in regulating tendon formation during neonatal development.
Collapse
Affiliation(s)
| | - Jordan T Daw
- Mechanical & Biomedical Engineering, Boise State University, Boise, Idaho, USA
| | - Destinee Ditton
- Chemical & Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Nathan R Schiele
- Chemical & Biological Engineering, University of Idaho, Moscow, Idaho, USA
| | - Scott Birks
- Mechanical & Biomedical Engineering, Boise State University, Boise, Idaho, USA
| | - Gunes Uzer
- Mechanical & Biomedical Engineering, Boise State University, Boise, Idaho, USA
| | - Calvin L Jones
- Mechanical & Biomedical Engineering, Boise State University, Boise, Idaho, USA
| | - Brian T Penney
- Mechanical & Biomedical Engineering, Boise State University, Boise, Idaho, USA
| | | |
Collapse
|
3
|
d'Humières J, Wang L, Sherwood DR, Plastino J. The actin protrusion deforms the nucleus during invasion through basement membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643012. [PMID: 40161654 PMCID: PMC11952552 DOI: 10.1101/2025.03.13.643012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cell invasion through basement membrane (BM) extracellular matrix barriers is important during organ development, immune cell trafficking, and cancer metastasis. Here we study an invasion event, anchor cell (AC) invasion, which occurs during Caenorhabditis elegans development. The actin protrusion of the invading AC mechanically displaces the BM, but it is not known how forces are balanced to prevent the growing actin protrusion from pushing itself backward when confronted with a load. Here we observe that the distal end of the actin protrusion in the invading AC abuts the nucleus and deforms it. Further we show that there is a correlation between invasion efficiency and nuclear deformation: under mutant conditions where invasion is reduced, nuclear deformation is diminished. However, nuclear deformation and invasion are unaffected by interfering with the molecular connections between the actin and microtubule cytoskeletons and the nuclear envelope. Together these data suggest that the AC actin protrusion braces against the nucleus to apply forces during invasion, but that nucleus-cytoskeleton molecular connections are not necessary for this to occur. SUMMARY STATEMENT Actin-based membrane protrusions in invading cells apply force to basement membrane (BM) barriers to help break through them. In cell motility in 2D, the actin protrusion uses cell-substrate adhesions for leverage to push forward against obstacles in what is known as the molecular clutch. The situation is different in 3D invasion, where the adhesive substrate is being effaced by the invading cell. It is not clear, in this case, why the growing actin protrusion doesn't push itself backwards instead of extending forwards through the BM. The data presented here provide evidence that the distal end of the invasive actin protrusion is braced against the stiff, immobile nucleus, allowing growth of the proximal end to apply force on the BM.
Collapse
|
4
|
Simoes-da-Silva MM, Barisic M. How does the tubulin code facilitate directed cell migration? Biochem Soc Trans 2025; 53:BST20240841. [PMID: 39998313 DOI: 10.1042/bst20240841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Besides being a component of the cytoskeleton that provides structural integrity to the cell, microtubules also serve as tracks for intracellular transport. As the building units of the mitotic spindle, microtubules distribute chromosomes during cell division. By distributing organelles, vesicles, and proteins, they play a pivotal role in diverse cellular processes, including cell migration, during which they reorganize to facilitate cell polarization. Structurally, microtubules are built up of α/β-tubulin dimers, which consist of various tubulin isotypes that undergo multiple post-translational modifications (PTMs). These PTMs allow microtubules to differentiate into functional subsets, influencing the associated processes. This text explores the current understanding of the roles of tubulin PTMs in cell migration, particularly detyrosination and acetylation, and their implications in human diseases.
Collapse
Affiliation(s)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
6
|
Yeganeh FE, Ghafuri H, Azizi M. Investigation Cytotoxicity and Curcumin Release Behavior by Pyranopyrazole-TiO 2@niosome Carrier for Breast Cancer Treatment. Appl Biochem Biotechnol 2024; 196:8530-8554. [PMID: 38884856 DOI: 10.1007/s12010-024-04985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
In the present study, we present a pyranopyrazole-TiO2 which is encapsulated with a niosome as nanocarrier for delivery of curcumin into breast cancer cells. Nanocarrier porous TiO2 is biocompatible and with a high specific surface area and a large pore volume and was used to carry pyranopyrazole, which has been reported as an anti-cancer. Niosome in the outer layer, helpful for loading curcumin into the niosomal layer, demonstrates a pH-dependent release and can be effective for cancer treatment. Entrapment efficiency of curcumin was found at 81.02% in carriers. The results of MTT and flow cytometry revealed that apoptosis is notably enhanced by loading curcumin on pyranopyrazole-TiO2@niosome. Also, there was high biocompatibility with MCF-10A, while exhibiting significant anti-cancer and anti-metastatic effects on MCF-7, whose cell viability was 38.79% in the loaded curcumin on carrier and was more than other samples even, than free curcumin (42.82%). Furthermore, the regulation of gene expression in cancer cells decreased the regulation of MMP-2 and MMP-9 genes and increased the expression of caspase-3 and caspase-9 genes. Finally, fluorescence activity in MCF-7 significantly increased after treatment with samples.
Collapse
Affiliation(s)
| | - Hossein Ghafuri
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Mojtaba Azizi
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
7
|
del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophys Rev 2024; 16:783-812. [PMID: 39830129 PMCID: PMC11735818 DOI: 10.1007/s12551-024-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes. These components connect with the cytoskeletal fibre network, enabling the transmission of mechanical stimuli towards the nucleus. The nucleus, in turn, linked to the cytoskeleton via the linkers of the nucleoskeleton and cytoskeleton complex, acts as a mechanosensitive centre, not only responding to changes in cytoskeletal stiffness and nuclear tension but also regulating gene expression through the transcriptional co-activator YAP/TAZ and interactions between chromatin and the nuclear envelope. This intricate chain of mechanisms highlights the potential of sonobiology in various fields, including dentistry, regenerative medicine, tissue engineering and cancer research. However, progress in these fields requires the establishment of standardized measurement methodologies and biocompatible experimental setups to ensure the reproducibility of results.
Collapse
Affiliation(s)
- D. del Rosario-Gilabert
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Spain
- Department of Computer Technology, University of Alicante, San Vicente del Raspeig, Spain
- Institute for Advanced Neuroscience of Barcelona (INAB), Barcelona, Spain
| | - A. Valenzuela-Miralles
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
| | - G. Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
8
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Shapeti A, Barrasa-Fano J, Abdel Fattah AR, de Jong J, Sanz-Herrera JA, Pezet M, Assou S, de Vet E, Elahi SA, Ranga A, Faurobert E, Van Oosterwyck H. Force-mediated recruitment and reprogramming of healthy endothelial cells drive vascular lesion growth. Nat Commun 2024; 15:8660. [PMID: 39370485 PMCID: PMC11456588 DOI: 10.1038/s41467-024-52866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Force-driven cellular interactions are crucial for cancer cell invasion but remain underexplored in vascular abnormalities. Cerebral cavernous malformations (CCM), a vascular abnormality characterized by leaky vessels, involves CCM mutant cells recruiting wild-type endothelial cells to form and expand mosaic lesions. The mechanisms behind this recruitment remain poorly understood. Here, we use an in-vitro model of angiogenic invasion with traction force microscopy to reveal that hyper-angiogenic Ccm2-silenced endothelial cells enhance angiogenic invasion of neighboring wild-type cells through force and extracellular matrix-guided mechanisms. We demonstrate that mechanically hyperactive CCM2-silenced tips guide wild-type cells by transmitting pulling forces and by creating paths in the matrix, in a ROCKs-dependent manner. This is associated with reinforcement of β1 integrin and actin cytoskeleton in wild-type cells. Further, wild-type cells are reprogrammed into stalk cells and activate matrisome and DNA replication programs, thereby initiating proliferation. Our findings reveal how CCM2 mutants hijack wild-type cell functions to fuel lesion growth, providing insight into the etiology of vascular malformations. By integrating biophysical and molecular techniques, we offer tools for studying cell mechanics in tissue heterogeneity and disease progression.
Collapse
Affiliation(s)
- Apeksha Shapeti
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Abdel Rahman Abdel Fattah
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- CeMM The Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Janne de Jong
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Mylène Pezet
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emilie de Vet
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Seyed Ali Elahi
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Adrian Ranga
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Eva Faurobert
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France.
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
- KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, Leuven, Belgium.
| |
Collapse
|
10
|
Zubiarrain-Laserna A, Martínez-Moreno D, López de Andrés J, de Lara-Peña L, Guaresti O, Zaldua AM, Jiménez G, Marchal JA. Beyond stiffness: deciphering the role of viscoelasticity in cancer evolution and treatment response. Biofabrication 2024; 16:042002. [PMID: 38862006 DOI: 10.1088/1758-5090/ad5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
There is increasing evidence that cancer progression is linked to tissue viscoelasticity, which challenges the commonly accepted notion that stiffness is the main mechanical hallmark of cancer. However, this new insight has not reached widespread clinical use, as most clinical trials focus on the application of tissue elasticity and stiffness in diagnostic, therapeutic, and surgical planning. Therefore, there is a need to advance the fundamental understanding of the effect of viscoelasticity on cancer progression, to develop novel mechanical biomarkers of clinical significance. Tissue viscoelasticity is largely determined by the extracellular matrix (ECM), which can be simulatedin vitrousing hydrogel-based platforms. Since the mechanical properties of hydrogels can be easily adjusted by changing parameters such as molecular weight and crosslinking type, they provide a platform to systematically study the relationship between ECM viscoelasticity and cancer progression. This review begins with an overview of cancer viscoelasticity, describing how tumor cells interact with biophysical signals in their environment, how they contribute to tumor viscoelasticity, and how this translates into cancer progression. Next, an overview of clinical trials focused on measuring biomechanical properties of tumors is presented, highlighting the biomechanical properties utilized for cancer diagnosis and monitoring. Finally, this review examines the use of biofabricated tumor models for studying the impact of ECM viscoelasticity on cancer behavior and progression and it explores potential avenues for future research on the production of more sophisticated and biomimetic tumor models, as well as their mechanical evaluation.
Collapse
Affiliation(s)
- Ana Zubiarrain-Laserna
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
| | - Daniel Martínez-Moreno
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
| | - Julia López de Andrés
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Laura de Lara-Peña
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Olatz Guaresti
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Ane Miren Zaldua
- Leartiker S. Coop., Xemein Etorbidea 12A, 48270 Markina-Xemein, Spain
| | - Gema Jiménez
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Health Science, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain
| | - Juan Antonio Marchal
- BioFab i3D- Biofabrication and 3D (bio)printing Laboratory, University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
12
|
Gamblin C, Chavrier P. [Formation, organization and function of invadosomes in cell motility and tumor invasion]. Med Sci (Paris) 2024; 40:515-524. [PMID: 38986096 DOI: 10.1051/medsci/2024080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Invadosome is an umbrella term used to describe a family of cellular structures including podosomes and invadopodia. They serve as contact zones between the cell plasma membrane and extracellular matrix, contributing to matrix remodeling by locally enriched proteolytic enzymes. Invadosomes, which are actin-dependent, are implicated in cellular processes promoting adhesion, migration, and invasion. Invadosomes, which exist in various cell types, play crucial roles in physiological phenomena such as vascularization and bone resorption. Invadosomes are also implicated in pathological processes such as matrix tissue remodeling during metastatic tumor cell invasion. This review summarizes basic information and recent advances about mechanisms underlying podosome and invadopodia formation, their organization and function.
Collapse
Affiliation(s)
- Cécile Gamblin
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France - Sorbonne Université, Paris, France
| | - Philippe Chavrier
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| |
Collapse
|
13
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
14
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
15
|
Karimifard SA, Salehzadeh-Yazdi A, Taghizadeh-Tabarsi R, Akbari-Birgani S. Mechanical effects modulate drug resistance in MCF-7-derived organoids: Insights into the wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 695:149420. [PMID: 38154263 DOI: 10.1016/j.bbrc.2023.149420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Addressing drug resistance poses a significant challenge in cancer treatment, as cancer cells develop diverse mechanisms to evade chemotherapy drugs, leading to treatment failure and disease relapse. Three-dimensional (3D) cell culture has emerged as a valuable model for studying drug resistance, although the underlying mechanisms remain elusive. By obtaining a better understanding of drug resistance within the 3D culture environment, we can develop more effective strategies to overcome it and improve the success of cancer treatments. Notably, the physical structure undergoes notable changes in 3D culture, with mechanical effects believed to play a pivotal role in drug resistance. Hence, our study aimed to explore the influence of mechanical effects on drug resistance by analyzing data related to "drug resistance" and "mechanobiology". Through this analysis, we identified β-catenin and JNK1 as potential factors, which were further examined in MCF-7 cells cultivated under both 2D and 3D culture conditions. Our findings demonstrate that β-catenin is activated through canonical and non-canonical pathways and associated with the drug resistance, particularly in organoids obtained under 3D culture.
Collapse
Affiliation(s)
- Seyed Ali Karimifard
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | | | - Reza Taghizadeh-Tabarsi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
16
|
Schmidt CJ, Stehbens SJ. Microtubule control of migration: Coordination in confinement. Curr Opin Cell Biol 2024; 86:102289. [PMID: 38041936 DOI: 10.1016/j.ceb.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
The microtubule cytoskeleton has a well-established, instrumental role in coordinating cell migration. Decades of research has focused on understanding how microtubules couple intracellular trafficking with cortical targeting and spatial organization of signaling to facilitate locomotion. Movement in physically challenging environments requires coordination of forces generated by the actin cytoskeleton to drive cell shape changes, with microtubules acting to spatially regulate contractility. Recent work has demonstrated that the mechanical properties of microtubules are adaptive to stress, leading to a new understanding of their roles in cell migration. Herein we review new developments in how microtubules sense and adapt to changes in the physical properties of their environment during migration. We frame our discussion around our current understanding of how microtubules target cell-matrix adhesions, and their role in the spatiotemporal coordination of signaling to form mechano feedback loops. We expand on how these mechanisms may influence cell morphology in confined three-dimensional settings, and the importance of locally tuning the mechanical stability of polymers in response to mechanical cues. Finally, we discuss new roles for Golgi-derived microtubules in mechanosensing, and how preferential motor use may influence polymer stability to resist the physical constraints cells experience in confined environments.
Collapse
Affiliation(s)
- Christanny J Schmidt
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Samantha J Stehbens
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
17
|
Trono P, Ottavi F, Rosano' L. Novel insights into the role of Discoidin domain receptor 2 (DDR2) in cancer progression: a new avenue of therapeutic intervention. Matrix Biol 2024; 125:31-39. [PMID: 38081526 DOI: 10.1016/j.matbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/12/2024]
Abstract
Discoidin domain receptors (DDRs), including DDR1 and DDR2, are a unique class of receptor tyrosine kinases (RTKs) activated by collagens at the cell-matrix boundary interface. The peculiar mode of activation makes DDRs as key cellular sensors of microenvironmental changes, with a critical role in all physiological and pathological processes governed by collagen remodeling. DDRs are widely expressed in fetal and adult tissues, and experimental and clinical evidence has shown that their expression is deregulated in cancer. Strong findings supporting the role of collagens in tumor progression and metastasis have led to renewed interest in DDRs. However, despite an increasing number of studies, DDR biology remains poorly understood, particularly the less studied DDR2, whose involvement in cancer progression mechanisms is undoubted. Thus, the understanding of a wider range of DDR2 functions and related molecular mechanisms is expected. To date, several lines of evidence support DDR2 as a promising target in cancer therapy. Its involvement in key functions in the tumor microenvironment makes DDR2 inhibition particularly attractive to achieve simultaneous targeting of tumor and stromal cells, and tumor regression, which is beneficial for improving the response to different types of anti-cancer therapies, including chemo- and immunotherapy. This review summarizes current research on DDR2, focusing on its role in cancer progression through its involvement in tumor and stromal cell functions, and discusses findings that support the rationale for future development of direct clinical strategies targeting DDR2.
Collapse
Affiliation(s)
- Paola Trono
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, Via E. Ramarini, 32, Monterotondo Scalo 00015 Rome
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy
| | - Laura Rosano'
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy.
| |
Collapse
|
18
|
Newman D, Young LE, Waring T, Brown L, Wolanska KI, MacDonald E, Charles-Orszag A, Goult BT, Caswell PT, Sakuma T, Yamamoto T, Machesky LM, Morgan MR, Zech T. 3D matrix adhesion feedback controls nuclear force coupling to drive invasive cell migration. Cell Rep 2023; 42:113554. [PMID: 38100355 DOI: 10.1016/j.celrep.2023.113554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/23/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Cell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. βPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions. Actomyosin force engagement then displaces the Git1-βPix complex from paxillin, establishing a feedback loop for adhesion maturation. We observe active force transmission to the nucleus during invasive migration that is needed to pull the nucleus forward. The recruitment of NM2A to adhesions creates a non-muscle myosin isoform gradient, which extends from the protrusion to the nucleus. We postulate that this gradient facilitates coupling of cell-matrix interactions at the protrusive cell front with nuclear movement, enabling effective invasive migration and front-rear cell polarity.
Collapse
Affiliation(s)
- Daniel Newman
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lorna E Young
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Waring
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Louise Brown
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ewan MacDonald
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Laura M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - Mark R Morgan
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tobias Zech
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
19
|
Beunk L, Wen N, van Helvert S, Bekker B, Ran L, Kang R, Paulat T, Syga S, Deutsch A, Friedl P, Wolf K. Cell jamming in a collagen-based interface assay is tuned by collagen density and proteolysis. J Cell Sci 2023; 136:jcs260207. [PMID: 37987169 PMCID: PMC10753497 DOI: 10.1242/jcs.260207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
Tumor cell invasion into heterogenous interstitial tissues consisting of network-, channel- or rift-like architectures involves both matrix metalloproteinase (MMP)-mediated tissue remodeling and cell shape adaptation to tissue geometry. Three-dimensional (3D) models composed of either porous or linearly aligned architectures have added to the understanding of how physical spacing principles affect migration efficacy; however, the relative contribution of each architecture to decision making in the presence of varying MMP availability is not known. Here, we developed an interface assay containing a cleft between two high-density collagen lattices, and we used this assay to probe tumor cell invasion efficacy, invasion mode and MMP dependence in concert. In silico modeling predicted facilitated cell migration into confining clefts independently of MMP activity, whereas migration into dense porous matrix was predicted to require matrix degradation. This prediction was verified experimentally, where inhibition of collagen degradation was found to strongly compromise migration into 3D collagen in a density-dependent manner, but interface-guided migration remained effective, occurring by cell jamming. The 3D interface assay reported here may serve as a suitable model to better understand the impact of in vivo-relevant interstitial tissue topologies on tumor invasion patterning and responses to molecular interventions.
Collapse
Affiliation(s)
- Lianne Beunk
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands
| | - Nan Wen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands
| | - Sjoerd van Helvert
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands
| | - Bram Bekker
- Department of Mathematics, Faculty of Natural Science, Mathematics and Informatics, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Lars Ran
- Department of Mathematics, Faculty of Natural Science, Mathematics and Informatics, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Ross Kang
- Department of Mathematics, Faculty of Natural Science, Mathematics and Informatics, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Tom Paulat
- Department of Innovative Computing, Centre for Information Services and High Performance Computing, Technical University Dresden, 01062 Dresden, Germany
| | - Simon Syga
- Department of Innovative Computing, Centre for Information Services and High Performance Computing, Technical University Dresden, 01062 Dresden, Germany
| | - Andreas Deutsch
- Department of Innovative Computing, Centre for Information Services and High Performance Computing, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katarina Wolf
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, GA 6525, The Netherlands
| |
Collapse
|
20
|
Kim D, Kim DH. Subcellular mechano-regulation of cell migration in confined extracellular microenvironment. BIOPHYSICS REVIEWS 2023; 4:041305. [PMID: 38505424 PMCID: PMC10903498 DOI: 10.1063/5.0185377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Cell migration is a highly coordinated cellular event that determines diverse physiological and pathological processes in which the continuous interaction of a migrating cell with neighboring cells or the extracellular matrix is regulated by the physical setting of the extracellular microenvironment. In confined spaces, cell migration occurs differently compared to unconfined open spaces owing to the additional forces that limit cell motility, which create a driving bias for cells to invade the confined space, resulting in a distinct cell motility process compared to what is expected in open spaces. Moreover, cells in confined environments can be subjected to elevated mechanical compression, which causes physical stimuli and activates the damage repair cycle in the cell, including the DNA in the nucleus. Although cells have a self-restoring system to repair damage from the cell membrane to the genetic components of the nucleus, this process may result in genetic and/or epigenetic alterations that can increase the risk of the progression of diverse diseases, such as cancer and immune disorders. Furthermore, there has been a shift in the paradigm of bioengineering from the development of new biomaterials to controlling biophysical cues and fine-tuning cell behaviors to cure damaged/diseased tissues. The external physical cues perceived by cells are transduced along the mechanosensitive machinery, which is further channeled into the nucleus through subcellular molecular linkages of the nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, external cues can directly or indirectly regulate genetic transcriptional processes and nuclear mechanics, ultimately determining cell fate. In this review, we discuss the importance of the biophysical cues, response mechanisms, and mechanical models of cell migration in confined environments. We also discuss the effect of force-dependent deformation of subcellular components, specifically focusing on subnuclear organelles, such as nuclear membranes and chromosomal organization. This review will provide a biophysical perspective on cancer progression and metastasis as well as abnormal cellular proliferation.
Collapse
Affiliation(s)
- Daesan Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
21
|
Monteiro P, Remy D, Lemerle E, Routet F, Macé AS, Guedj C, Ladoux B, Vassilopoulos S, Lamaze C, Chavrier P. A mechanosensitive caveolae-invadosome interplay drives matrix remodelling for cancer cell invasion. Nat Cell Biol 2023; 25:1787-1803. [PMID: 37903910 PMCID: PMC10709148 DOI: 10.1038/s41556-023-01272-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/22/2023] [Indexed: 11/01/2023]
Abstract
Invadosomes and caveolae are mechanosensitive structures that are implicated in metastasis. Here, we describe a unique juxtaposition of caveola clusters and matrix degradative invadosomes at contact sites between the plasma membrane of cancer cells and constricting fibrils both in 2D and 3D type I collagen matrix environments. Preferential association between caveolae and straight segments of the fibrils, and between invadosomes and bent segments of the fibrils, was observed along with matrix remodelling. Caveola recruitment precedes and is required for invadosome formation and activity. Reciprocally, invadosome disruption results in the accumulation of fibril-associated caveolae. Moreover, caveolae and the collagen receptor β1 integrin co-localize at contact sites with the fibrils, and integrins control caveola recruitment to fibrils. In turn, caveolae mediate the clearance of β1 integrin and collagen uptake in an invadosome-dependent and collagen-cleavage-dependent mechanism. Our data reveal a reciprocal interplay between caveolae and invadosomes that coordinates adhesion to and proteolytic remodelling of confining fibrils to support tumour cell dissemination.
Collapse
Affiliation(s)
- Pedro Monteiro
- Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France.
- Membrane Mechanics and Dynamics of Intracellular Signalling Laboratory, Institut Curie-Research Center, CNRS UMR3666, INSERM U1143, PSL Research University, Paris, France.
| | - David Remy
- Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Eline Lemerle
- Institute of Myology, Sorbonne Université, INSERM UMRS 974, Paris, France
| | - Fiona Routet
- Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Anne-Sophie Macé
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Paris, France
| | - Chloé Guedj
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris, CNRS UMR 7592, Paris, France
| | | | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signalling Laboratory, Institut Curie-Research Center, CNRS UMR3666, INSERM U1143, PSL Research University, Paris, France.
| | - Philippe Chavrier
- Actin and Membrane Dynamics Laboratory, Institut Curie-Research Center, CNRS UMR144, PSL Research University, Paris, France.
| |
Collapse
|
22
|
Pancheri NM, Daw JT, Ditton D, Schiele NR, Birks S, Uzer G, Jones CL, Penney BT, Theodossiou SK. The LINC complex regulates Achilles tendon elastic modulus, Achilles and tail tendon collagen crimp, and Achilles and tail tendon lateral expansion during early postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566892. [PMID: 38014288 PMCID: PMC10680625 DOI: 10.1101/2023.11.13.566892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
There is limited understanding of how mechanical signals regulate tendon development. The nucleus has emerged as a major regulator of cellular mechanosensation, via the linker of nucleoskeleton and cytoskeleton (LINC) protein complex. Specific roles of LINC in tenogenesis have not been explored. In this study, we investigate how LINC regulates tendon development by disabling LINC-mediated mechanosensing via dominant negative (dn) expression of the Klarsicht, ANC-1, and Syne Homology (KASH) domain, which is necessary for LINC to function. We hypothesized that LINC regulates mechanotransduction in developing tendon, and that disabling LINC would impact tendon mechanical properties and structure in a mouse model of dnKASH. We used Achilles (AT) and tail (TT) tendons as representative energy-storing and limb-positioning tendons, respectively. Mechanical testing at postnatal day 10 showed that disabling the LINC complex via dnKASH significantly impacted tendon mechanical properties and cross-sectional area, and that effects differed between ATs and TTs. Collagen crimp distance was also impacted in dnKASH tendons, and was significantly decreased in ATs, and increased in TTs. Overall, we show that disruption to the LINC complex specifically impacts tendon mechanics and collagen crimp structure, with unique responses between an energy-storing and limb-positioning tendon. This suggests that nuclear mechanotransduction through LINC plays a role in regulating tendon formation during neonatal development.
Collapse
Affiliation(s)
- Nicholas M. Pancheri
- Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844, United States
| | - Jordan T. Daw
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Destinee Ditton
- Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844, United States
| | - Nathan R. Schiele
- Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844, United States
| | - Scott Birks
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Gunes Uzer
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Calvin L. Jones
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Brian T. Penney
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| | - Sophia K. Theodossiou
- Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83725, United States
| |
Collapse
|
23
|
Okletey J, Angelis D, Jones TM, Montagna C, Spiliotis ET. An oncogenic isoform of septin 9 promotes the formation of juxtanuclear invadopodia by reducing nuclear deformability. Cell Rep 2023; 42:112893. [PMID: 37516960 PMCID: PMC10530659 DOI: 10.1016/j.celrep.2023.112893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known. Here, we report that the oncogenic septin 9 isoform 1 (SEPT9_i1) is a component of breast cancer invadopodia. SEPT9_i1 depletion diminishes invadopodium formation and the clustering of the invadopodium precursor components TKS5 and cortactin. This phenotype is characterized by deformed nuclei and nuclear envelopes with folds and grooves. We show that SEPT9_i1 localizes to the nuclear envelope and juxtanuclear invadopodia. Moreover, exogenous lamin A rescues nuclear morphology and juxtanuclear TKS5 clusters. Importantly, SEPT9_i1 is required for the amplification of juxtanuclear invadopodia, which is induced by the epidermal growth factor. We posit that nuclei of low deformability favor the formation of juxtanuclear invadopodia in a SEPT9_i1-dependent manner, which functions as a tunable mechanism for overcoming ECM impenetrability.
Collapse
Affiliation(s)
- Joshua Okletey
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Dimitrios Angelis
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Tia M Jones
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Cristina Montagna
- Department of Radiology and Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Monteiro P, Yeon B, Wallis SS, Godinho SA. Centrosome amplification fine tunes tubulin acetylation to differentially control intracellular organization. EMBO J 2023; 42:e112812. [PMID: 37403793 PMCID: PMC10425843 DOI: 10.15252/embj.2022112812] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Intracellular organelle organization is conserved in eukaryotic cells and is primarily achieved through active transport by motor proteins along the microtubule cytoskeleton. Microtubule post-translational modifications (PTMs) can contribute to microtubule diversity and differentially regulate motor-mediated transport. Here, we show that centrosome amplification, commonly observed in cancer and shown to promote aneuploidy and invasion, induces a global change in organelle positioning towards the cell periphery and facilitates nuclear migration through confined spaces. This reorganization requires kinesin-1 and is analogous to the loss of dynein. Cells with amplified centrosomes display increased levels of acetylated tubulin, a PTM that could enhance kinesin-1-mediated transport. Depletion of α-tubulin acetyltransferase 1 (αTAT1) to block tubulin acetylation rescues the displacement of centrosomes, mitochondria, and vimentin but not Golgi or endosomes. Analyses of the distribution of total and acetylated microtubules indicate that the polarized distribution of modified microtubules, rather than levels alone, plays an important role in the positioning of specific organelles, such as the centrosome. We propose that increased tubulin acetylation differentially impacts kinesin-1-mediated organelle displacement to regulate intracellular organization.
Collapse
Affiliation(s)
- Pedro Monteiro
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- Institut Curie, Paris Sciences and Lettres Research UniversityCentre National de la Recherche Scientifique, UMR144ParisFrance
| | - Bongwhan Yeon
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Samuel S Wallis
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Susana A Godinho
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
25
|
Okletey J, Angelis D, Jones TM, Montagna C, Spiliotis ET. An oncogenic isoform of septin 9 promotes the formation of juxtanuclear invadopodia by reducing nuclear deformability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545473. [PMID: 37398172 PMCID: PMC10312791 DOI: 10.1101/2023.06.18.545473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Invadopodia are extracellular matrix (ECM) degrading structures, which promote cancer cell invasion. The nucleus is increasingly viewed as a mechanosensory organelle that determines migratory strategies. However, how the nucleus crosstalks with invadopodia is little known. Here, we report that the oncogenic septin 9 isoform 1 (SEPT9_i1) is a component of breast cancer invadopodia. SEPT9_i1 depletion diminishes invadopodia formation and the clustering of invadopodia precursor components TKS5 and cortactin. This phenotype is characterized by deformed nuclei, and nuclear envelopes with folds and grooves. We show that SEPT9_i1 localizes to the nuclear envelope and juxtanuclear invadopodia. Moreover, exogenous lamin A rescues nuclear morphology and juxtanuclear TKS5 clusters. Importantly, SEPT9_i1 is required for the amplification of juxtanuclear invadopodia, which is induced by the epidermal growth factor. We posit that nuclei of low deformability favor the formation of juxtanuclear invadopodia in a SEPT9_i1-dependent manner, which functions as a tunable mechanism for overcoming ECM impenetrability. Highlights The oncogenic SEPT9_i1 is enriched in breast cancer invadopodia in 2D and 3D ECMSEPT9_i1 promotes invadopodia precursor clustering and invadopodia elongationSEPT9_i1 localizes to the nuclear envelope and reduces nuclear deformabilitySEPT9_i1 is required for EGF-induced amplification of juxtanuclear invadopodia. eTOC Blurb Invadopodia promote the invasion of metastatic cancers. The nucleus is a mechanosensory organelle that determines migratory strategies, but how it crosstalks with invadopodia is unknown. Okletey et al show that the oncogenic isoform SEPT9_i1 promotes nuclear envelope stability and the formation of invadopodia at juxtanuclear areas of the plasma membrane.
Collapse
|
26
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Remy D, Macé AS, Chavrier P, Monteiro P. Invadopodia Methods: Detection of Invadopodia Formation and Activity in Cancer Cells Using Reconstituted 2D and 3D Collagen-Based Matrices. Methods Mol Biol 2023; 2608:225-246. [PMID: 36653711 DOI: 10.1007/978-1-0716-2887-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor dissemination involves cancer cell migration through the extracellular matrix (ECM). ECM is mainly composed of collagen fibers that oppose cell invasion. To overcome hindrance in the matrix, cancer cells deploy a protease-dependent program in order to remodel the matrix fibers. Matrix remodeling requires the formation of actin-based matrix/plasma membrane contact sites called invadopodia, responsible for collagen cleavage through the accumulation and activity of the transmembrane type-I matrix metalloproteinase (MT1-MMP). In this article, we describe experimental procedures designed to assay for invadopodia formation and for invadopodia activity using 2D and 3D models based on gelatin (denatured collagen) and fibrillar type-I collagen matrices.
Collapse
Affiliation(s)
- David Remy
- Institut Curie, CNRS UMR144, PSL Research University, Research Center, Actin and Membrane Dynamics Laboratory, Paris, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Philippe Chavrier
- Institut Curie, CNRS UMR144, PSL Research University, Research Center, Actin and Membrane Dynamics Laboratory, Paris, France
| | - Pedro Monteiro
- Institut Curie, CNRS UMR144, PSL Research University, Research Center, Actin and Membrane Dynamics Laboratory, Paris, France.
| |
Collapse
|
28
|
Londoño-Berrio M, Castro C, Cañas A, Ortiz I, Osorio M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022; 14:pharmaceutics14122709. [PMID: 36559203 PMCID: PMC9784359 DOI: 10.3390/pharmaceutics14122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.
Collapse
Affiliation(s)
- Maritza Londoño-Berrio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Cristina Castro
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
| | - Ana Cañas
- Corporation for Biological Research, Medical, and Experimental Research Group, Carrera 72A # 78b-141, Medellin 050034, Colombia
| | - Isabel Ortiz
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Marlon Osorio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
- Correspondence:
| |
Collapse
|
29
|
Perrin L, Gligorijevic B. Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer. Phys Biol 2022; 20:10.1088/1478-3975/aca0d8. [PMID: 36343366 PMCID: PMC9942491 DOI: 10.1088/1478-3975/aca0d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Cancer invasion and metastasis require remodeling of the adjacent extracellular matrix (ECM). In this mini review, we will cover the mechanisms of proteolytic degradation and the mechanical remodeling of the ECM by cancer cells, with a focus on invadopodia. Invadopodia are membrane protrusions unique to cancer cells, characterized by an actin core and by the focal degradation of ECM via matrix metalloproteases (MMPs). While ECM can also be remodeled, at lower levels, by focal adhesions, or internal collagen digestion, invadopodia are now recognized as the major mechanism for MMP-dependent pericellular ECM degradation by cancer cells. Recent evidence suggests that the completion of epithelial-mesenchymal transition may be dispensable for invadopodia and metastasis, and that invadopodia are required not only for mesenchymal, single cell invasion, but also for collective invasion. During collective invasion, invadopodia was then shown to be located in leader cells, allowing follower cells to move via cooperation. Collectively, this suggests that invadopodia function may be a requirement not only for later steps of metastasis, but also for early invasion of epithelial cells into the stromal tissue. Over the last decade, invadopodia studies have transitioned into in 3D andin vivosettings, leading to the confirmation of their essential role in metastasis in preclinical animal models. In summary, invadopodia may hold a great potential for individual risk assessment as a prognostic marker for metastasis, as well as a therapeutic target.
Collapse
Affiliation(s)
- L. Perrin
- Bioengineering Department, Temple University, Philadelphia PA, USA
- Present address, Institut Curie, Paris, France
| | - B. Gligorijevic
- Bioengineering Department, Temple University, Philadelphia PA, USA
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia PA, USA
| |
Collapse
|
30
|
Cowan JM, Duggan JJ, Hewitt BR, Petrie RJ. Non-muscle myosin II and the plasticity of 3D cell migration. Front Cell Dev Biol 2022; 10:1047256. [PMID: 36438570 PMCID: PMC9691290 DOI: 10.3389/fcell.2022.1047256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Confined cells migrating through 3D environments are also constrained by the laws of physics, meaning for every action there must be an equal and opposite reaction for cells to achieve motion. Fascinatingly, there are several distinct molecular mechanisms that cells can use to move, and this is reflected in the diverse ways non-muscle myosin II (NMII) can generate the mechanical forces necessary to sustain 3D cell migration. This review summarizes the unique modes of 3D migration, as well as how NMII activity is regulated and localized within each of these different modes. In addition, we highlight tropomyosins and septins as two protein families that likely have more secrets to reveal about how NMII activity is governed during 3D cell migration. Together, this information suggests that investigating the mechanisms controlling NMII activity will be helpful in understanding how a single cell transitions between distinct modes of 3D migration in response to the physical environment.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Petrie
- Department of Biology, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Bahr JC, Li XY, Feinberg TY, Jiang L, Weiss SJ. Divergent regulation of basement membrane trafficking by human macrophages and cancer cells. Nat Commun 2022; 13:6409. [PMID: 36302921 PMCID: PMC9613642 DOI: 10.1038/s41467-022-34087-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Macrophages and cancer cells populations are posited to navigate basement membrane barriers by either mobilizing proteolytic enzymes or deploying mechanical forces. Nevertheless, the relative roles, or identity, of the proteinase -dependent or -independent mechanisms used by macrophages versus cancer cells to transmigrate basement membrane barriers harboring physiologically-relevant covalent crosslinks remains ill-defined. Herein, both macrophages and cancer cells are shown to mobilize membrane-anchored matrix metalloproteinases to proteolytically remodel native basement membranes isolated from murine tissues while infiltrating the underlying interstitial matrix ex vivo. In the absence of proteolytic activity, however, only macrophages deploy actomyosin-generated forces to transmigrate basement membrane pores, thereby providing the cells with proteinase-independent access to the interstitial matrix while simultaneously exerting global effects on the macrophage transcriptome. By contrast, cancer cell invasive activity is reliant on metalloproteinase activity and neither mechanical force nor changes in nuclear rigidity rescue basement membrane transmigration. These studies identify membrane-anchored matrix metalloproteinases as key proteolytic effectors of basement membrane remodeling by macrophages and cancer cells while also defining the divergent invasive strategies used by normal and neoplastic cells to traverse native tissue barriers.
Collapse
Affiliation(s)
- Julian C Bahr
- Cancer Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao-Yan Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tamar Y Feinberg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Long Jiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen J Weiss
- Cancer Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Vasudevan J, Jiang K, Fernandez J, Lim CT. Extracellular matrix mechanobiology in cancer cell migration. Acta Biomater 2022; 163:351-364. [PMID: 36243367 DOI: 10.1016/j.actbio.2022.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/01/2022]
Abstract
The extracellular matrix (ECM) is pivotal in modulating tumor progression. Besides chemically stimulating tumor cells, it also offers physical support that orchestrates the sequence of events in the metastatic cascade upon dynamically modulating cell mechanosensation. Understanding this translation between matrix biophysical cues and intracellular signaling has led to rapid growth in the interdisciplinary field of cancer mechanobiology in the last decade. Substantial efforts have been made to develop novel in vitro tumor mimicking platforms to visualize and quantify the mechanical forces within the tissue that dictate tumor cell invasion and metastatic growth. This review highlights recent findings on tumor matrix biophysical cues such as fibrillar arrangement, crosslinking density, confinement, rigidity, topography, and non-linear mechanics and their implications on tumor cell behavior. We also emphasize how perturbations in these cues alter cellular mechanisms of mechanotransduction, consequently enhancing malignancy. Finally, we elucidate engineering techniques to individually emulate the mechanical properties of tumors that could help serve as toolkits for developing and testing ECM-targeted therapeutics on novel bioengineered tumor platforms. STATEMENT OF SIGNIFICANCE: Disrupted ECM mechanics is a driving force for transitioning incipient cells to life-threatening malignant variants. Understanding these ECM changes can be crucial as they may aid in developing several efficacious drugs that not only focus on inducing cytotoxic effects but also target specific matrix mechanical cues that support and enhance tumor invasiveness. Designing and implementing an optimal tumor mimic can allow us to predictively map biophysical cue-modulated cell behaviors and facilitate the design of improved lab-grown tumor models with accurately controlled structural features. This review focuses on the abnormal changes within the ECM during tumorigenesis and its implications on tumor cell-matrix mechanoreciprocity. Additionally, it accentuates engineering approaches to produce ECM features of varying levels of complexity which is critical for improving the efficiency of current engineered tumor tissue models.
Collapse
|
33
|
Gonzalez‐Molina J, Kirchhof KM, Rathod B, Moyano‐Galceran L, Calvo‐Noriega M, Kokaraki G, Bjørkøy A, Ehnman M, Carlson JW, Lehti K. Mechanical Confinement and DDR1 Signaling Synergize to Regulate Collagen-Induced Apoptosis in Rhabdomyosarcoma Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202552. [PMID: 35957513 PMCID: PMC9534977 DOI: 10.1002/advs.202202552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Fibrillar collagens promote cell proliferation, migration, and survival in various epithelial cancers and are generally associated with tumor aggressiveness. However, the impact of fibrillar collagens on soft tissue sarcoma behavior remains poorly understood. Unexpectedly, this study finds that fibrillar collagen-related gene expression is associated with favorable patient prognosis in rhabdomyosarcoma. By developing and using collagen matrices with distinct stiffness and in vivo-like microarchitectures, this study uncovers that the activation of DDR1 has pro-apoptotic and of integrin β1 pro-survival function, specifically in 3D rhabdomyosarcoma cell cultures. It demonstrates that rhabdomyosarcoma cell-intrinsic or extrinsic matrix remodeling promotes cell survival. Mechanistically, the 3D-specific collagen-induced apoptosis results from a dual DDR1-independent and a synergistic DDR1-dependent TRPV4-mediated response to mechanical confinement. Altogether, these results indicate that dense microfibrillar collagen-rich microenvironments are detrimental to rhabdomyosarcoma cells through an apoptotic response orchestrated by the induction of DDR1 signaling and mechanical confinement. This mechanism helps to explain the preference of rhabdomyosarcoma cells to grow in and metastasize to low fibrillar collagen microenvironments such as the lung.
Collapse
Affiliation(s)
- Jordi Gonzalez‐Molina
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
- Department of Oncology‐PathologyKarolinska InstitutetKarolinskavägenSolna17164Sweden
| | - Katharina Miria Kirchhof
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
| | - Bhavik Rathod
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
- Department of Laboratory MedicineDivision of PathologyKarolinska InstitutetAlfred Nobels Allé 8Stockholm14152Sweden
| | - Lidia Moyano‐Galceran
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
| | - Maria Calvo‐Noriega
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
| | - Georgia Kokaraki
- Department of Oncology‐PathologyKarolinska InstitutetKarolinskavägenSolna17164Sweden
- Keck School of MedicineUniversity of Southern California1975 Zonal AveLos AngelesCA90033USA
| | - Astrid Bjørkøy
- Department of PhysicsNorwegian University of Science and TechnologyHøgskoleringen 5TrondheimNO‐7491Norway
| | - Monika Ehnman
- Department of Oncology‐PathologyKarolinska InstitutetKarolinskavägenSolna17164Sweden
| | - Joseph W. Carlson
- Department of Oncology‐PathologyKarolinska InstitutetKarolinskavägenSolna17164Sweden
- Keck School of MedicineUniversity of Southern California1975 Zonal AveLos AngelesCA90033USA
| | - Kaisa Lehti
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolnavägen 9Solna17165Sweden
- Department of Biomedical Laboratory ScienceNorwegian University of Science and TechnologyErling Skjalgssons gate 1TrondheimNO‐7491Norway
| |
Collapse
|
34
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
35
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
36
|
Ishikawa-Ankerhold H, Kroll J, van den Heuvel D, Renkawitz J, Müller-Taubenberger A. Centrosome Positioning in Migrating Dictyostelium Cells. Cells 2022; 11:cells11111776. [PMID: 35681473 PMCID: PMC9179490 DOI: 10.3390/cells11111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Directional cell migration and the establishment of polarity play an important role in development, wound healing, and host cell defense. While actin polymerization provides the driving force at the cell front, the microtubule network assumes a regulatory function, in coordinating front protrusion and rear retraction. By using Dictyostelium discoideum cells as a model for amoeboid movement in different 2D and 3D environments, the position of the centrosome relative to the nucleus was analyzed using live-cell microscopy. Our results showed that the centrosome was preferentially located rearward of the nucleus under all conditions tested for directed migration, while the nucleus was oriented toward the expanding front. When cells are hindered from straight movement by obstacles, the centrosome is displaced temporarily from its rearward location to the side of the nucleus, but is reoriented within seconds. This relocalization is supported by the presence of intact microtubules and their contact with the cortex. The data suggest that the centrosome is responsible for coordinating microtubules with respect to the nucleus. In summary, we have analyzed the orientation of the centrosome during different modes of migration in an amoeboid model and present evidence that the basic principles of centrosome positioning and movement are conserved between Dictyostelium and human leukocytes.
Collapse
Affiliation(s)
- Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany; (H.I.-A.); (D.v.d.H.)
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Janina Kroll
- Biomedical Center Munich (BMC), Department of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; (J.K.); (J.R.)
| | - Dominic van den Heuvel
- Department of Internal Medicine I, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany; (H.I.-A.); (D.v.d.H.)
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center Munich (BMC), Department of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; (J.K.); (J.R.)
| | - Annette Müller-Taubenberger
- Biomedical Center Munich (BMC), Department of Cell Biology (Anatomy III), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-89-2180-75873
| |
Collapse
|
37
|
Kroll J, Ruiz-Fernandez MJA, Braun MB, Merrin J, Renkawitz J. Quantifying the Probing and Selection of Microenvironmental Pores by Motile Immune Cells. Curr Protoc 2022; 2:e407. [PMID: 35384410 DOI: 10.1002/cpz1.407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immune cells are constantly on the move through multicellular organisms to explore and respond to pathogens and other harmful insults. While moving, immune cells efficiently traverse microenvironments composed of tissue cells and extracellular fibers, which together form complex environments of various porosity, stiffness, topography, and chemical composition. In this protocol we describe experimental procedures to investigate immune cell migration through microenvironments of heterogeneous porosity. In particular, we describe micro-channels, micro-pillars, and collagen networks as cell migration paths with alternative pore size choices. Employing micro-channels or micro-pillars that divide at junctions into alternative paths with initially differentially sized pores allows us to precisely (1) measure the cellular translocation time through these porous path junctions, (2) quantify the cellular preference for individual pore sizes, and (3) image cellular components like the nucleus and the cytoskeleton. This reductionistic experimental setup thus can elucidate how immune cells perform decisions in complex microenvironments of various porosity like the interstitium. The setup further allows investigation of the underlying forces of cellular squeezing and the consequences of cellular deformation on the integrity of the cell and its organelles. As a complementary approach that does not require any micro-engineering expertise, we describe the usage of three-dimensional collagen networks with different pore sizes. Whereas we here focus on dendritic cells as a model for motile immune cells, the described protocols are versatile as they are also applicable for other immune cell types like neutrophils and non-immune cell types such as mesenchymal and cancer cells. In summary, we here describe protocols to identify the mechanisms and principles of cellular probing, decision making, and squeezing during cellular movement through microenvironments of heterogeneous porosity. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Immune cell migration in micro-channels and micro-pillars with defined pore sizes Support Protocol 1: Epoxy replica of generated and/or published micro-structures Support Protocol 2: Dendritic cell differentiation Basic Protocol 2: Immune cell migration in 3D collagen networks of variable pore sizes.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität (LMU) München, München, Germany
| | - Mauricio J A Ruiz-Fernandez
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität (LMU) München, München, Germany
| | - Malte B Braun
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität (LMU) München, München, Germany
| | - Jack Merrin
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Jörg Renkawitz
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität (LMU) München, München, Germany
| |
Collapse
|
38
|
Almagro J, Messal HA, Elosegui-Artola A, van Rheenen J, Behrens A. Tissue architecture in tumor initiation and progression. Trends Cancer 2022; 8:494-505. [PMID: 35300951 DOI: 10.1016/j.trecan.2022.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
The 3D architecture of tissues bearing tumors impacts on the mechanical microenvironment of cancer, the accessibility of stromal cells, and the routes of invasion. A myriad of intrinsic and extrinsic forces exerted by the cancer cells, the host tissue, and the molecular and cellular microenvironment modulate the morphology of the tumor and its malignant potential through mechanical, biochemical, genetic, and epigenetic cues. Recent studies have investigated how tissue architecture influences cancer biology from tumor initiation and progression to distant metastatic seeding and response to therapy. With a focus on carcinoma, the most common type of cancer, this review discusses the latest discoveries on how tumor architecture is built and how tissue morphology affects the biology and progression of cancer cells.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK; Department of Physics, King's College London, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK; Convergence Science Centre, Imperial College London, London, UK; Division of Cancer, Imperial College London, London, UK.
| |
Collapse
|
39
|
Tang Y, Zhu L, Cho JS, Li XY, Weiss SJ. Matrix remodeling controls a nuclear lamin A/C-emerin network that directs Wnt-regulated stem cell fate. Dev Cell 2022; 57:480-495.e6. [PMID: 35150612 PMCID: PMC8891068 DOI: 10.1016/j.devcel.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Skeletal stem cells (SSCs) reside within a three-dimensional extracellular matrix (ECM) compartment and differentiate into multiple cell lineages, thereby controlling tissue maintenance and regeneration. Within this environment, SSCs can proteolytically remodel the surrounding ECM in response to growth factors that direct lineage commitment via undefined mechanisms. Here, we report that Mmp14-dependent ECM remodeling coordinates canonical Wnt signaling and guides stem cell fate by triggering an integrin-activated reorganization of the SCC cytoskeleton that controls nuclear lamin A/C levels via the linker of nucleoskeleton and cytoskeleton (LINC) complexes. In turn, SSC lamin A/C levels dictate the localization of emerin, an inner nuclear membrane protein whose ability to regulate β-catenin activity modulates Wnt signaling while directing lineage commitment in vitro and in vivo. These findings define a previously undescribed axis wherein SSCs use Mmp14-dependent ECM remodeling to control cytoskeletal and nucleoskeletal organization, thereby governing Wnt-dependent stem cell fate decisions.
Collapse
Affiliation(s)
- Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lingxin Zhu
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109,Corresponding Authors: Stephen J. Weiss, MD, , Life Sciences Institute, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw, Ann Arbor, MI 48109-2216, Yi Tang, PhD, , Life Sciences Institute, Mary Sue Coleman Hall, University of Michigan, 210 Washtenaw, Ann Arbor, MI 48109-2216
| |
Collapse
|
40
|
Hey S, Ratt A, Linder S. There and back again: Intracellular trafficking, release and recycling of matrix metalloproteinases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119189. [PMID: 34973301 DOI: 10.1016/j.bbamcr.2021.119189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinases are a family of zinc-dependent endopeptidases that are involved in a large variety of proteolytic processes in physiological and pathological scenarios, including immune cell surveillance, tissue homeostasis, or tumor cell metastasis. This is based on their ability to cleave a plethora of substrates that include components of the extracellular matrix, but also cell surface-associated and intracellular proteins. Accordingly, a tight regulatory web has evolved that closely regulates spatiotemporal activity of specific MMPs. An often underappreciated mechanism of MMP regulation involves their trafficking to and from specific subcellular sites that require MMP activity only for a certain period. In this review, we focus on the current knowledge of MMP intracellular trafficking, their secretion or surface exposure, as well as their recycling back from the cell surface. We discuss molecular mechanisms that enable these steps, in particular microtubule-dependent motility of vesicles that is driven by molecular motors and directed by vesicle regulatory proteins. Finally, we also point out open questions in the field of MMP motility that may become important in the future.
Collapse
Affiliation(s)
- Sven Hey
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Artur Ratt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
41
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
42
|
Marks P, Petrie R. Push or pull: how cytoskeletal crosstalk facilitates nuclear movement through 3D environments. Phys Biol 2021; 19. [PMID: 34936999 DOI: 10.1088/1478-3975/ac45e3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
As cells move from two-dimensional (2D) surfaces into complex 3D environments, the nucleus becomes a barrier to movement due to its size and rigidity. Therefore, moving the nucleus is a key step in 3D cell migration. In this review, we discuss how coordination between cytoskeletal and nucleoskeletal networks is required to pull the nucleus forward through complex 3D spaces. We summarize recent migration models which utilize unique molecular crosstalk to drive nuclear migration through different 3D environments. In addition, we speculate about the role of proteins that indirectly crosslink cytoskeletal networks and the role of 3D focal adhesions and how these protein complexes may drive 3D nuclear migration.
Collapse
Affiliation(s)
- Pragati Marks
- Department of Biology, Drexel University, 3245 CHESTNUT ST, PISB 401M1, PHILADELPHIA, Philadelphia, 19104-2816, UNITED STATES
| | - Ryan Petrie
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 419, Philadelphia, Philadelphia, Pennsylvania, 19104-2816, UNITED STATES
| |
Collapse
|
43
|
Zou W, Chen L, Mao W, Hu S, Liu Y, Hu C. Identification of Inflammatory Response-Related Gene Signature Associated With Immune Status and Prognosis of Lung Adenocarcinoma. Front Bioeng Biotechnol 2021; 9:772206. [PMID: 34881236 PMCID: PMC8647082 DOI: 10.3389/fbioe.2021.772206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is an exceedingly diverse disease, making prognostication difficult. Inflammatory responses in the tumor or the tumor microenvironment can alter prognosis in the process of the ongoing cross-talk between the host and the tumor. Nonetheless, Inflammatory response-related genes’ prognostic significance in LUAD, on the other hand, has yet to be determined. Materials and Methods: The clinical data as well as the mRNA expression patterns of LUAD patients were obtained from a public dataset for this investigation. In the TCGA group, a multigene prognostic signature was built utilizing LASSO Cox analysis. Validation was executed on LUAD patients from the GEO cohort. The overall survival (OS) of low- and high-risk cohorts was compared utilizing the Kaplan-Meier analysis. The assessment of independent predictors of OS was carried out utilizing multivariate and univariate Cox analyses. The immune-associated pathway activity and immune cell infiltration score were computed utilizing single-sample gene set enrichment analysis. GO keywords and KEGG pathways were explored utilizing gene set enrichment analysis. Results: LASSO Cox regression analysis was employed to create an inflammatory response-related gene signature model. The high-risk cohort patients exhibited a considerably shorter OS as opposed to those in the low-risk cohort. The prognostic gene signature’s predictive ability was demonstrated using receiver operating characteristic curve analysis. The risk score was found to be an independent predictor of OS using multivariate Cox analysis. The functional analysis illustrated that the immune status and cancer-related pathways for the two-risk cohorts were clearly different. The tumor stage and kind of immune infiltrate were found to be substantially linked with the risk score. Furthermore, the cancer cells’ susceptibility to anti-tumor medication was substantially associated with the prognostic genes expression levels. Conclusion: In LUAD, a new signature made up of 8 inflammatory response-related genes may be utilized to forecast prognosis and influence immunological state. Inhibition of these genes could also be used as a treatment option.
Collapse
Affiliation(s)
- Weijie Zou
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Li Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenwen Mao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Yuanqing Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging of Soochow University, Suzhou, China
| |
Collapse
|
44
|
Nader GPDF, Agüera-Gonzalez S, Routet F, Gratia M, Maurin M, Cancila V, Cadart C, Palamidessi A, Ramos RN, San Roman M, Gentili M, Yamada A, Williart A, Lodillinsky C, Lagoutte E, Villard C, Viovy JL, Tripodo C, Galon J, Scita G, Manel N, Chavrier P, Piel M. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 2021; 184:5230-5246.e22. [PMID: 34551315 DOI: 10.1016/j.cell.2021.08.035] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/07/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022]
Abstract
Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.
Collapse
Affiliation(s)
| | | | - Fiona Routet
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Matthieu Gratia
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90234 Palermo, Italy
| | - Clotilde Cadart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Andrea Palamidessi
- FIRC Institute of Molecular Oncology, IFOM, Via Adamello 16, 20139 Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, IFOM, Via Adamello 16, 20139 Milano, Italy
| | - Rodrigo Nalio Ramos
- INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Laboratory of Integrative Cancer Immunology, Paris, France
| | - Mabel San Roman
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Matteo Gentili
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Ayako Yamada
- Institut Curie, Université PSL, CNRS, UMR 168, Paris, France
| | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Catalina Lodillinsky
- Research Area, Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Emilie Lagoutte
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | | | | | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90234 Palermo, Italy
| | - Jérôme Galon
- INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Laboratory of Integrative Cancer Immunology, Paris, France
| | - Giorgio Scita
- Research Area, Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM, U932, Paris, France.
| | - Philippe Chavrier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France.
| |
Collapse
|
45
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
46
|
Colombero C, Remy D, Antoine‐Bally S, Macé A, Monteiro P, ElKhatib N, Fournier M, Dahmani A, Montaudon E, Montagnac G, Marangoni E, Chavrier P. mTOR Repression in Response to Amino Acid Starvation Promotes ECM Degradation Through MT1-MMP Endocytosis Arrest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101614. [PMID: 34250755 PMCID: PMC8425857 DOI: 10.1002/advs.202101614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Under conditions of starvation, normal and tumor epithelial cells can rewire their metabolism toward the consumption of extracellular proteins, including extracellular matrix-derived components as nutrient sources. The mechanism of pericellular matrix degradation by starved cells has been largely overlooked. Here it is shown that matrix degradation by breast and pancreatic tumor cells and patient-derived xenograft explants increases by one order of magnitude upon amino acid and growth factor deprivation. In addition, it is found that collagenolysis requires the invadopodia components, TKS5, and the transmembrane metalloproteinase, MT1-MMP, which are key to the tumor invasion program. Increased collagenolysis is controlled by mTOR repression upon nutrient depletion or pharmacological inhibition by rapamycin. The results reveal that starvation hampers clathrin-mediated endocytosis, resulting in MT1-MMP accumulation in arrested clathrin-coated pits. The study uncovers a new mechanism whereby mTOR repression in starved cells leads to the repurposing of abundant plasma membrane clathrin-coated pits into robust ECM-degradative assemblies.
Collapse
Affiliation(s)
| | - David Remy
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | | | - Anne‐Sophie Macé
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
- Cell and Tissue Imaging Facility (PICT‐IBiSA)Institut CuriePSL Research UniversityParis75005France
| | - Pedro Monteiro
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | - Nadia ElKhatib
- Gustave Roussy InstituteUniversité Paris‐SaclayINSERM U1279Villejuif94805France
| | - Margot Fournier
- Institut CuriePSL Research UniversityCNRS UMR 144Paris75005France
| | - Ahmed Dahmani
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | - Elodie Montaudon
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | - Guillaume Montagnac
- Gustave Roussy InstituteUniversité Paris‐SaclayINSERM U1279Villejuif94805France
| | - Elisabetta Marangoni
- Translational Research DepartmentInstitut CuriePSL Research UniversityParis75005France
| | | |
Collapse
|
47
|
Rivier P, Mubalama M, Destaing O. Small GTPases all over invadosomes. Small GTPases 2021; 12:429-439. [PMID: 33487105 PMCID: PMC8583085 DOI: 10.1080/21541248.2021.1877081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 12/19/2022] Open
Abstract
Cell invasion is associated with numerous patho-physiologic states including cell development and metastatic dissemination. This process couples the activation of cell motility with the capacity to degrade the extracellular matrix, thereby permitting cells to pass through basal membranes. Invasion is sustained by the actions of invadosomes, an ensemble of subcellular structures with high functional homology. Invadosomes are 3D acto-adhesive structures that can also mediate local extracellular matrix degradation through the controlled delivery of proteases. Intracellular RHO GTPases play a central role in the regulation of invadosomes where their complex interplay regulates multiple invadosome functions. This review aims to provide an overview of the synergistic activities of the small GTPases in invadosome biology. This broad-based review also reinforces the importance of the spatiotemporal regulation of small GTPases and the impact of this process on invadosome dynamics.
Collapse
Affiliation(s)
- Paul Rivier
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Michel Mubalama
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Olivier Destaing
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| |
Collapse
|
48
|
Liu L, Li SW, Yuan W, Tang J, Sang Y. Downregulation of SUN2 promotes metastasis of colon cancer by activating BDNF/TrkB signalling by interacting with SIRT1. J Pathol 2021; 254:531-542. [PMID: 33931868 DOI: 10.1002/path.5697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Distant metastasis is the major cause of colon cancer (CC) treatment failure. SAD1/UNC84 domain protein-2 (SUN2) is a key component of linker of the nucleoskeleton and cytoskeleton (LINC) complexes that may be relevant for metastasis in several cancers. Here, we first confirmed that SUN2 levels were significantly lower in primary CC tissues and distant metastasis than in normal colon tissues, and high SUN2 expression predicted good overall survival. Overexpression of SUN2 or knockdown of SUN2 inhibited or promoted cell migration and invasion in vitro, respectively. Moreover, silencing of SUN2 promoted metastasis in vivo. Mechanistically, we showed that SUN2 exerts its tumour suppressor functions by decreasing the expression of brain derived neurotrophic factor (BDNF) to inhibit BDNF/tropomyosin-related kinase B (TrkB) signalling. Additionally, SUN2 associated with SIRT1 and increased the acetylation of methyl-CpG binding protein 2 (MeCP2) to increase its occupancy at the BDNF promoter. Taken together, our findings indicate that SUN2 is a key component in CC progression that acts by inhibiting metastasis and that novel SUN2-SIRT1-MeCP2-BDNF signalling may prove to be useful for the development of new strategies for treating patients with CC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, PR China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Hubei, PR China
| | - Wenxin Yuan
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, PR China
| | - Jianjun Tang
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, PR China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
49
|
Garde A, Sherwood DR. Fueling Cell Invasion through Extracellular Matrix. Trends Cell Biol 2021; 31:445-456. [PMID: 33549396 PMCID: PMC8122022 DOI: 10.1016/j.tcb.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Cell invasion through extracellular matrix (ECM) has pivotal roles in cell dispersal during development, immune cell trafficking, and cancer metastasis. Many elegant studies have revealed the specialized cellular protrusions, proteases, and distinct modes of migration invasive cells use to overcome ECM barriers. Less clear, however, is how invasive cells provide energy, specifically ATP, to power the energetically demanding membrane trafficking, F-actin polymerization, and actomyosin machinery that mediate break down, remodeling, and movement through ECMs. Here, we provide an overview of the challenges of examining ATP generation and delivery within invading cells and how recent studies using diverse invasion models, experimental approaches, and energy biosensors are revealing that energy metabolism is an integral component of cell invasive behavior that is dynamically tuned to overcome the ECM environment.
Collapse
Affiliation(s)
- Aastha Garde
- Department of Cell Biology, Duke University, Box 3709, Durham, NC 27710, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Vasilaki D, Bakopoulou A, Tsouknidas A, Johnstone E, Michalakis K. Biophysical interactions between components of the tumor microenvironment promote metastasis. Biophys Rev 2021; 13:339-357. [PMID: 34168685 PMCID: PMC8214652 DOI: 10.1007/s12551-021-00811-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
During metastasis, tumor cells need to adapt to their dynamic microenvironment and modify their mechanical properties in response to both chemical and mechanical stimulation. Physical interactions occur between cancer cells and the surrounding matrix including cell movements and cell shape alterations through the process of mechanotransduction. The latter describes the translation of external mechanical cues into intracellular biochemical signaling. Reorganization of both the cytoskeleton and the extracellular matrix (ECM) plays a critical role in these spreading steps. Migrating tumor cells show increased motility in order to cross the tumor microenvironment, migrate through ECM and reach the bloodstream to the metastatic site. There are specific factors affecting these processes, as well as the survival of circulating tumor cells (CTC) in the blood flow until they finally invade the secondary tissue to form metastasis. This review aims to study the mechanisms of metastasis from a biomechanical perspective and investigate cell migration, with a focus on the alterations in the cytoskeleton through this journey and the effect of biologic fluids on metastasis. Understanding of the biophysical mechanisms that promote tumor metastasis may contribute successful therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Dimitra Vasilaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Alexandros Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
| | | | - Konstantinos Michalakis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Division of Graduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA USA
- University of Oxford, Oxford, UK
| |
Collapse
|