1
|
Guo Y, Zhang R, Zhang M, Luo S, Li W, Sun L, Zhong M, Liu Z, Wu Y, Li W, Bu J. Assessment of the clonal growth potential of meibomian gland stem/progenitor cells via clonal analysis. Ocul Surf 2025; 37:1-10. [PMID: 39952322 DOI: 10.1016/j.jtos.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/03/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Clonal analysis is a feasible method to evaluate the status of stem/progenitor cells in epidermal or limbus investigations. This study aimed to evaluate the clonal growth potential of meibomian gland (MG) epithelial cells using clonal analysis. METHODS Mouse and human MG tissues were isolated and cocultured with 3T3 feeder cells. Immunofluorescent staining of K14, K6a, and PPARγ on MG clones was applied. Holoclones, meroclones and paraclones were categorized based on clonal area. Triple staining and tile scans provided a comprehensive view of MG clone formation. MG ductal and acinar clones were cultured separately to compare stem/progenitor cell characteristics. We further evaluated an age-related MGD (ARMGD) mouse model along with two human MG samples of different ages using clonal analysis. Crystal violet staining was employed to assess clone formation efficiency (CFE). RESULTS Both mouse and human MG epithelial cells formed clones on the feeder layers, which enlarged over time. The expression of K14, K6a, and PPARγ was decreased in differentiated clones during development. The CFE of holoclones and meroclones was approximately 1 ‰ in mouse MG clones and approximately 2.5 ‰ in holoclones and 5.6 ‰ in meroclones in human MG clones. The CFE of holoclones generated by ductal epithelial cells was significantly higher than did acinar clones. In the ARMGD mouse model and human samples, smaller clones, reduced CFE, and decreased K14+, K6a+, and PPARγ+ cells in MG clones were identified. CONCLUSIONS Clonal analysis effectively evaluates stem and progenitor cells in MGs, revealing deterioration in these cells under MGD conditions.
Collapse
Affiliation(s)
- Yuli Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Rongrong Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Minjie Zhang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sai Luo
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wansui Li
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Le Sun
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meiqin Zhong
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Yang Wu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China.
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| | - Jinghua Bu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Yang J, Dan J, Zhao N, Liu L, Wang H, Liu Q, Wang L, Li J, Wu Y, Chen F, Fu W, Liu F, Lin M, Zhang W, Chen F, Liu X, Lu X, Chen Q, Wu X, Niu Y, Yang N, Zhu Y, Long J, Liu L. Zscan4 mediates ubiquitination and degradation of the corepressor complex to promote chromatin accessibility in 2C-like cells. Proc Natl Acad Sci U S A 2024; 121:e2407490121. [PMID: 39705314 DOI: 10.1073/pnas.2407490121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Zygotic genome activation occurs in two-cell (2C) embryos, and a 2C-like state is also activated in sporadic (~1%) naïve embryonic stem cells in mice. Elevated chromatin accessibility is critical for the 2C-like state to occur, yet the underlying molecular mechanisms remain elusive. Zscan4 exhibits burst expression in 2C embryos and 2C-like cells. Here, we show that Zscan4 mediates chromatin remodeling to promote the chromatin accessibility for achieving the 2C-like state. Through coimmunoprecipitation/mass spectrometry, we identified that Zscan4 interacts with the corepressors Kap1/Trim28, Lsd1, and Hdac1, also with H3K9me3 modifiers Suv39h1/2, to transiently form a repressive chromatin complex. Then, Zscan4 mediates the degradation of these chromatin repressors by recruiting Trim25 as an E3 ligase, enabling the ubiquitination of Lsd1, Hdac1, and Suv39h1/2. Degradation of the chromatin repressors promotes the chromatin accessibility for activation of the 2C-like state. These findings reveal the molecular insights into the roles of Zscan4 in promoting full activation of the 2C-like state.
Collapse
Affiliation(s)
- Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Huasong Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Yiwei Wu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Feilong Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Weilun Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Fei Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Meiqi Lin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Xudong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- Department of Cell Biology and Genetics, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300000, China
| |
Collapse
|
3
|
Bashiri Z, Hosseini SJ, Salem M, Koruji M. In vivo and in vitro sperm production: an overview of the challenges and advances in male fertility restoration. Clin Exp Reprod Med 2024; 51:171-180. [PMID: 38525520 PMCID: PMC11372308 DOI: 10.5653/cerm.2023.06569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 03/26/2024] Open
Abstract
Male infertility can be caused by genetic anomalies, endocrine disorders, inflammation, and exposure to toxic chemicals or gonadotoxic treatments. Therefore, several recent studies have concentrated on the preservation and restoration of fertility to enhance the quality of life for affected individuals. It is currently recommended to biobank the tissue extracted from testicular biopsies to provide a later source of spermatogonial stem cells (SSCs). Another successful approach has been the in vitro production of haploid male germ cells. The capacity of SSCs to transform into sperm, as in testicular tissue transplantation, SSC therapy, and in vitro or ex vivo spermatogenesis, makes them ideal candidates for in vivo fertility restoration. The transplantation of SSCs or testicular tissue to regenerate spermatogenesis and create embryos has been achieved in nonhuman mammal species. Although the outcomes of human trials have yet to be released, this method may soon be approved for clinical use in humans. Furthermore, regenerative medicine techniques that develop tissue or cells on organic or synthetic scaffolds enriched with bioactive molecules have also gained traction. All of these methods are now in different stages of experimentation and clinical trials. However, thanks to rigorous studies on the safety and effectiveness of SSC-based reproductive treatments, some of these techniques may be clinically available in upcoming decades.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility and Infertility Clinic, Hamedan, Iran
| | - Seyed Jamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dehghanian F, Bovio PP, Gather F, Probst S, Naghsh-Nilchi A, Vogel T. ZFP982 confers mouse embryonic stem cell characteristics by regulating expression of Nanog, Zfp42, and Dppa3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119686. [PMID: 38342310 DOI: 10.1016/j.bbamcr.2024.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran; Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Patrick Piero Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fabian Gather
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Basics in Neuromodulation (Neuromodul Basics), Freiburg, Germany.
| |
Collapse
|
5
|
Khandani B, Movahedin M. Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems. Stem Cell Rev Rep 2024; 20:484-494. [PMID: 38079087 DOI: 10.1007/s12015-023-10662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotent stem cells (PSCs) are widely recognized as one of the most promising types of stem cells for applications in regenerative medicine, tissue engineering, disease modeling, and drug screening. This is due to their unique ability to differentiate into cells from all three germ layers and their capacity for indefinite self-renewal. Initially, PSCs were cultured using animal feeder cells, but these systems presented several limitations, particularly in terms of Good Manufacturing Practices (GMP) regulations. As a result, feeder-free systems were introduced as a safer alternative. However, the precise mechanisms by which feeder cells support pluripotency are not fully understood. More importantly, it has been observed that some aspects of the need for feeder cells like the optimal density and cell type can vary depending on conditions such as the developmental stage of the PSCs, phases of the culture protocol, the method used in culture for induction of pluripotency, and intrinsic variability of PSCs. Thus, gaining a better understanding of the divergent roles and necessity of feeder cells in various conditions would lead to the development of condition-specific defined feeder-free systems that resolve the failure of current feeder-free systems in some conditions. Therefore, this review aims to explore considerable feeder-related issues that can lead to the development of condition-specific feeder-free systems.
Collapse
Affiliation(s)
- Bardia Khandani
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115111, Iran.
| |
Collapse
|
6
|
Zhang H, Jin ZB. A rational consideration of the genomic instability of human-induced pluripotent stem cells for clinical applications. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2198-2200. [PMID: 37296348 DOI: 10.1007/s11427-023-2354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023]
Affiliation(s)
- Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
7
|
Guo Z, Zhu J, Qin G, Jia Y, Liu Z, Yang N, Guo R. Static Magnetic Fields Promote Generation of Muscle Lineage Cells from Pluripotent Stem Cells and Myoblasts. Stem Cell Rev Rep 2023; 19:1402-1414. [PMID: 37000377 DOI: 10.1007/s12015-023-10535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Static magnetic fields (SMFs) exhibit numerous biological effects and regulate the proliferation and differentiation of several adult stem cells. However, the role of SMFs in the self-renewal maintenance and developmental potential of pluripotent embryonic stem cells (ESCs) remains largely uninvestigated. Here, we show that SMFs promote the expression of the core pluripotent markers Sox2 and SSEA-1. Furthermore, SMFs facilitate the differentiation of ESCs into cardiomyocytes and skeletal muscle cells. Consistently, transcriptome analysis reveals that muscle lineage differentiation and skeletal system specification of ESCs are remarkably strengthened by SMF stimuli. Additionally, when treated with SMFs, C2C12 myoblasts exhibit an increased proliferation rate, improved expression of skeletal muscle markers and elevated myogenic differentiation capacity compared with control cells. Together, our data show that SMFs effectively promote muscle cell generation from pluripotent stem cells and myoblasts. The noninvasive and convenient physical stimuli can be used to increase the production of muscle cells in regenerative medicine and the manufacture of cultured meat in cellular agriculture.
Collapse
Affiliation(s)
- Zhaoyuan Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yumei Jia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- INDUC Scientific Co., Ltd, No. 28-132 Jinshan North Photoelectric Science and Technology Park, Wuxi, 214000, China
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Tian C, Wang J, Ye X, Chen J, Zheng R, Yu H, Li J, Yin G, Liu L, Zhao N, Feng G, Zhu Z, Wang J, Fan G, Liu L. Culture conditions of mouse ESCs impact the tumor appearance in vivo. Cell Rep 2023; 42:112645. [PMID: 37314926 DOI: 10.1016/j.celrep.2023.112645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Various culture conditions by small molecules have been explored to extend pluripotency of stem cells, but their impacts on cell fate in vivo remain elusive. We systematically compared the effects of various culture conditions on the pluripotency and cell fate in vivo of mouse embryonic stem cells (ESCs) by tetraploid embryo complementation assay. Conventional ESC cultures in serum/LIF-based condition produced complete ESC mice and also the survival to adulthood at the highest rates of all other chemical-based cultures. Moreover, long-term examination of the survived ESC mice demonstrated that conventional ESC cultures did not lead to visible abnormality for up to 1.5-2 years, whereas the prolonged chemical-based cultures developed retroperitoneal atypical teratomas or leiomyomas. The chemical-based cultures exhibited transcriptomes and epigenomes that typically differed from those of conventional ESC cultures. Our results warrant further refinement of culture conditions in promoting the pluripotency and safety of ESCs in future applications.
Collapse
Affiliation(s)
- Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Wang
- Department of Human Genetics and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiyu Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rongyan Zheng
- Key Laboratory for Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanwen Yu
- Key Laboratory for Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoxing Yin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nannan Zhao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guofeng Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhengmao Zhu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guoping Fan
- Department of Human Genetics and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Zhao F, Yu J, Ding Q, Chen K, Xia S, Qian Y, Gao Y, Lin Z, Wang H, Zhong J. Optimization of bovine embryonic fibroblast feeder layer prepared by Mitomycin C. Cell Tissue Bank 2023; 24:221-230. [PMID: 35896934 DOI: 10.1007/s10561-022-10027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/02/2022]
Abstract
Feeder cells play important roles in In-vitro culture of stem cells. However, the preparation protocol of feeder cells produced by bovine embryonic fibroblast cells (bEFs) is still lack. In this study, the preparation of bEF-feeder by Mitomycin C was optimized with different concentrations and treatment time. The cell viability of bEFs was detected by CCK8 and 5-Ethynyl-2'-deoxyuridine. The growth of bESCs in each bEFs-feeder group was assessed by alkaline phosphatase staining and CCK8. Quantitative real time PCR was used to detect the mRNA expression of pluripotency-related genes of bESCs. Results showed that the proliferation of bEFs was significantly repressed while bEFs were treated with 14 ug/mL or 16 ug/mL Mitomycin C for 3 h, and the cell viability within 2-4 days after treatment was consistent with the 1st day. The numbers of bESCs clones in bEF-feeder treated with 14 μg/mL Mitomycin C for 3 h or 16 μg/mL Mitomycin C for 3 h were significantly higher than that in bEF-feeder treated with 8 μg/mL Mitomycin C for 8 h or bEFs treated with 6 μg/mL Mitomycin C for 9 h. The mRNA expression of pluripotency-related genes in bESCs cultured by bEF-feeder were higher than the MEF-feeder, the clone morphology of bESCs cultured in bEF-feeder was rounder and sharper than the MEF-feeder. In conclusion, the bEF-feeder prepared with 14 μg/mL Mitomycin C for 3 h or 16 μg/mL Mitomycin C for 3 h could effectively maintains the growth of bESCs, and bEF-feeder is more suitable for bESCs culture than the MEF-feeder.
Collapse
Affiliation(s)
- Fang Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology / Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture / Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Jianning Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology / Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture / Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Qiang Ding
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology / Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture / Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Kunlin Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology / Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture / Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Shuwen Xia
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology / Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture / Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yong Qian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology / Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture / Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Yundong Gao
- Shandong OX Livestock Breeding Co.,Ltd, Jinan, 250100, Shandong, China
| | - Zhiping Lin
- Jiangsu Youyuan Dairy Research Institute, Nanjing, 211100, Jiangsu, China
| | - Huili Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology / Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture / Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Jifeng Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology / Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture / Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
10
|
Xu W, Gao L, Li W, Wang J, Yue Y, Li X. The adaptation of bovine embryonic stem cells to the changes of feeder layers. In Vitro Cell Dev Biol Anim 2023; 59:85-99. [PMID: 36847888 DOI: 10.1007/s11626-022-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 03/01/2023]
Abstract
Although the feeder-free culture system has been established, the microenvironment provided by the feeder cells still possesses a unique advantage in maintaining the long-term stability and the rapid proliferation of pluripotent stem cells (PSCs). The aim of this study is to discover the adaptive ability of PSCs upon changes of feeder layers. In this study, the morphology, pluripotent marker expression, differentiation ability of bovine embryonic stem cells (bESCs) cultured on low-density, or methanol fixed mouse embryonic fibroblasts were examined by immunofluorescent staining, Western blotting, real-time reverse transcription polymerase chain reaction, and RNA-seq. The results showed that the changes of feeder layers did not induce the rapid differentiation of bESCs, while resulting in the differentiation initiation and alteration of pluripotent state of bESCs. More importantly, the expression of endogenous growth factors and extracellular matrix were increased, and the expression of cell adhesion molecules was altered, which indicated that bESCs may compensate some functions of the feeder layers upon its changes. This study shows the PSCs have the self-adaptive ability responded to the feeder layer alteration.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia, People's Republic of China
| | - Lingna Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yongli Yue
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
11
|
Exogenous pyruvate and recombinant human basic fibroblast growth factor maintain pluripotency and enhance global metabolic activity of bovine embryonic stem cells grown on low-density feeder layers. Theriogenology 2023; 196:37-49. [PMID: 36379144 DOI: 10.1016/j.theriogenology.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
A suitable microenvironment or niche is essential for self-renewal and pluripotency of stem cells cultured in vitro, including bovine embryonic stem cells (bESCs). Feeder cells participate in the construction of stem cell niche by secreting growth factors and extracellular matrix proteins. In this study, metabolomics and transcriptomics analyses were used to investigate the effects of low-density feeder cells on bESCs. The results showed that bESCs co-cultured with low-density feeder cells experienced a decrease in pluripotent gene expression, cell differentiation, and a reduction of central carbon metabolic activity. When cell-permeable pyruvate (Pyr) and recombinant human basic fibroblast growth factor (rhbFGF) were added to the culture system, the pluripotency of bESCs on low-density feeder layers was rescued, and acetyl-coenzyme A (AcCoA) synthesis and fatty acid de novo synthesis increased. In addition, rhbFGF enhances the effects of Pyr and activates the overall metabolic level of bESCs grown on low-density feeder layers. This study explored the rescue effects of exogenous Pyr and rhbFGF on bESCs cultured on low-density feeder layers, which will provide a reference for improvement of the PSC culture system through the supplementation of energy metabolites and growth factors.
Collapse
|
12
|
Jia Y, Guo Z, Zhu J, Qin G, Sun W, Yin Y, Wang H, Guo R. Snap29 Is Dispensable for Self-Renewal Maintenance but Required for Proper Differentiation of Mouse Embryonic Stem Cells. Int J Mol Sci 2023; 24:ijms24010750. [PMID: 36614195 PMCID: PMC9821219 DOI: 10.3390/ijms24010750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Pluripotent embryonic stem cells (ESCs) can self-renew indefinitely and are able to differentiate into all three embryonic germ layers. Synaptosomal-associated protein 29 (Snap29) is implicated in numerous intracellular membrane trafficking pathways, including autophagy, which is involved in the maintenance of ESC pluripotency. However, the function of Snap29 in the self-renewal and differentiation of ESCs remains elusive. Here, we show that Snap29 depletion via CRISPR/Cas does not impair the self-renewal and expression of pluripotency-associated factors in mouse ESCs. However, Snap29 deficiency enhances the differentiation of ESCs into cardiomyocytes, as indicated by heart-like beating cells. Furthermore, transcriptome analysis reveals that Snap29 depletion significantly decreased the expression of numerous genes required for germ layer differentiation. Interestingly, Snap29 deficiency does not cause autophagy blockage in ESCs, which might be rescued by the SNAP family member Snap47. Our data show that Snap29 is dispensable for self-renewal maintenance, but required for the proper differentiation of mouse ESCs.
Collapse
Affiliation(s)
- Yumei Jia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyuan Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwen Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Yin
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
13
|
Epigenetics as "conductor" in "orchestra" of pluripotent states. Cell Tissue Res 2022; 390:141-172. [PMID: 35838826 DOI: 10.1007/s00441-022-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of "naïve," "poised," "formative," and "primed." Epigenetics act as the "conductor" in this "orchestra" of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.
Collapse
|
14
|
Thool M, Sundaravadivelu PK, Sudhagar S, Thummer RP. A Comprehensive Review on the Role of ZSCAN4 in Embryonic Development, Stem Cells, and Cancer. Stem Cell Rev Rep 2022; 18:2740-2756. [PMID: 35739386 DOI: 10.1007/s12015-022-10412-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
ZSCAN4 is a transcription factor that plays a pivotal role during early embryonic development. It is a unique gene expressed specifically during the first tide of de novo transcription during the zygotic genome activation. Moreover, it is reported to regulate telomere length in embryonic stem cells and induced pluripotent stem cells. Interestingly, ZSCAN4 is expressed in approximately 5% of the embryonic stem cells in culture at any given time, which points to the fact that it has a tight regulatory system. Furthermore, ZSCAN4, if included in the reprogramming cocktail along with core reprogramming factors, increases the reprogramming efficiency and results in better quality, genetically stable induced pluripotent stem cells. Also, it is reported to have a role in promoting cancer stem cell phenotype and can prospectively be used as a marker for the same. In this review, the multifaceted role of ZSCAN4 in embryonic development, embryonic stem cells, induced pluripotent stem cells, cancer, and germ cells are discussed comprehensively.
Collapse
Affiliation(s)
- Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, 781101, Guwahati, Assam, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, 781101, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| |
Collapse
|
15
|
Zuo F, Jiang J, Fu H, Yan K, Liefke R, Zhang J, Hong Y, Chang Z, Liu N, Wang Z, Xi Q. A TRIM66/DAX1/Dux axis suppresses the totipotent 2-cell-like state in murine embryonic stem cells. Cell Stem Cell 2022; 29:948-961.e6. [DOI: 10.1016/j.stem.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022]
|
16
|
BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding. Protein Cell 2022; 13:580-601. [PMID: 35147915 PMCID: PMC9232672 DOI: 10.1007/s13238-021-00896-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemically defined medium is widely used for culturing mouse embryonic stem cells (mESCs), in which N2B27 works as a substitution for serum, and GSK3β and MEK inhibitors (2i) help to promote ground-state pluripotency. However, recent studies suggested that MEKi might cause irreversible defects that compromise the developmental potential of mESCs. Here, we demonstrated the deficient bone morphogenetic protein (BMP) signal in the chemically defined condition is one of the main causes for the impaired pluripotency. Mechanistically, activating the BMP signal pathway by BMP4 could safeguard the chromosomal integrity and proliferation capacity of mESCs through regulating downstream targets Ube2s and Chmp4b. More importantly, BMP4 promotes a distinct in vivo developmental potential and a long-term pluripotency preservation. Besides, the pluripotent improvements driven by BMP4 are superior to those by attenuating MEK suppression. Taken together, our study shows appropriate activation of BMP signal is essential for regulating functional pluripotency and reveals that BMP4 should be applied in the serum-free culture system.
Collapse
|
17
|
An ERK5-KLF2 signalling module regulates early embryonic gene expression and telomere rejuvenation in stem cells. Biochem J 2021; 478:4119-4136. [PMID: 34780645 PMCID: PMC8718266 DOI: 10.1042/bcj20210646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
The ERK5 MAP kinase signalling pathway drives transcription of naïve pluripotency genes in mouse Embryonic Stem Cells (mESCs). However, how ERK5 impacts on other aspects of mESC biology has not been investigated. Here, we employ quantitative proteomic profiling to identify proteins whose expression is regulated by the ERK5 pathway in mESCs. This reveals a function for ERK5 signalling in regulating dynamically expressed early embryonic 2-cell stage (2C) genes including the mESC rejuvenation factor ZSCAN4. ERK5 signalling and ZSCAN4 induction in mESCs increases telomere length, a key rejuvenative process required for prolonged culture. Mechanistically, ERK5 promotes ZSCAN4 and 2C gene expression via transcription of the KLF2 pluripotency transcription factor. Surprisingly, ERK5 also directly phosphorylates KLF2 to drive ubiquitin-dependent degradation, encoding negative feedback regulation of 2C gene expression. In summary, our data identify a regulatory module whereby ERK5 kinase and transcriptional activities bi-directionally control KLF2 levels to pattern 2C gene transcription and a key mESC rejuvenation process.
Collapse
|
18
|
Hang Y, Ma X, Liu C, Li S, Zhang S, Feng R, Shang Q, Liu Q, Ding Z, Zhang X, Yu L, Lu Q, Shao C, Chen H, Shi Y, He J, Kaplan DL. Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS NANO 2021; 15:14162-14173. [PMID: 34516077 DOI: 10.1021/acsnano.0c10468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stem cell fate is determined by specific niches that provide multiple physical, chemical, and biological cues. However, the hierarchy or cascade of impact of these cues remains elusive due to their spatiotemporal complexity. Here, anisotropic silk protein nanofiber-based hydrogels with suitable cell adhesion capacity are developed to mimic the physical microenvironment inside the blastocele. The hydrogels enable mouse embryonic stem cells (mESCs) to maintain stemness in vitro in the absence of both leukemia inhibitory factor (LIF) and mouse embryonic fibroblasts (MEFs), two critical factors in the standard protocol for mESC maintenance. The mESCs on hydrogels can achieve superior pluripotency, genetic stability, developmental capacity, and germline transmission to those cultured with the standard protocol. Such biomaterials establish an improved dynamic niche through stimulating the secretion of autocrine factors and are sufficient to maintain the pluripotency and propagation of ESCs. The mESCs on hydrogels are distinct in their expression profiles and more resemble ESCs in vivo. The physical cues can thus initiate a self-sustaining stemness-maintaining program. In addition to providing a relatively simple and low-cost option for expansion and utility of ESCs in biological research and therapeutic applications, this biomimetic material helps gain more insights into the underpinnings of early mammalian embryogenesis.
Collapse
Affiliation(s)
- Yingjie Hang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoliang Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chunxiao Liu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Siyuan Li
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Sixuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruyan Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qianwen Shang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Liyin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yufang Shi
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute Academy of Science, Beijing 100101, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
19
|
Fu H, Zhang W, Li N, Yang J, Ye X, Tian C, Lu X, Liu L. Elevated retrotransposon activity and genomic instability in primed pluripotent stem cells. Genome Biol 2021; 22:201. [PMID: 34243810 PMCID: PMC8268579 DOI: 10.1186/s13059-021-02417-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/24/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Naïve and primed pluripotent stem cells (PSCs) represent two different pluripotent states. Primed PSCs following in vitro culture exhibit lower developmental potency as evidenced by failure in germline chimera assays, unlike mouse naïve PSCs. However, the molecular mechanisms underlying the lower developmental competency of primed PSCs remain elusive. RESULTS We examine the regulation of telomere maintenance, retrotransposon activity, and genomic stability of primed PSCs and compare them with naïve PSCs. Surprisingly, primed PSCs only minimally maintain telomeres and show fragile telomeres, associated with declined DNA recombination and repair activity, in contrast to naïve PSCs that robustly elongate telomeres. Also, we identify LINE1 family integrant L1Md_T as naïve-specific retrotransposon and ERVK family integrant IAPEz to define primed PSCs, and their transcription is differentially regulated by heterochromatic histones and Dnmt3b. Notably, genomic instability of primed PSCs is increased, in association with aberrant retrotransposon activity. CONCLUSIONS Our data suggest that fragile telomere, retrotransposon-associated genomic instability, and declined DNA recombination repair, together with reduced function of cell cycle and mitochondria, increased apoptosis, and differentiation properties may link to compromised developmental potency of primed PSCs, noticeably distinguishable from naïve PSCs.
Collapse
Affiliation(s)
- Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Niannian Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.
- The Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.
| |
Collapse
|
20
|
Ye X, Tian C, Liu L, Feng G, Jin K, Wang H, Chen J, Liu L. Oncostatin M Maintains Naïve Pluripotency of mESCs by Tetraploid Embryo Complementation (TEC) Assay. Front Cell Dev Biol 2021; 9:675411. [PMID: 34124061 PMCID: PMC8189179 DOI: 10.3389/fcell.2021.675411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
It has been well established that leukemia inhibitory factor (LIF) is essential for maintaining naïve pluripotency of embryonic stem cells (ESCs). Oncostatin M (OSM) is a member of the IL-6 family of cytokines which share gp130 as a receptor subunit, and the OSM-gp130 complex can recruit either LIF receptor β or OSM receptor β. Here we show that OSM can completely replace LIF to maintain naïve pluripotency of ESCs. Mouse ESCs (mESCs) cultured in the presence of LIF or OSM not only express pluripotency genes at similar levels but also exhibit the same developmental pluripotency as evidenced by the generation of germline competent chimeras, supporting previous findings. Moreover, we demonstrate by tetraploid embryo complementation assay, the most stringent functional test of authentic pluripotency that mESCs cultured in OSM produce viable all-ESC pups. Furthermore, telomere length and telomerase activity, which are also crucial for unlimited self-renewal and genomic stability of mESCs, do not differ in mESCs cultured under OSM or LIF. The transcriptome of mESCs cultured in OSM overall is very similar to that of LIF, and OSM activates Stat3 signaling pathway, like LIF. Additionally, OSM upregulates pentose and glucuronate interconversion, ascorbate and aldarate metabolism, and steroid and retinol metabolic pathways. Although the significance of these pathways remains to be determined, our data shows that OSM can maintain naïve pluripotent stem cells in the absence of LIF.
Collapse
Affiliation(s)
- Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Guofeng Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Kairang Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiyu Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Nikitina TV, Kashevarova AA, Gridina MM, Lopatkina ME, Khabarova AA, Yakovleva YS, Menzorov AG, Minina YA, Pristyazhnyuk IE, Vasilyev SA, Fedotov DA, Serov OL, Lebedev IN. Complex biology of constitutional ring chromosomes structure and (in)stability revealed by somatic cell reprogramming. Sci Rep 2021; 11:4325. [PMID: 33619287 PMCID: PMC7900208 DOI: 10.1038/s41598-021-83399-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Human ring chromosomes are often unstable during mitosis, and daughter cells can be partially or completely aneuploid. We studied the mitotic stability of four ring chromosomes, 8, 13, 18, and 22, in long-term cultures of skin fibroblasts and induced pluripotent stem cells (iPSCs) by GTG karyotyping and aCGH. Ring chromosome loss and secondary aberrations were observed in all fibroblast cultures except for r(18). We found monosomy, fragmentation, and translocation of indexed chromosomes. In iPSCs, aCGH revealed striking differences in mitotic stability both between iPSC lines with different rings and, in some cases, between cell lines with the same ring chromosome. We registered the spontaneous rescue of karyotype 46,XY,r(8) to 46,XY in all six iPSC lines through ring chromosome loss and intact homologue duplication with isoUPD(8)pat occurrence, as proven by SNP genotype distribution analysis. In iPSCs with other ring chromosomes, karyotype correction was not observed. Our results suggest that spontaneous correction of the karyotype with ring chromosomes in iPSCs is not universal and that pluripotency is compatible with a wide range of derivative karyotypes. We conclude that marked variability in the frequency of secondary rearrangements exists in both fibroblast and iPSC cultures, expanding the clinical significance of the constitutional ring chromosome.
Collapse
Affiliation(s)
- T V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.
| | - A A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - M M Gridina
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - M E Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - A A Khabarova
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Yu S Yakovleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.,Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| | - A G Menzorov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yu A Minina
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - I E Pristyazhnyuk
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - D A Fedotov
- Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| | - O L Serov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.,Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| |
Collapse
|
22
|
A mechanical non-enzymatic method for isolation of mouse embryonic fibroblasts. Mol Biol Rep 2020; 47:8881-8890. [PMID: 33130988 DOI: 10.1007/s11033-020-05940-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Mouse embryonic fibroblasts (MEFs) accessibility coupled with their simple generation make them as a typical embryonic cell model and feeder layer for in vitro expansion of pluripotent stem cells (PSCs). In this study, a mechanical isolation technique was adopted to isolate MEFs and the efficiency of this technique was compared with enzymatic digestion method. The suspended MEFs were prepared either by mechanical method or 0.25% trypsin enzymatic digestion. The effect of tissue processing on cell apoptosis/necrosis, morphology, viable cell yield, population doubling time, surface marker expression, and the capacity to support PSCs were determined. The mechanical method yielded a significantly higher number of viable cells. However, it showed similar morphology and proliferation characteristics as compared to enzymatic digestion. The mechanical method induced slight apoptosis in MEFs; however, it did not exert the necrotic effect of trypsinization. Treatment of tissue slurry with trypsin solution caused cell lysis and subsequently cell clump formation. Mechanically isolated cells exhibited a higher expression of the MEF surface antigens Sca1, CD106, and CD105. The PSCs on mechanically isolated MEFs displayed a higher expression of pluripotency genes, and formed more compact colonies with a stronger tendency to crowding compared with those cultured on cells isolated by enzymatic digestion. The mechanical method based on tissue inter-syringe processing is relatively a rapid and simple method for MEF isolation. Compared to the enzymatic digestion, the cells obtained from this method show higher expression of embryonic fibroblasts markers and a more functional capacity in supporting PSCs culture.
Collapse
|
23
|
Zhuang L, Xia W, Chen D, Ye Y, Hu T, Li S, Hou M. Exosomal LncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. J Nanobiotechnology 2020; 18:157. [PMID: 33129330 PMCID: PMC7603694 DOI: 10.1186/s12951-020-00716-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background The chemotherapy drug doxorubicin (Dox) is widely used for treating a variety of cancers. However, its high cardiotoxicity hampered its clinical use. Exosomes derived from stem cells showed a therapeutic effect against Dox-induced cardiomyopathy (DIC). Previous studies reported that exosomes derived from mesenchymal stem cells (MSCs) pretreated with macrophage migration inhibitory factor (MIF) (exosomeMIF) showed a cardioprotective effect through modulating long noncoding RNAs/microRNAs (lncRNAs/miRs). This study aimed to investigate the role of exosomeMIF in the treatment of DIC. Results Exosomes were isolated from control MSCs (exosome) and MIF-pretreated MSCs (exosomeMIF). Regulatory lncRNAs activated by MIF pretreatment were explored using genomics approaches. Fluorescence-labeled exosomes were tracked in vitro by fluorescence imaging. In vivo and in vitro, miR-221-3p mimic transfection enforced miR-221-3p overexpression, and senescence-associated β-galactosidase assay was applied to test cellular senescence. Exosomal delivering LncRNA-NEAT1 induced therapeutic effect in vivo was confirmed by echocardiography. It demonstrated that exosomesMIF recovered the cardiac function and exerted the anti-senescent effect through LncRNA–NEAT1 transfer against Dox. TargetScan and luciferase assay showed that miR-221-3p targeted the Sirt2 3′-untranslated region. Silencing LncRNA–NEAT1 in MSCs, miR-221-3p overexpression or Sirt2 silencing in cardiomyocytes decreased the exosomeMIF-induced anti-senescent effect against Dox. Conclusions The results indicated exosomeMIF serving as a promising anti-senescent effector against Dox-induced cardiotoxicity through LncRNA–NEAT1 transfer, thus inhibiting miR-221-3p and leading to Sirt2 activation. The study proposed that exosomeMIF might have the potential to serve as a cardioprotective therapeutic agent during cancer chemotherapy.![]()
Collapse
Affiliation(s)
- Lei Zhuang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Didi Chen
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Yijia Ye
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Tingting Hu
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
24
|
Mehrjardi NZ, Molcanyi M, Hatay FF, Timmer M, Shahbazi E, Ackermann JP, Herms S, Heilmann-Heimbach S, Wunderlich TF, Prochnow N, Haghikia A, Lampert A, Hescheler J, Neugebauer EAM, Baharvand H, Šarić T. Acquisition of chromosome 1q duplication in parental and genome-edited human-induced pluripotent stem cell-derived neural stem cells results in their higher proliferation rate in vitro and in vivo. Cell Prolif 2020; 53:e12892. [PMID: 32918782 PMCID: PMC7574866 DOI: 10.1111/cpr.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Genetic engineering of human‐induced pluripotent stem cell‐derived neural stem cells (hiPSC‐NSC) may increase the risk of genomic aberrations. Therefore, we asked whether genetic modification of hiPSC‐NSCs exacerbates chromosomal abnormalities that may occur during passaging and whether they may cause any functional perturbations in NSCs in vitro and in vivo. Materials and Methods The transgenic cassette was inserted into the AAVS1 locus, and the genetic integrity of zinc‐finger nuclease (ZFN)‐modified hiPSC‐NSCs was assessed by the SNP‐based karyotyping. The hiPSC‐NSC proliferation was assessed in vitro by the EdU incorporation assay and in vivo by staining of brain slices with Ki‐67 antibody at 2 and 8 weeks after transplantation of ZFN‐NSCs with and without chromosomal aberration into the striatum of immunodeficient rats. Results During early passages, no chromosomal abnormalities were detected in unmodified or ZFN‐modified hiPSC‐NSCs. However, at higher passages both cell populations acquired duplication of the entire long arm of chromosome 1, dup(1)q. ZNF‐NSCs carrying dup(1)q exhibited higher proliferation rate than karyotypically intact cells, which was partly mediated by increased expression of AKT3 located on Chr1q. Compared to karyotypically normal ZNF‐NSCs, cells with dup(1)q also exhibited increased proliferation in vivo 2 weeks, but not 2 months, after transplantation. Conclusions These results demonstrate that, independently of ZFN‐editing, hiPSC‐NSCs have a propensity for acquiring dup(1)q and this aberration results in increased proliferation which might compromise downstream hiPSC‐NSC applications.
Collapse
Affiliation(s)
- Narges Zare Mehrjardi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marek Molcanyi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Firuze Fulya Hatay
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marco Timmer
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Ebrahim Shahbazi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Justus P Ackermann
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany.,Department of Biomedicine, Medical Genetics, Research Group Genomics, University Hospital Basel, Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas F Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research and Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nora Prochnow
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Aiden Haghikia
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Edmund A M Neugebauer
- Medizinische Hochschule Brandenburg Theodor Fontane, Campus Neuruppin, Neuruppin, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Reducing mitomycin-C-induced ROS levels in mouse feeder cells improves induced pluripotent stem cell colony growth. Biotechniques 2020; 68:270-274. [PMID: 31939319 DOI: 10.2144/btn-2019-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chemically defined stem cell culture media are often costly, and the use of mitotically arrested mouse embryonic fibroblasts (MEFs) as feeder cells is a popular and cost-efficient way to maintain induced pluripotent stem cells (iPSCs). However, the commonly used mitotic inhibitor mitomycin-C (MMC) is known to cause cellular metabolic stress. Therefore, our aim was to determine whether such stress in feeder cells indirectly affects iPSC growth during coculture. We report that prolonged exposure to MMC causes metabolic stress in MEFs in the form of oxidative dysregulation. Through optimization of MMC exposure time, we show how to effectively arrest MEFs without inducing oxidative stress, thus promoting significantly better colony growth rates (p < 0.05), improved viability and longer periods between passages of iPSCs in coculture.
Collapse
|
26
|
Zhao S, Wang F, Liu L. Alternative Lengthening of Telomeres (ALT) in Tumors and Pluripotent Stem Cells. Genes (Basel) 2019; 10:genes10121030. [PMID: 31835618 PMCID: PMC6947546 DOI: 10.3390/genes10121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
A telomere consists of repeated DNA sequences (TTAGGG)n as part of a nucleoprotein structure at the end of the linear chromosome, and their progressive shortening induces DNA damage response (DDR) that triggers cellular senescence. The telomere can be maintained by telomerase activity (TA) in the majority of cancer cells (particularly cancer stem cells) and pluripotent stem cells (PSCs), which exhibit unlimited self-proliferation. However, some cells, such as telomerase-deficient cancer cells, can add telomeric repeats by an alternative lengthening of the telomeres (ALT) pathway, showing telomere length heterogeneity. In this review, we focus on the mechanisms of the ALT pathway and potential clinical implications. We also discuss the characteristics of telomeres in PSCs, thereby shedding light on the therapeutic significance of telomere length regulation in age-related diseases and regenerative medicine.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
27
|
|
28
|
Gauthier-Fisher A, Kauffman A, Librach CL. Potential use of stem cells for fertility preservation. Andrology 2019; 8:862-878. [PMID: 31560823 DOI: 10.1111/andr.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Infertility and gonadal dysfunction can result from gonadotoxic therapies, environmental exposures, aging, or genetic conditions. In men, non-obstructive azoospermia (NOA) results from defects in the spermatogenic process that can be attributed to spermatogonial stem cells (SSC) or their niche, or both. While assisted reproductive technologies and sperm banking can enable fertility preservation (FP) in men of reproductive age who are at risk for infertility, FP for pre-pubertal patients remains experimental. Therapeutic options for NOA are limited. The rapid advance of stem cell research and of gene editing technologies could enable new FP options for these patients. Induced pluripotent stem cells (iPSC), SSC, and testicular niche cells, as well as mesenchymal stromal cells (aka medicinal signaling cells, MSCs), have been investigated for their potential use in male FP strategies. OBJECTIVE Here, we review the benefits and challenges for three types of stem cell-based approaches under investigation for male FP, focusing on the role that promising sources of MSC derived from human umbilical cord, specifically human umbilical cord perivascular cells (HUCPVC), could fulfill. These approaches are as follows: 1. isolation and ex vivo expansion of autologous SSC for in vivo transplantation or in vitro spermatogenesis; 2. in vitro differentiation toward germ cell and testicular somatic cell lineages using autologous SSC, or stem cells such iPSC or MSC; and 3. protection or regeneration of the spermatogenic niche after gonadotoxic insults in vivo. CONCLUSION Our studies suggest that HUCPVC are promising sources of cells that could be utilized in multiple aspects of male FP strategies.
Collapse
Affiliation(s)
| | - A Kauffman
- CReATe Fertility Centre, Toronto, ON, Canada
| | - C L Librach
- CReATe Fertility Centre, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Gynecology, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Nikitina TV, Kashevarova AA, Lebedev IN. Chromosomal Instability and Karyotype Correction in Human Induced Pluripotent Stem Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Song D, Guo R, Huang H, Zheng P, Huang H, Oyang Q, Xiao X, Wang B, Rong J, Liu R. 2-Amino-3,8-dimethylimidazo[4,5- f]quinoxaline Alters Autophagosome Maturation, Cellular Lipidomic Profiles, and Expression of Core Pluripotent Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7977-7985. [PMID: 30932489 DOI: 10.1021/acs.jafc.9b01041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), one of the most abundant heterocyclic aromatic amines (HAAs) found in the human diet, is primarily produced during high-temperature meat or fish cooking. While MeIQx has been investigated as a potential carcinogen, the cytotoxicity and related molecular mechanisms remain unclear. Here, we demonstrate that autophagosome maturation is blocked by MeIQx. Mechanistically, MeIQx inhibits acidification of lysosomes rather than prevents autophagosome-lysosome fusion. Moreover, cellular lipid profiles are altered by MeIQx treatment. Notably, many phospholipids and sphingolipids are significantly upregulated after exposure to MeIQx. Furthermore, MeIQx decreases expression of pluripotency-associated proteins in mouse embryonic stem cells (ESCs). Together, MeIQx blocks autophagosome maturation through inhibiting acidification of lysosomes, alters lipid metabolism, and decreases expression of pluripotent factors. Our studies provide more cytotoxic evidence and elucidate related mechanisms on the risk of HAA exposure and are expected to promote supervision of food safety and human health.
Collapse
Affiliation(s)
- Dan Song
- Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Renpeng Guo
- Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Haibo Huang
- Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Peixiang Zheng
- Department of Pathogen Biology, School of Basic Medicine , Huazhong University of Science and Technology , Wuhan , Hubei 430073 , People's Republic of China
| | - Hong Huang
- Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Qinqin Oyang
- Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xiaoyue Xiao
- Department of Pathogen Biology, School of Basic Medicine , Huazhong University of Science and Technology , Wuhan , Hubei 430073 , People's Republic of China
| | - Binran Wang
- Department of Pathogen Biology, School of Basic Medicine , Huazhong University of Science and Technology , Wuhan , Hubei 430073 , People's Republic of China
| | - Jingtong Rong
- Department of Mental Health , Jining Medical University , Jining , Shandong 272067 , People's Republic of China
| | - Rong Liu
- Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- National Center for International Research on Animal Gut Nutrition , Nanjing , Jiangsu 210095 , People's Republic of China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
31
|
A novel member of Prame family, Gm12794c, counteracts retinoic acid differentiation through the methyltransferase activity of PRC2. Cell Death Differ 2019; 27:345-362. [PMID: 31186534 DOI: 10.1038/s41418-019-0359-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/11/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Embryonic stem cells (ESCs) fluctuate among different levels of pluripotency defined as metastates. Sporadically, metastable cellular populations convert to a highly pluripotent metastate that resembles the preimplantation two-cell embryos stage (defined as 2C stage) in terms of transcriptome, DNA methylation, and chromatin structure. Recently, we found that the retinoic acid (RA) signaling leads to a robust increase of cells specifically expressing 2C genes, such as members of the Prame family. Here, we show that Gm12794c, one of the most highly upregulated Prame members, and previously identified as a key player for the maintenance of pluripotency, has a functional role in conferring ESCs resistance to RA signaling. In particular, RA-dependent expression of Gm12794c induces a ground state-like metastate, as evaluated by activation of 2C-specific genes, global DNA hypomethylation and rearrangement of chromatin similar to that observed in naive totipotent preimplantation epiblast cells and 2C-like cells. Mechanistically, we demonstrated that Gm12794c inhibits Cdkn1A gene expression through the polycomb repressive complex 2 (PRC2) histone methyltransferase activity. Collectively, our data highlight a molecular mechanism employed by ESCs to counteract retinoic acid differentiation stimuli and contribute to shed light on the molecular mechanisms at grounds of ESCs naive pluripotency-state maintenance.
Collapse
|
32
|
Nikopoulou C, Parekh S, Tessarz P. Ageing and sources of transcriptional heterogeneity. Biol Chem 2019; 400:867-878. [DOI: 10.1515/hsz-2018-0449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Cellular heterogeneity is an important contributor to biological function and is employed by cells, tissues and organisms to adapt, compensate, respond, defend and/or regulate specific processes. Research over the last decades has revealed that transcriptional noise is a major driver for cell-to-cell variability. In this review we will discuss sources of transcriptional variability, in particular bursting of gene expression and how it could contribute to cellular states and fate decisions. We will highlight recent developments in single cell sequencing technologies that make it possible to address cellular heterogeneity in unprecedented detail. Finally, we will review recent literature, in which these new technologies are harnessed to address pressing questions in the field of ageing research, such as transcriptional noise and cellular heterogeneity in the course of ageing.
Collapse
Affiliation(s)
- Chrysa Nikopoulou
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
| | - Swati Parekh
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
| | - Peter Tessarz
- Max Planck Research Group ‘Chromatin and Ageing’ , Max Planck Institute for Biology of Ageing , Joseph-Stelzmann-Str. 9b , D-50931 Cologne , Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) , University of Cologne , Joseph-Stelzmann-Str. 26 , D-50931 Cologne , Germany
| |
Collapse
|
33
|
Shen H, Cui G, Li Y, Ye W, Sun Y, Zhang Z, Li J, Xu G, Zeng X, Zhang Y, Zhang W, Huang Z, Chen W, Shen Z. Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model. Stem Cell Res Ther 2019; 10:17. [PMID: 30635025 PMCID: PMC6330478 DOI: 10.1186/s13287-018-1111-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cell therapy remains the most promising approach against ischemic heart injury. However, poor survival of engrafted cells in ischemic sites diminishes its therapeutic efficacy. Follistatin-like 1 (Fstl1) is documented as a novel pro-survival cardiokine for cardiomyocytes, and it is protective during ischemic heart injury. In the present study, we characterize the potential of Fstl1 as an effective strategy to enhance hypoxia resistance of donor cells and optimize stem cell-based therapy. METHODS Murine bone marrow-derived mesenchymal stem cells (MSCs) were expanded in monolayer culture and characterized by flow cytometry. MSCs were subjected to hypoxia to mimic cardiac ischemic environment. Expression of Fstl1 was monitored 0, 24, and 48 h following hypoxia. Constitutive expression of Fstl1 in MSCs was achieved by lentivirus-mediated Fstl1 overexpression. Genetically modified MSCs were further collected for cell death and proliferation assay following 48 h of hypoxic treatment. Acute myocardial infarction (MI) model was created by ligating the left anterior descending coronary artery, while control MSCs (MSCs-mCherry) or Fstl1-overexpressing MSCs (MSCs-Fstl1) were injected into the peri-infarct zone simultaneously. Subsequently, retention of the donor cells was evaluated on post-therapy 1, 3, & 7 days. Finally, myocardial function, infarct size, inflammation, and neovascularization of the infarcted hearts were calculated thereafter. RESULTS Expression of Fstl1 in hypoxic MSCs declines dramatically in a time-dependent manner. In vitro study further demonstrated that Fstl1 promotes survival and proliferation of hypoxic MSCs. Moreover, Fstl1 significantly prolongs MSC survival/retention after implantation. Finally, transplantation with Fstl1-overexpressing MSCs significantly improves post-MI cardiac function by limiting scar formation, reducing inflammatory response, and enhancing neovascularization. CONCLUSIONS Our results suggest Fstl1 is an intrinsic cardiokine promoting survival and proliferation of MSCs, thereby optimizing their engraftment and therapeutic efficacy during cell therapy.
Collapse
Affiliation(s)
- Han Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Guanghao Cui
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Yanqiong Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Wenxue Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Yimin Sun
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Zihan Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Jingjing Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Guiying Xu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Xiansheng Zeng
- Department of Cardiology of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Zan Huang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210000 China
| | - Weiqian Chen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Zhenya Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| |
Collapse
|