1
|
Králová A, Montaser AB, Tampio J, Adla SK, Jalkanen A, Rysä J, Huttunen KM. A novel paracetamol derivative alleviates lipopolysaccharide-induced neuroinflammation. Eur J Pharmacol 2025; 995:177409. [PMID: 39986592 DOI: 10.1016/j.ejphar.2025.177409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Neuroinflammation has been implicated as a pathological contributor to several neurodegenerative disorders. Increasing evidence suggests that paracetamol (PCM, acetaminophen) has unappreciated anti-neuroinflammatory properties. However, PCM possesses hepatotoxicity in higher dosages, which are needed for achieving therapeutic concentrations in the brain. To lessen this effect and improve drug efficacy, PCM was in this study converted into an L-type amino acid transporter 1 (LAT1)-utilizing derivative and tested whether this LAT1-mediated delivery approach could enhance the relief of neuroinflammation, using both in vitro and in vivo lipopolysaccharide (LPS)-stimulated models. The gained results confirmed the derivative's improved transport into mouse primary astrocytes, immortalized microglia (BV2), and human immortalized microglia (SV40) via LAT1. In the LPS-stimulated BV2 model, the derivative effectively reduced the prostaglandin E2 (PGE2) level by 57% compared to the LPS treatment. Moreover, a more profound reduction of brain PGE2 production was confirmed in the LPS-stimulated mouse model. Finally, the global proteome of the whole mouse brain revealed that the derivative was able to reverse the altered expression of several inflammatory biomarkers, including ras-related C3 botulinum toxin substrate 1 (Rac1), cytochrome c oxidase subunit 2 (COX2), phospholipid phosphatase-related protein type 2 (Plppr2), ubiquitin-conjugating enzyme E2 variant 1 (Ube2v1) and A-kinase anchor protein 1, mitochondrial (Akap1).
Collapse
Affiliation(s)
- Adéla Králová
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
2
|
Kobayashi E. Genetic Networks of Drug Resistance in Epilepsy: Outputs of a Computational and Translational Disease Framework. Epilepsy Curr 2025:15357597241311113. [PMID: 39895856 PMCID: PMC11786255 DOI: 10.1177/15357597241311113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Identification of Gene Regulatory Networks Affected Across Drug-Resistant Epilepsies François L, Romagnolo A, Luinenburg MJ, Anink JJ, Godard P, Rajman M, van Eyll J, Mühlebner A, Skelton A, Mills JD, Dedeurwaerdere S, Aronica E. Nat Commun . 2024. 15(1):2180. PMID: 38467626. doi: 10.1038/s41467-024-46592-2 Epilepsy is a chronic and heterogeneous disease characterized by recurrent unprovoked seizures, that are commonly resistant to antiseizure medications. This study applies a transcriptome network-based approach across epilepsies aiming to improve understanding of molecular disease pathobiology, recognize affected biological mechanisms and apply causal reasoning to identify therapeutic hypotheses. This study included the most common drug-resistant epilepsies (DREs), such as temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), and mTOR pathway-related malformations of cortical development (mTORopathies). This systematic comparison characterized the global molecular signature of epilepsies, elucidating the key underlying mechanisms of disease pathology including neurotransmission and synaptic plasticity, brain extracellular matrix and energy metabolism. In addition, specific dysregulations in neuroinflammation and oligodendrocyte function were observed in TLE-HS and mTORopathies, respectively. The aforementioned mechanisms are proposed as molecular hallmarks of DRE with the identified upstream regulators offering opportunities for drug-target discovery and development.
Collapse
Affiliation(s)
- Eliane Kobayashi
- Department of Neurology Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center
| |
Collapse
|
3
|
Vangoor VR, Giuliani G, de Wit M, Rangel CK, Venø MT, Schulte JT, Gomes-Duarte A, Senthilkumar K, Puhakka N, Kjems J, de Graan PNE, Pasterkamp RJ. Compartment-specific small non-coding RNA changes and nucleolar defects in human mesial temporal lobe epilepsy. Acta Neuropathol 2024; 148:61. [PMID: 39509000 PMCID: PMC11543739 DOI: 10.1007/s00401-024-02817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a debilitating disease characterized by recurrent seizures originating from temporal lobe structures such as the hippocampus. The pathogenic mechanisms underlying mTLE are incompletely understood but include changes in the expression of non-coding RNAs in affected brain regions. Previous work indicates that some of these changes may be selective to specific sub-cellular compartments, but the full extent of these changes and how these sub-cellular compartments themselves are affected remains largely unknown. Here, we performed small RNA sequencing (RNA-seq) of sub-cellular fractions of hippocampal tissue from mTLE patients and controls to determine nuclear and cytoplasmic expression levels of microRNAs (miRNAs). This showed differential expression of miRNAs and isomiRs, several of which displayed enriched nuclear expression in mTLE. Subsequent analysis of miR-92b, the most strongly deregulated miRNA in the nucleus, showed accumulation of this miRNA in the nucleolus in mTLE and association with snoRNAs. This prompted us to further study the nucleolus in human mTLE which uncovered several defects, such as altered nucleolar size or shape, mis-localization of nucleolar proteins, and deregulation of snoRNAs, indicative of nucleolar stress. In a rat model of epilepsy, nucleolar phenotypes were detected in the latency period before the onset of spontaneous seizures, suggesting that nucleolar changes may contribute to the development of seizures and mTLE. Overall, these data for the first time implicate nucleolar defects in the pathogenesis of mTLE and provide a valuable framework for further defining the functional consequences of altered sub-cellular RNA profiles in this disease.
Collapse
Affiliation(s)
- Vamshidhar R Vangoor
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Giuliano Giuliani
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Carolina K Rangel
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
- Omiics ApS, 8200, Aarhus N, Denmark
| | - Joran T Schulte
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Andreia Gomes-Duarte
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Ketharini Senthilkumar
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Noora Puhakka
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Pierre N E de Graan
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Hughes AN, Li X, Lehman JS, Nelson SA, DiCaudo DJ, Mudappathi R, Hwang A, Kechter J, Pittelkow MR, Mangold AR, Sekulic A. Drug Repurposing Using Molecular Network Analysis Identifies Jak as Targetable Driver in Necrobiosis Lipoidica. JID INNOVATIONS 2024; 4:100296. [PMID: 39391813 PMCID: PMC11465178 DOI: 10.1016/j.xjidi.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 10/12/2024] Open
Abstract
Drug repurposing is an attractive strategy for therapy development, particularly in rare diseases where traditional drug development approaches may be challenging owing to high cost and small numbers of patients. In this study, we used a drug identification and repurposing pipeline to identify candidate targetable drivers of disease and corresponding therapies through application of causal reasoning using a combination of open-access resources and transcriptomics data. We optimized our approach on psoriasis as a disease model, demonstrating the ability to identify known and, to date, unrecognized molecular drivers of psoriasis and link them to current and emerging therapies. Application of our approach to a cohort of tissue samples of necrobiosis lipoidica (an unrelated; rare; and, to date, molecularly poorly characterized cutaneous inflammatory disorder) identified a unique set of upstream regulators, particularly highlighting the role of IFNG and the Jak-signal transducer and activator of transcription pathway as a likely driver of disease pathogenesis and linked it to Jak inhibitors as potential therapy. Analysis of an independent cohort of necrobiosis lipoidica samples validated these findings, with the overall agreement of drug-matched upstream regulators above 96%. These data highlight the utility of our approach in rare diseases and offer an opportunity for drug discovery in other rare diseases in dermatology and beyond.
Collapse
Affiliation(s)
- Alysia N. Hughes
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Xing Li
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Julia S. Lehman
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven A. Nelson
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - David J. DiCaudo
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Rekha Mudappathi
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona, USA
- Center for Individualized Medicine, Mayo Clinic, Scottsdale, Arizona, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Angelina Hwang
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Jacob Kechter
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Aaron R. Mangold
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Aleksandar Sekulic
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
- City of Hope, Phoenix, Arizona, USA
| |
Collapse
|
5
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
6
|
Khan T, McFall DJ, Hussain AI, Frayser LA, Casilli TP, Steck MC, Sanchez-Brualla I, Kuehn NM, Cho M, Barnes JA, Harris BT, Vicini S, Forcelli PA. Senescent cell clearance ameliorates temporal lobe epilepsy and associated spatial memory deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605784. [PMID: 39211239 PMCID: PMC11360968 DOI: 10.1101/2024.07.30.605784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Current therapies for the epilepsies only treat the symptoms, but do not prevent epileptogenesis (the process in which epilepsy develops). Many cellular responses during epileptogenesis are also common hallmarks of cellular senescence , which halts proliferation of damaged cells. Clearing senescent cells (SCs) restores function in several age-associated and neurodegenerative disease models. It is unknown whether SC accumulation contributes to epileptogenesis and associated cognitive impairments. To address this question, we used a mouse model of temporal lobe epilepsy (TLE) and characterized the senescence phenotype throughout epileptogenesis. SCs accumulated 2 weeks after SE and were predominantly microglia. We ablated SCs and reduced (and in some cases prevented) the emergence of spontaneous seizures and normalized cognitive function in mice. Suggesting that this is a translationally-relevant target we also found SC accumulation in resected hippocampi from patients with TLE. These findings indicate that SC ablation after an epileptogenic insult is a potential anti-epileptogenic therapy.
Collapse
|
7
|
Häussler U, Neres J, Vandenplas C, Eykens C, Kadiu I, Schramm C, Fleurance R, Stanley P, Godard P, de Mot L, van Eyll J, Knobeloch KP, Haas CA, Dedeurwaerdere S. Downregulation of Ubiquitin-Specific Protease 15 (USP15) Does Not Provide Therapeutic Benefit in Experimental Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2024; 61:2367-2389. [PMID: 37874479 PMCID: PMC10973041 DOI: 10.1007/s12035-023-03692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Structural epilepsies display complex immune activation signatures. However, it is unclear which neuroinflammatory pathways drive pathobiology. Transcriptome studies of brain resections from mesial temporal lobe epilepsy (mTLE) patients revealed a dysregulation of transforming growth factor β, interferon α/β, and nuclear factor erythroid 2-related factor 2 pathways. Since these pathways are regulated by ubiquitin-specific proteases (USP), in particular USP15, we hypothesized that USP15 blockade may provide therapeutic relief in treatment-resistant epilepsies. For validation, transgenic mice which either constitutively or inducibly lack Usp15 gene expression underwent intrahippocampal kainate injections to induce mTLE. We show that the severity of status epilepticus is unaltered in mice constitutively lacking Usp15 compared to wild types. Cell death, reactive gliosis, and changes in the inflammatory transcriptome were pronounced at 4 days after kainate injection. However, these brain inflammation signatures did not differ between genotypes. Likewise, induced deletion of Usp15 in chronic epilepsy did not affect seizure generation, cell death, gliosis, or the transcriptome. Concordantly, siRNA-mediated knockdown of Usp15 in a microglial cell line did not impact inflammatory responses in the form of cytokine release. Our data show that a lack of USP15 is insufficient to modulate the expression of relevant neuroinflammatory pathways in an mTLE mouse model and do not support targeting USP15 as a therapeutic approach for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany.
| | - João Neres
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Catherine Vandenplas
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Caroline Eykens
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Irena Kadiu
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Carolin Schramm
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Renaud Fleurance
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Phil Stanley
- Early Development Statistics, UCB Celltech, 208 Bath Road, Slough, Berkshire, SL1 3WE, UK
| | - Patrice Godard
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Laurane de Mot
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Jonathan van Eyll
- Early Solutions, UCB Biopharma SRL, Chemin du Foriest, 1420, Braine L'Alleud, Belgium
| | - Klaus-Peter Knobeloch
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 201, 79110, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104, Freiburg, Germany
| | | |
Collapse
|
8
|
François L, Romagnolo A, Luinenburg MJ, Anink JJ, Godard P, Rajman M, van Eyll J, Mühlebner A, Skelton A, Mills JD, Dedeurwaerdere S, Aronica E. Identification of gene regulatory networks affected across drug-resistant epilepsies. Nat Commun 2024; 15:2180. [PMID: 38467626 PMCID: PMC10928184 DOI: 10.1038/s41467-024-46592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Epilepsy is a chronic and heterogenous disease characterized by recurrent unprovoked seizures, that are commonly resistant to antiseizure medications. This study applies a transcriptome network-based approach across epilepsies aiming to improve understanding of molecular disease pathobiology, recognize affected biological mechanisms and apply causal reasoning to identify therapeutic hypotheses. This study included the most common drug-resistant epilepsies (DREs), such as temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), and mTOR pathway-related malformations of cortical development (mTORopathies). This systematic comparison characterized the global molecular signature of epilepsies, elucidating the key underlying mechanisms of disease pathology including neurotransmission and synaptic plasticity, brain extracellular matrix and energy metabolism. In addition, specific dysregulations in neuroinflammation and oligodendrocyte function were observed in TLE-HS and mTORopathies, respectively. The aforementioned mechanisms are proposed as molecular hallmarks of DRE with the identified upstream regulators offering opportunities for drug-target discovery and development.
Collapse
Affiliation(s)
- Liesbeth François
- UCB Pharma, Early Solutions, Braine-l'Alleud, Belgium.
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Alessia Romagnolo
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark J Luinenburg
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Marek Rajman
- UCB Pharma, Early Solutions, Braine-l'Alleud, Belgium
| | | | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, Chalfont, UK
| | | | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| |
Collapse
|
9
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
10
|
Clasadonte J, Deprez T, Stephens GS, Mairet-Coello G, Cortin PY, Boutier M, Frey A, Chin J, Rajman M. ΔFosB is part of a homeostatic mechanism that protects the epileptic brain from further deterioration. Front Mol Neurosci 2024; 16:1324922. [PMID: 38283700 PMCID: PMC10810990 DOI: 10.3389/fnmol.2023.1324922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Activity induced transcription factor ΔFosB plays a key role in different CNS disorders including epilepsy, Alzheimer's disease, and addiction. Recent findings suggest that ΔFosB drives cognitive deficits in epilepsy and together with the emergence of small molecule inhibitors of ΔFosB activity makes it an interesting therapeutic target. However, whether ΔFosB contributes to pathophysiology or provides protection in drug-resistant epilepsy is still unclear. In this study, ΔFosB was specifically downregulated by delivering AAV-shRNA into the hippocampus of chronically epileptic mice using the drug-resistant pilocarpine model of mesial temporal epilepsy (mTLE). Immunohistochemistry analyses showed that prolonged downregulation of ΔFosB led to exacerbation of neuroinflammatory markers of astrogliosis and microgliosis, loss of mossy fibers, and hippocampal granule cell dispersion. Furthermore, prolonged inhibition of ΔFosB using a ΔJunD construct to block ΔFosB signaling in a mouse model of Alzheimer's disease, that exhibits spontaneous recurrent seizures, led to similar findings, with increased neuroinflammation and decreased NPY expression in mossy fibers. Together, these data suggest that seizure-induced ΔFosB, regardless of seizure-etiology, is part of a homeostatic mechanism that protects the epileptic brain from further deterioration.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Tania Deprez
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | | | | | - Pierre-Yves Cortin
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Maxime Boutier
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Aurore Frey
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Jeannie Chin
- Baylor College of Medicine, Houston, TX, United States
| | - Marek Rajman
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| |
Collapse
|
11
|
Dashtban-Moghadam E, Khodaverdian S, Dabirmanesh B, Mirnajafi-Zadeh J, Shojaei A, Mirzaie M, Choopanian P, Atabakhshi-Kashi M, Fatholahi Y, Khajeh K. Hippocampal tandem mass tag (TMT) proteomics analysis during kindling epileptogenesis in rat. Brain Res 2024; 1822:148620. [PMID: 37848119 DOI: 10.1016/j.brainres.2023.148620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Epilepsy is a neurological disorder that remains difficult to treat due to the lack of a clear molecular mechanism and incomplete understanding of involved proteins. To identify potential therapeutic targets, it is important to gain insight into changes in protein expression patterns related to epileptogenesis. One promising approach is to analyze proteomic data, which can provide valuable information about these changes. In this study, to evaluate the changes in gene expression during epileptogenesis, LC-MC2 analysis was carried out on hippocampus during stages of electrical kindling in rat models. Subsequently, progressive changes in the expression of proteins were detected as a result of epileptogenesis development. In line with behavioral kindled seizure stages and according to the proteomics data, we described epileptogenesis phases by comparing Stage3 versus Control (S3/C0), Stage5 versus Stage3 (S5/S3), and Stage5 versus Control group (S5/C0). Gene ontology analysis on differentially expressed proteins (DEPs) showed significant changes of proteins involved in immune responses like Csf1R, Aif1 and Stat1 during S3/C0, regulation of synaptic plasticity like Bdnf, Rac1, CaMK, Cdc42 and P38 during S5/S3, and nervous system development throughout S5/C0 like Bdnd, Kcc2 and Slc1a3.There were also proteins like Cox2, which were altered commonly among all three phases. The pathway enrichment analysis of DEPs was also done to discover molecular connections between phases and we have found that the targets like Csf1R, Bdnf and Cox2 were analyzed throughout all three phases were highly involved in the PPI network analysis as hub nodes. Additionally, these same targets underwent changes which were confirmed through Western blotting. Our results have identified proteomic patterns that could shed light on the molecular mechanisms underlying epileptogenesis which may allow for novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elahe Dashtban-Moghadam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Shima Khodaverdian
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Pharmacology, Faculty of Medicine, Neuroscience Center & Helsinki Institute of Life Science, University of Helsinki, Helsinki 00290, Finland; Department of Applied Mathematics, Faculty of Mathematical Science, Tarbiat Modares University, Tehran, Iran
| | - Peyman Choopanian
- Department of Pharmacology, Faculty of Medicine, Neuroscience Center & Helsinki Institute of Life Science, University of Helsinki, Helsinki 00290, Finland
| | - Mona Atabakhshi-Kashi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Nanoscience and Technology, Beijing 100190, China
| | - Yaghoub Fatholahi
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Ismail FS, Faustmann PM, Förster E, Corvace F, Faustmann TJ. Tiagabine and zonisamide differentially regulate the glial properties in an astrocyte-microglia co-culture model of inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3253-3267. [PMID: 37231170 PMCID: PMC10567966 DOI: 10.1007/s00210-023-02538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Due to the role of astrocytes and microglia in the pathophysiology of epilepsy and limited studies of antiseizure medication (ASM) effects on glial cells, we studied tiagabine (TGB) and zonisamide (ZNS) in an astrocyte-microglia co-culture model of inflammation. Different concentrations of ZNS (10, 20, 40, 100 µg/ml) or TGB (1, 10, 20, 50 µg/ml) were added to primary rat astrocytes co-cultures with 5-10% (M5, physiological conditions) or 30-40% (M30, pathological inflammatory conditions) microglia for 24 h, aiming to study glial viability, microglial activation, connexin 43 (Cx43) expression and gap-junctional coupling. ZNS led to the reduction of glial viability by only 100 µg/ml under physiological conditions. By contrast, TGB revealed toxic effects with a significant, concentration-dependent reduction of glial viability under physiological and pathological conditions. After the incubation of M30 co-cultures with 20 µg/ml TGB, the microglial activation was significantly decreased and resting microglia slightly increased, suggesting possible anti-inflammatory features of TGB under inflammatory conditions. Otherwise, ZNS caused no significant changes of microglial phenotypes. The gap-junctional coupling was significantly decreased after the incubation of M5 co-cultures with 20 and 50 µg/ml TGB, which can be related to its anti-epileptic activity under noninflammatory conditions. A significant decrease of Cx43 expression and cell-cell coupling was found after the incubation of M30 co-cultures with 10 µg/ml ZNS, suggesting additional anti-seizure effects of ZNS with the disruption of glial gap-junctional communication under inflammatory conditions. TGB and ZNS differentially regulated the glial properties. Developing novel ASMs targeting glial cells may have future potential as an "add-on" therapy to classical ASMs targeting neurons.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany.
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Dugger SA, Dhindsa RS, Sampaio GDA, Ressler AK, Rafikian EE, Petri S, Letts VA, Teoh J, Ye J, Colombo S, Peng Y, Yang M, Boland MJ, Frankel WN, Goldstein DB. Neurodevelopmental deficits and cell-type-specific transcriptomic perturbations in a mouse model of HNRNPU haploinsufficiency. PLoS Genet 2023; 19:e1010952. [PMID: 37782669 PMCID: PMC10569524 DOI: 10.1371/journal.pgen.1010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/12/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.
Collapse
Affiliation(s)
- Sarah A. Dugger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, Texas, United States of America
| | - Gabriela De Almeida Sampaio
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrew K. Ressler
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Elizabeth E. Rafikian
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Verity A. Letts
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - JiaJie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Mu Yang
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
14
|
Li G, Zhu J, Zhai L. Exploring molecular markers and drug candidates for colorectal cancer through comprehensive bioinformatics analysis. Aging (Albany NY) 2023; 15:7038-7055. [PMID: 37466419 PMCID: PMC10415558 DOI: 10.18632/aging.204891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Colorectal cancer (CRC) often has a poor prognosis and identifying useful and novel agents for treating CRC is urgently required. This study aimed to examine molecular markers associated with CRC prognosis and to identify potential drug candidates. The differentially expressed genes (DEGs) of CRC in TCGA were identified. The genes associated with CRC, summarized from NCBI-gene, OMIM, and the DEGs, were used to construct a co-expression network by WGCNA. Moreover, the co-expression genes from modules of interest were used to carry out functional enrichment. A total of 2742 DEGs, including 1674 upregulated and 1068 downregulated genes, were identified. Thirteen co-expression modules were constructed with WGCNA. Brown and blue co-expression modules with significant differences in disease phenotype were found. Functional enrichment analysis showed that genes in the brown module were mainly related to cell cycle, cell proliferation, DNA replication, and RNA transport. The genes in the blue module were mainly associated with fatty acid degradation, sulfur metabolism, PPAR signaling pathway and bile secretion. In addition, both the genes in brown and blue were associated with tumor staging. Some prognostic markers and candidate small molecules drugs for CRC treatment were identified. In conclusion, we revealed molecular biomarker profiles in CRC by systematic bioinformatics analysis, constructed regulatory networks of mRNA, ncRNA and transcriptional regulators (TFs), and identified potential drugs targeting hub proteins and TFs.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, People’s Republic of China
| | - JiangPeng Zhu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, People’s Republic of China
| | - Lulu Zhai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People’s Republic of China
| |
Collapse
|
15
|
Mahmud M, Wade C, Jawad S, Hadi Z, Otoul C, Kaminski RM, Muglia P, Kadiu I, Rabiner E, Maguire P, Owen DR, Johnson MR. Translocator protein PET imaging in temporal lobe epilepsy: A reliable test-retest study using asymmetry index. FRONTIERS IN NEUROIMAGING 2023; 2:1142463. [PMID: 37554649 PMCID: PMC10406252 DOI: 10.3389/fnimg.2023.1142463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 08/10/2023]
Abstract
Objective Translocator protein (TSPO) targeting positron emission tomography (PET) imaging radioligands have potential utility in epilepsy to assess the efficacy of novel therapeutics for targeting neuroinflammation. However, previous studies in healthy volunteers have indicated limited test-retest reliability of TSPO ligands. Here, we examine test-retest measures using TSPO PET imaging in subjects with epilepsy and healthy controls, to explore whether this biomarker can be used as an endpoint in clinical trials for epilepsy. Methods Five subjects with epilepsy and confirmed mesial temporal lobe sclerosis (mean age 36 years, 3 men) were scanned twice-on average 8 weeks apart-using a second generation TSPO targeting radioligand, [11C]PBR28. We evaluated the test-retest reliability of the volume of distribution and derived hemispheric asymmetry index of [11C]PBR28 binding in these subjects and compared the results with 8 (mean age 45, 6 men) previously studied healthy volunteers. Results The mean (± SD) of the volume of distribution (VT), of all subjects, in patients living with epilepsy for both test and retest scans on all regions of interest (ROI) is 4.49 ± 1.54 vs. 5.89 ± 1.23 in healthy volunteers. The bias between test and retest in an asymmetry index as a percentage was small (-1.5%), and reliability is demonstrated here with Bland-Altman Plots (test mean 1.062, retest mean 2.56). In subjects with epilepsy, VT of [11C]PBR28 is higher in the (ipsilateral) hippocampal region where sclerosis is present than in the contralateral region. Conclusion When using TSPO PET in patients with epilepsy with hippocampal sclerosis (HS), an inter-hemispheric asymmetry index in the hippocampus is a measure with good test-retest reliability. We provide estimates of test-retest variability that may be useful for estimating power where group change in VT represents the clinical outcome.
Collapse
Affiliation(s)
- Mohammad Mahmud
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Charles Wade
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sarah Jawad
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Zaeem Hadi
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Christian Otoul
- Clinical Imaging Translational, UCB Pharma SA, Brussels, Belgium
| | - Rafal M. Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | | | - Irena Kadiu
- Clinical Imaging Translational, UCB Pharma SA, Brussels, Belgium
| | - Eugenii Rabiner
- Translational Applications, Invicro LLC, London, United Kingdom
| | - Paul Maguire
- Clinical Imaging Translational, UCB Pharma SA, Brussels, Belgium
| | - David R. Owen
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Michael R. Johnson
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
17
|
Zhang L, Wang CC, Chen X. Predicting drug-target binding affinity through molecule representation block based on multi-head attention and skip connection. Brief Bioinform 2022; 23:6782838. [PMID: 36411674 DOI: 10.1093/bib/bbac468] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Exiting computational models for drug-target binding affinity prediction have much room for improvement in prediction accuracy, robustness and generalization ability. Most deep learning models lack interpretability analysis and few studies provide application examples. Based on these observations, we presented a novel model named Molecule Representation Block-based Drug-Target binding Affinity prediction (MRBDTA). MRBDTA is composed of embedding and positional encoding, molecule representation block and interaction learning module. The advantages of MRBDTA are reflected in three aspects: (i) developing Trans block to extract molecule features through improving the encoder of transformer, (ii) introducing skip connection at encoder level in Trans block and (iii) enhancing the ability to capture interaction sites between proteins and drugs. The test results on two benchmark datasets manifest that MRBDTA achieves the best performance compared with 11 state-of-the-art models. Besides, through replacing Trans block with single Trans encoder and removing skip connection in Trans block, we verified that Trans block and skip connection could effectively improve the prediction accuracy and reliability of MRBDTA. Then, relying on multi-head attention mechanism, we performed interpretability analysis to illustrate that MRBDTA can correctly capture part of interaction sites between proteins and drugs. In case studies, we firstly employed MRBDTA to predict binding affinities between Food and Drug Administration-approved drugs and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication-related proteins. Secondly, we compared true binding affinities between 3C-like proteinase and 185 drugs with those predicted by MRBDTA. The final results of case studies reveal reliable performance of MRBDTA in drug design for SARS-CoV-2.
Collapse
Affiliation(s)
- Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
18
|
Bañuelos MM, Zavaleta YJA, Roldan A, Reyes RJ, Guardado M, Chavez Rojas B, Nyein T, Rodriguez Vega A, Santos M, Huerta-Sanchez E, Rohlfs RV. Associations between forensic loci and expression levels of neighboring genes may compromise medical privacy. Proc Natl Acad Sci U S A 2022; 119:e2121024119. [PMID: 36166477 PMCID: PMC9546536 DOI: 10.1073/pnas.2121024119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
A set of 20 short tandem repeats (STRs) is used by the US criminal justice system to identify suspects and to maintain a database of genetic profiles for individuals who have been previously convicted or arrested. Some of these STRs were identified in the 1990s, with a preference for markers in putative gene deserts to avoid forensic profiles revealing protected medical information. We revisit that assumption, investigating whether forensic genetic profiles reveal information about gene-expression variation or potential medical information. We find six significant correlations (false discovery rate = 0.23) between the forensic STRs and the expression levels of neighboring genes in lymphoblastoid cell lines. We explore possible mechanisms for these associations, showing evidence compatible with forensic STRs causing expression variation or being in linkage disequilibrium with a causal locus in three cases and weaker or potentially spurious associations in the other three cases. Together, these results suggest that forensic genetic loci may reveal expression levels and, perhaps, medical information.
Collapse
Affiliation(s)
- Mayra M. Bañuelos
- Department of Mathematics, San Francisco State University, San Francisco, CA 94132
- Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912
- Center for Computational and Molecular Biology, Brown University, Providence, RI 02912
| | | | - Alennie Roldan
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Rochelle-Jan Reyes
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Miguel Guardado
- Department of Mathematics, San Francisco State University, San Francisco, CA 94132
| | | | - Thet Nyein
- Department of Mathematics, San Francisco State University, San Francisco, CA 94132
| | - Ana Rodriguez Vega
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Maribel Santos
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Emilia Huerta-Sanchez
- Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912
- Center for Computational and Molecular Biology, Brown University, Providence, RI 02912
| | - Rori V. Rohlfs
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
19
|
Scheper M, Romagnolo A, Besharat ZM, Iyer AM, Moavero R, Hertzberg C, Weschke B, Riney K, Feucht M, Scholl T, Petrak B, Maulisova A, Nabbout R, Jansen AC, Jansen FE, Lagae L, Urbanska M, Ferretti E, Tempes A, Blazejczyk M, Jaworski J, Kwiatkowski DJ, Jozwiak S, Kotulska K, Sadowski K, Borkowska J, Curatolo P, Mills JD, Aronica E. miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Biomedicines 2022; 10:biomedicines10081838. [PMID: 36009385 PMCID: PMC9405248 DOI: 10.3390/biomedicines10081838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multi-system genetic disorder characterized by a high incidence of epilepsy and neuropsychiatric manifestations known as tuberous-sclerosis-associated neuropsychiatric disorders (TANDs), including autism spectrum disorder (ASD) and intellectual disability (ID). MicroRNAs (miRNAs) are small regulatory non-coding RNAs that regulate the expression of more than 60% of all protein-coding genes in humans and have been reported to be dysregulated in several diseases, including TSC. In the current study, RNA sequencing analysis was performed to define the miRNA and isoform (isomiR) expression patterns in serum. A Receiver Operating Characteristic (ROC) curve analysis was used to identify circulating molecular biomarkers, miRNAs, and isomiRs, able to discriminate the development of neuropsychiatric comorbidity, either ASD, ID, or ASD + ID, in patients with TSC. Part of our bioinformatics predictions was verified with RT-qPCR performed on RNA isolated from patients’ serum. Our results support the notion that circulating miRNAs and isomiRs have the potential to aid standard clinical testing in the early risk assessment of ASD and ID development in TSC patients.
Collapse
Affiliation(s)
- Mirte Scheper
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Alessia Romagnolo
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Anand M. Iyer
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
- Child Neurology Unit, Neuroscience Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Christoph Hertzberg
- Diagnose-und Behandlungszentrum für Kinder, Vivantes-Klinikum Neukölln, 12351 Berlin, Germany;
| | - Bernhard Weschke
- Department of Neuropediatrics, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia;
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Theresa Scholl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Borivoj Petrak
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Alice Maulisova
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Member of ERN EpiCARE, Université de Paris, 149 Rue de Sèvres, 75015 Paris, France;
| | - Anna C. Jansen
- Department of Translational Neurosciences, University of Antwerp, 2000 Antwerp, Belgium;
| | - Floor E. Jansen
- Department of Child Neurology, Brain Center University Medical Center, Member of ERN EpiCare, 3584 BA Utrecht, The Netherlands;
| | - Lieven Lagae
- Department of Development and Regeneration Section Pediatric Neurology, University Hospitals KU Leuven, 3000 Leuven, Belgium;
| | - Malgorzata Urbanska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Magdalena Blazejczyk
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | | | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
- Department of Child Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Krzysztof Sadowski
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Julita Borkowska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
| | - James D. Mills
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Correspondence: (J.D.M.); (E.A.)
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Correspondence: (J.D.M.); (E.A.)
| | | |
Collapse
|
20
|
Kumar P, Lim A, Hazirah SN, Chua CJH, Ngoh A, Poh SL, Yeo TH, Lim J, Ling S, Sutamam NB, Petretto E, Low DCY, Zeng L, Tan EK, Arkachaisri T, Yeo JG, Ginhoux F, Chan D, Albani S. Single-cell transcriptomics and surface epitope detection in human brain epileptic lesions identifies pro-inflammatory signaling. Nat Neurosci 2022; 25:956-966. [PMID: 35739273 PMCID: PMC9276529 DOI: 10.1038/s41593-022-01095-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Epileptogenic triggers are multifactorial and not well understood. Here we aimed to address the hypothesis that inappropriate pro-inflammatory mechanisms contribute to the pathogenesis of refractory epilepsy (non-responsiveness to antiepileptic drugs) in human patients. We used single-cell cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to reveal the immunotranscriptome of surgically resected epileptic lesion tissues. Our approach uncovered a pro-inflammatory microenvironment, including extensive activation of microglia and infiltration of other pro-inflammatory immune cells. These findings were supported by ligand–receptor (LR) interactome analysis, which demonstrated potential mechanisms of infiltration and evidence of direct physical interactions between microglia and T cells. Together, these data provide insight into the immune microenvironment in epileptic tissue, which may aid the development of new therapeutics. Single-cell analysis of immune cells from surgically resected human epileptic brain tissues showed heterogeneity and pro-inflammatory signaling in microglia and evidence for direct interaction of microglia with T cells.
Collapse
Affiliation(s)
- Pavanish Kumar
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore. .,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.
| | - Amanda Lim
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Sharifah Nur Hazirah
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Camillus Jian Hui Chua
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Adeline Ngoh
- Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Su Li Poh
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Tong Hong Yeo
- Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jocelyn Lim
- Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Simon Ling
- Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nursyuhadah Binte Sutamam
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Enrico Petretto
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore, Singapore
| | - David Chyi Yeu Low
- Duke-NUS Medical School and Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore.,Research Department, National Neuroscience Institute, Singapore, Singapore
| | - Li Zeng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, DUKE-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Neuroscience & Behavioral Disorders Program, DUKE-NUS Medical School, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore.,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Florent Ginhoux
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Derrick Chan
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School and Paediatric Neurology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore.,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
21
|
Wilson JL, Gravina A, Grimes K. From random to predictive: a context-specific interaction framework improves selection of drug protein-protein interactions for unknown drug pathways. Integr Biol (Camb) 2022; 14:13-24. [PMID: 35293584 DOI: 10.1093/intbio/zyac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022]
Abstract
With high drug attrition, protein-protein interaction (PPI) network models are attractive as efficient methods for predicting drug outcomes by analyzing proteins downstream of drug targets. Unfortunately, these methods tend to overpredict associations and they have low precision and prediction performance; performance is often no better than random (AUROC ~0.5). Typically, PPI models identify ranked phenotypes associated with downstream proteins, yet methods differ in prioritization of downstream proteins. Most methods apply global approaches for assessing all phenotypes. We hypothesized that a per-phenotype analysis could improve prediction performance. We compared two global approaches-statistical and distance-based-and our novel per-phenotype approach, 'context-specific interaction' (CSI) analysis, on severe side effect prediction. We used a novel dataset of adverse events (or designated medical events, DMEs) and discovered that CSI had a 50% improvement over global approaches (AUROC 0.77 compared to 0.51), and a 76-95% improvement in average precision (0.499 compared to 0.284, 0.256). Our results provide a quantitative rationale for considering downstream proteins on a per-phenotype basis when using PPI network methods to predict drug phenotypes.
Collapse
Affiliation(s)
- Jennifer L Wilson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Alessio Gravina
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Kevin Grimes
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Altmann A, Ryten M, Di Nunzio M, Ravizza T, Tolomeo D, Reynolds RH, Somani A, Bacigaluppi M, Iori V, Micotti E, Di Sapia R, Cerovic M, Palma E, Ruffolo G, Botía JA, Absil J, Alhusaini S, Alvim MKM, Auvinen P, Bargallo N, Bartolini E, Bender B, Bergo FPG, Bernardes T, Bernasconi A, Bernasconi N, Bernhardt BC, Blackmon K, Braga B, Caligiuri ME, Calvo A, Carlson C, Carr SJ, Cavalleri GL, Cendes F, Chen J, Chen S, Cherubini A, Concha L, David P, Delanty N, Depondt C, Devinsky O, Doherty CP, Domin M, Focke NK, Foley S, Franca W, Gambardella A, Guerrini R, Hamandi K, Hibar DP, Isaev D, Jackson GD, Jahanshad N, Kalviainen R, Keller SS, Kochunov P, Kotikalapudi R, Kowalczyk MA, Kuzniecky R, Kwan P, Labate A, Langner S, Lenge M, Liu M, Martin P, Mascalchi M, Meletti S, Morita-Sherman ME, O’Brien TJ, Pariente JC, Richardson MP, Rodriguez-Cruces R, Rummel C, Saavalainen T, Semmelroch MK, Severino M, Striano P, Thesen T, Thomas RH, Tondelli M, Tortora D, Vaudano AE, Vivash L, von Podewils F, Wagner J, Weber B, Wiest R, Yasuda CL, Zhang G, Zhang J, Leu C, Avbersek A, Thom M, Whelan CD, Thompson P, McDonald CR, Vezzani A, Sisodiya SM. A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathol Appl Neurobiol 2022; 48:e12758. [PMID: 34388852 PMCID: PMC8983060 DOI: 10.1111/nan.12758] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 02/03/2023]
Abstract
AIMS The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.
Collapse
Affiliation(s)
- Andre Altmann
- Centre for Medical Image Computing, University College London, London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Di Nunzio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Alyma Somani
- Division of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Marco Bacigaluppi
- Department of Neurology, San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Valentina Iori
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome, Sapienza
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome, Sapienza
| | - Juan A. Botía
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Departamento de Ingeniería de la Información y las Comunicaciones. Universidad de Murcia, Murcia, Spain
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Pia Auvinen
- Epilepsy Center, Department of Neurology, Kuopio University, Kuopio, Finland.,Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Nuria Bargallo
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain.,Centre de Diagnostic Per la Imatge (CDIC), Hospital Clinic, Barcelona, Spain
| | - Emanuele Bartolini
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | | | - Tauana Bernardes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C. Bernhardt
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Multimodal Imaging and Connectome Analysis Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Karen Blackmon
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Department of Physiology, Neuroscience and Behavioral Science, St. George’s University, Grenada, West Indies
| | - Barbara Braga
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Maria Eugenia Caligiuri
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Anna Calvo
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Chad Carlson
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Medical College of Wisconsin, Department of Neurology, Milwaukee, WI, USA
| | - Sarah J. Carr
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Gianpiero L. Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Jian Chen
- Department of Computer Science and Engineering, The Ohio State University, USA
| | - Shuai Chen
- Cognitive Science Department, Xiamen University, Xiamen, China.,Fujian Key Laboratory of the Brain-like Intelligent Systems, China
| | - Andrea Cherubini
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Philippe David
- Department of Radiology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA
| | - Colin P. Doherty
- FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Neurology Department, St. James’s Hospital, Dublin 8, Ireland
| | - Martin Domin
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Niels K. Focke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Wales, UK
| | - Wendy Franca
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy.,Institute of Neurology, University ‚ “Magna Græcia”, Catanzaro, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Khalid Hamandi
- Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Maindy Road, Cardiff, UK.,Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Dmitry Isaev
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Graeme D. Jackson
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Reetta Kalviainen
- Epilepsy Center, Department of Neurology, Kuopio University, Kuopio, Finland.,Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Simon S. Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Maryland, USA
| | - Raviteja Kotikalapudi
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany.,Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Magdalena A. Kowalczyk
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia
| | - Ruben Kuzniecky
- Department of Neurology, Zucker Hofstra School of Medicine, New York, NY 10075, USA
| | - Patrick Kwan
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Angelo Labate
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy.,Institute of Neurology, University ‚ “Magna Græcia”, Catanzaro, Italy
| | - Soenke Langner
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Matteo Lenge
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy
| | - Min Liu
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Mario Mascalchi
- Neuroradiology Unit, Children’s Hospital A. Meyer, Florence, Italy.,“Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | | | - Terence J. O’Brien
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jose C. Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Mark P. Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK.,Department of Neurology, King’s College Hospital, London, UK
| | - Raul Rodriguez-Cruces
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Taavi Saavalainen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Central Finland Central Hospital, Medical Imaging Unit, Jyväskylä, Finland
| | - Mira K. Semmelroch
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia
| | - Mariasavina Severino
- Neuroradiology Unit, Department of Head and Neck and Neurosciences, Istituto Giannina Gaslini, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Department of Physiology, Neuroscience and Behavioral Science, St. George’s University, Grenada, West Indies
| | - Rhys H. Thomas
- Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Maindy Road, Cardiff, UK.,Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Domenico Tortora
- Neuroradiology Unit, Department of Head and Neck and Neurosciences, Istituto Giannina Gaslini, Genova, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Lucy Vivash
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia.,Melbourne Brain Centre, Department of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jan Wagner
- Department of Neurology, University of Ulm and Universitäts- and Rehabilitationskliniken Ulm, Germany
| | - Bernd Weber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Department of Neurocognition / Imaging, Life & Brain Research Centre, Bonn, Germany
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Guohao Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, USA
| | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China.,Fujian Key Laboratory of the Brain-like Intelligent Systems, China
| | | | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Andreja Avbersek
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | | | - Maria Thom
- Division of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Carrie R McDonald
- Multimodal Imaging Laboratory, University of California San Diego, San Diego, California, USA.,Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.,To whom correspondence may be addressed
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK.,To whom correspondence may be addressed
| |
Collapse
|
23
|
Jones NC, Ali I. Glial Cell Collaboration in Space and Time Contributes to Epileptogenesis. Epilepsy Curr 2021; 21:452-454. [PMID: 34924856 PMCID: PMC8652319 DOI: 10.1177/15357597211041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Hu B, Duan S, Wang Z, Li X, Zhou Y, Zhang X, Zhang YW, Xu H, Zheng H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Front Aging Neurosci 2021; 13:789834. [PMID: 34867307 PMCID: PMC8634759 DOI: 10.3389/fnagi.2021.789834] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.
Collapse
Affiliation(s)
- Banglian Hu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Shengshun Duan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Ziwei Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Cellular, molecular, and therapeutic characterization of pilocarpine-induced temporal lobe epilepsy. Sci Rep 2021; 11:19102. [PMID: 34580351 PMCID: PMC8476594 DOI: 10.1038/s41598-021-98534-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models have expanded our understanding of temporal lobe epilepsy (TLE). However, translating these to cell-specific druggable hypotheses is not explored. Herein, we conducted an integrative insilico-analysis of an available transcriptomics dataset obtained from animals with pilocarpine-induced-TLE. A set of 119 genes with subtle-to-moderate impact predicted most forms of epilepsy with ~ 97% accuracy and characteristically mapped to upregulated homeostatic and downregulated synaptic pathways. The deconvolution of cellular proportions revealed opposing changes in diverse cell types. The proportion of nonneuronal cells increased whereas that of interneurons, except for those expressing vasoactive intestinal peptide (Vip), decreased, and pyramidal neurons of the cornu-ammonis (CA) subfields showed the highest variation in proportion. A probabilistic Bayesian-network demonstrated an aberrant and oscillating physiological interaction between nonneuronal cells involved in the blood–brain-barrier and Vip interneurons in driving seizures, and their role was evaluated insilico using transcriptomic changes induced by valproic-acid, which showed opposing effects in the two cell-types. Additionally, we revealed novel epileptic and antiepileptic mechanisms and predicted drugs using causal inference, outperforming the present drug repurposing approaches. These well-powered findings not only expand the understanding of TLE and seizure oscillation, but also provide predictive biomarkers of epilepsy, cellular and causal micro-circuitry changes associated with it, and a drug-discovery method focusing on these events.
Collapse
|
27
|
Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease. Seizure 2021; 90:34-50. [DOI: 10.1016/j.seizure.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
|
28
|
Di Nunzio M, Di Sapia R, Sorrentino D, Kebede V, Cerovic M, Gullotta GS, Bacigaluppi M, Audinat E, Marchi N, Ravizza T, Vezzani A. Microglia proliferation plays distinct roles in acquired epilepsy depending on disease stages. Epilepsia 2021; 62:1931-1945. [PMID: 34128226 DOI: 10.1111/epi.16956] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Microgliosis occurs in animal models of acquired epilepsy and in patients. It includes cell proliferation that is associated with seizure frequency and decreased neuronal cells in human epilepsy. The role of microglia proliferation in the development of acquired epilepsy is unknown; thus, we examined its contribution to spontaneous seizure, neurodegeneration, and cognitive deficits in different disease phases. METHODS We used a model of acquired epilepsy triggered by intra-amygdala kainic acid in C57BL6N adult male mice. Mice were electroencephalographically (EEG) monitored (24/7) during status epilepticus and in early and chronic disease. Microglia proliferation was blocked by GW2580, a selective CSF1 receptor inhibitor, supplemented in the diet for 21 days from status epilepticus onset. Then, mice were returned to placebo diet until experiment completion. Control mice were exposed to status epilepticus and fed with placebo diet. Experimental mice were tested in the novel object recognition test (NORT) and in Barnes maze, and compared to control and sham mice. At the end of the behavioral test, mice were killed for brain histopathological analysis. Additionally, seizure baseline was monitored in chronic epileptic mice, then mice were fed for 14 days with GW2580 or placebo diet under 24/7 EEG recording. RESULTS GW2580 prevented microglia proliferation in mice undergoing epilepsy, whereas it did not affect microglia or basal excitatory neurotransmission in the hippocampus of naive mice. Mice with occluded microglia proliferation during early disease development underwent status epilepticus and subsequent epilepsy similar to placebo diet mice, and were similarly impaired in NORT, with improvement in Barnes maze. GW2580-treated mice displayed neuroprotection in the hippocampus. In contrast, blockade of microglia proliferation in chronic epileptic mice resulted in spontaneous seizure reduction versus placebo mice. SIGNIFICANCE Microglia proliferation during early disease contributes to neurodegeneration, whereas in late chronic disease it contributes to seizures. Timely pharmacological interference with microglia proliferation may offer a potential target for improving disease outcomes.
Collapse
Affiliation(s)
- Martina Di Nunzio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Diletta Sorrentino
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Kebede
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giorgia S Gullotta
- Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Etienne Audinat
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM), University of Montpellier, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM), University of Montpellier, Montpellier, France
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
29
|
Wyatt-Johnson SK, Sommer AL, Shim KY, Brewster AL. Suppression of Microgliosis With the Colony-Stimulating Factor 1 Receptor Inhibitor PLX3397 Does Not Attenuate Memory Defects During Epileptogenesis in the Rat. Front Neurol 2021; 12:651096. [PMID: 34149593 PMCID: PMC8209304 DOI: 10.3389/fneur.2021.651096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/11/2021] [Indexed: 12/03/2022] Open
Abstract
Events of status epilepticus (SE) trigger the development of temporal lobe epilepsy (TLE), a type of focal epilepsy that is commonly drug-resistant and is highly comorbid with cognitive deficits. While SE-induced hippocampal injury, accompanied by gliosis and neuronal loss, typically disrupts cognitive functions resulting in memory defects, it is not definitively known how. Our previous studies revealed extensive hippocampal microgliosis that peaked between 2 and 3 weeks after SE and paralleled the development of cognitive impairments, suggesting a role for reactive microglia in this pathophysiology. Microglial survival and proliferation are regulated by the colony-stimulating factor 1 receptor (CSF1R). The CSF1R inhibitor PLX3397 has been shown to reduce/deplete microglial populations and improve cognitive performance in models of neurodegenerative disorders. Therefore, we hypothesized that suppression of microgliosis with PLX3397 during epileptogenesis may attenuate the hippocampal-dependent spatial learning and memory deficits in the rat pilocarpine model of SE and acquired TLE. Different groups of control and SE rats were fed standard chow (SC) or chow with PLX3397 starting immediately after SE and for 3 weeks. Novel object recognition (NOR) and Barnes maze (BM) were performed to determine memory function between 2 and 3 weeks after SE. Then microglial populations were assessed using immunohistochemistry. Control rats fed with either SC or PLX3397 performed similarly in both NOR and BM tests, differentiating novel vs. familiar objects in NOR, and rapidly learning the location of the hidden platform in BM. In contrast, both SE groups (SC and PLX3397) showed significant deficits in both NOR and BM tests compared to controls. Both PLX3397-treated control and SE groups had significantly decreased numbers of microglia in the hippocampus (60%) compared to those in SC. In parallel, we found that PLX3397 treatment also reduced SE-induced hippocampal astrogliosis. Thus, despite drastic reductions in microglial cells, memory was unaffected in the PLX3397-treated groups compared to those in SC, suggesting that remaining microglia may be sufficient to help maintain hippocampal functions. In sum, PLX3397 did not improve or worsen the memory deficits in rats that sustained pilocarpine-induced SE. Further research is required to determine whether microglia play a role in cognitive decline during epileptogenesis.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alexandra L Sommer
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kevin Y Shim
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Amy L Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
30
|
Galanopoulou AS, Löscher W, Lubbers L, O’Brien TJ, Staley K, Vezzani A, D’Ambrosio R, White HS, Sontheimer H, Wolf JA, Twyman R, Whittemore V, Wilcox KS, Klein B. Antiepileptogenesis and disease modification: Progress, challenges, and the path forward-Report of the Preclinical Working Group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open 2021; 6:276-296. [PMID: 34033232 PMCID: PMC8166793 DOI: 10.1002/epi4.12490] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common chronic brain diseases and is often associated with cognitive, behavioral, or other medical conditions. The need for therapies that would prevent, ameliorate, or cure epilepsy and the attendant comorbidities is a priority for both epilepsy research and public health. In 2018, the National Institute of Neurological Disease and Stroke (NINDS) convened a workshop titled "Accelerating the Development of Therapies for Antiepileptogenesis and Disease Modification" that brought together preclinical and clinical investigators and industry and regulatory bodies' representatives to discuss and propose a roadmap to accelerate the development of antiepileptogenic (AEG) and disease-modifying (DM) new therapies. This report provides a summary of the discussions and proposals of the Preclinical Science working group. Highlights of the progress of collaborative preclinical research projects on AEG/DM of ongoing research initiatives aiming to improve infrastructure and translation to clinical trials are presented. Opportunities and challenges of preclinical epilepsy research, vis-à-vis clinical research, were extensively discussed, as they pertain to modeling of specific epilepsy types across etiologies and ages, the utilization of preclinical models in AG/DM studies, and the strategies and study designs, as well as on matters pertaining to transparency, data sharing, and reporting research findings. A set of suggestions on research initiatives, infrastructure, workshops, advocacy, and opportunities for expanding the borders of epilepsy research were discussed and proposed as useful initiatives that could help create a roadmap to accelerate and optimize preclinical translational AEG/DM epilepsy research.
Collapse
Affiliation(s)
- Aristea S. Galanopoulou
- Saul R. Korey Department of NeurologyDominick P. Purpura Department of NeuroscienceIsabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNYUSA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany
| | | | - Terence J. O’Brien
- Department of NeuroscienceCentral Clinical SchoolAlfred HealthMonash UniversityMelbourneVic.Australia
| | - Kevin Staley
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
| | - Annamaria Vezzani
- Department of NeuroscienceIRCCS‐Mario Negri Institute for Pharmacological ResearchMilanoItaly
| | | | - H. Steve White
- Department of PharmacySchool of PharmacyUniversity of WashingtonSeattleWAUSA
| | | | - John A. Wolf
- Center for Brain Injury and RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPAUSA
| | | | - Vicky Whittemore
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Karen S. Wilcox
- Department of Pharmacology & ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Brian Klein
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
31
|
Temporal dynamics of a CSF1R signaling gene regulatory network involved in epilepsy. PLoS Comput Biol 2021; 17:e1008854. [PMID: 33819288 PMCID: PMC8057615 DOI: 10.1371/journal.pcbi.1008854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/20/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
Colony Stimulating Factor 1 Receptor (CSF1R) is a potential target for anti-epileptic drugs. However, inhibition of CSF1R is not well tolerated by patients, thereby prompting the need for alternative targets. To develop a framework for identification of such alternatives, we here develop a mathematical model of a pro-inflammatory gene regulatory network (GRN) involved in epilepsy and centered around CSF1R. This GRN comprises validated transcriptional and post-transcriptional regulations involving STAT1, STAT3, NFκB, IL6R, CSF3R, IRF8, PU1, C/EBPα, TNFR1, CSF1 and CSF1R. The model was calibrated on mRNA levels of all GRN components in lipopolysaccharide (LPS)-treated mouse microglial BV-2 cells, and allowed to predict that STAT1 and STAT3 have the strongest impact on the expression of the other GRN components. Microglial BV-2 cells were selected because, the modules from which the GRN was deduced are enriched for microglial marker genes. The function of STAT1 and STAT3 in the GRN was experimentally validated in BV-2 cells. Further, in silico analysis of the GRN dynamics predicted that a pro-inflammatory stimulus can induce irreversible bistability whereby the expression level of GRN components occurs as two distinct states. The irreversibility of the switch may enforce the need for chronic inhibition of the CSF1R GRN in order to achieve therapeutic benefit. The cell-to-cell heterogeneity driven by the bistability may cause variable therapeutic response. In conclusion, our modeling approach uncovered a GRN controlling CSF1R that is predominantly regulated by STAT1 and STAT3. Irreversible inflammation-induced bistability and cell-to-cell heterogeneity of the GRN provide a theoretical foundation to the need for chronic GRN control and the limited potential for disease modification via inhibition of CSF1R. Epilepsy is associated with the induction of complex molecular inflammatory processes. A better understanding of these molecular mechanisms is crucial to optimize therapeutic options. Here, we identified a gene regulatory network (GRN) involved in epilepsy that is controlled by inflammation and which regulates the expression and function of Colony Stimulating Factor 1 receptor (CSF1R), a therapeutic target for anti-epileptic drugs. Using mathematical modeling and experiments with cultured cells, we found that two of eleven components of the network, namely STAT1 and STAT3, exert a tight control on all other components. In addition, we found that inflammation can induce an irreversible switch in the expression of all components of the network, and can cause high cell-to-cell variability. Our findings provide a framework explaining why chronic, not acute, anti-inflammatory treatment is necessary to modulate the network and why drugs targeting CSF1R have limited therapeutic potential.
Collapse
|
32
|
Delaney C, Farrell M, Doherty CP, Brennan K, O’Keeffe E, Greene C, Byrne K, Kelly E, Birmingham N, Hickey P, Cronin S, Savvides SN, Doyle SL, Campbell M. Attenuated CSF-1R signalling drives cerebrovascular pathology. EMBO Mol Med 2021; 13:e12889. [PMID: 33350588 PMCID: PMC7863388 DOI: 10.15252/emmm.202012889] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cerebrovascular pathologies occur in up to 80% of cases of Alzheimer's disease; however, the underlying mechanisms that lead to perivascular pathology and accompanying blood-brain barrier (BBB) disruption are still not fully understood. We have identified previously unreported mutations in colony stimulating factor-1 receptor (CSF-1R) in an ultra-rare autosomal dominant condition termed adult-onset leucoencephalopathy with axonal spheroids and pigmented glia (ALSP). Cerebrovascular pathologies such as cerebral amyloid angiopathy (CAA) and perivascular p-Tau were some of the primary neuropathological features of this condition. We have identified two families with different dominant acting alleles with variants located in the kinase region of the CSF-1R gene, which confer a lack of kinase activity and signalling. The protein product of this gene acts as the receptor for 2 cognate ligands, namely colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). Here, we show that depletion in CSF-1R signalling induces BBB disruption and decreases the phagocytic capacity of peripheral macrophages but not microglia. CSF-1R signalling appears to be critical for macrophage and microglial activation, and macrophage localisation to amyloid appears reduced following the induction of Csf-1r heterozygosity in macrophages. Finally, we show that endothelial/microglial crosstalk and concomitant attenuation of CSF-1R signalling causes re-modelling of BBB-associated tight junctions and suggest that regulating BBB integrity and systemic macrophage recruitment to the brain may be therapeutically relevant in ALSP and other Alzheimer's-like dementias.
Collapse
Affiliation(s)
- Conor Delaney
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Michael Farrell
- Department of NeuropathologyBeaumont HospitalDublin 9Ireland
| | - Colin P Doherty
- Department of NeurologyHealth Care CentreSt James's HospitalDublin 8Ireland
- Academic Unit of NeurologyBiomedical Sciences InstituteTrinity College DublinDublin 2Ireland
- FutureNeuro SFI Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Kiva Brennan
- Trinity College Institute of NeuroscienceTrinity College Dublin 2Dublin 2Ireland
| | - Eoin O’Keeffe
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Chris Greene
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Kieva Byrne
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
| | - Eoin Kelly
- Department of NeurologyHealth Care CentreSt James's HospitalDublin 8Ireland
| | | | | | - Simon Cronin
- Department of MedicineUniversity College CorkCorkIreland
| | - Savvas N Savvides
- Unit for Structural BiologyDepartment of Biochemistry and MicrobiologyGhent UniversityGhentBelgium
- VIB‐UGent Center for Inflammation ResearchGhentBelgium
| | - Sarah L Doyle
- Trinity College Institute of NeuroscienceTrinity College Dublin 2Dublin 2Ireland
| | - Matthew Campbell
- Smurfit Institute of GeneticsTrinity College DublinDublin 2Ireland
- FutureNeuro SFI Research CentreRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
33
|
Dhindsa RS, Zoghbi AW, Krizay DK, Vasavda C, Goldstein DB. A Transcriptome-Based Drug Discovery Paradigm for Neurodevelopmental Disorders. Ann Neurol 2021; 89:199-211. [PMID: 33159466 PMCID: PMC8122510 DOI: 10.1002/ana.25950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Advances in genetic discoveries have created substantial opportunities for precision medicine in neurodevelopmental disorders. Many of the genes implicated in these diseases encode proteins that regulate gene expression, such as chromatin-associated proteins, transcription factors, and RNA-binding proteins. The identification of targeted therapeutics for individuals carrying mutations in these genes remains a challenge, as the encoded proteins can theoretically regulate thousands of downstream targets in a considerable number of cell types. Here, we propose the application of a drug discovery approach originally developed for cancer called "transcriptome reversal" for these neurodevelopmental disorders. This approach attempts to identify compounds that reverse gene-expression signatures associated with disease states. ANN NEUROL 2021;89:199-211.
Collapse
Affiliation(s)
- Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anthony W. Zoghbi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA
| | - Daniel K. Krizay
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, USA
| | - Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
34
|
Abstract
One in three epilepsy cases is drug resistant, and seizures often begin in infancy, when they are life-threatening and when therapeutic options are highly limited. An important tool for prioritizing and validating genes associated with epileptic conditions, which is suitable for large-scale screening, is disease modeling in Drosophila. Approximately two-thirds of disease genes are conserved in Drosophila, and gene-specific fly models exhibit behavioral changes that are related to symptoms of epilepsy. Models are based on behavior readouts, seizure-like attacks and paralysis following stimulation, and neuronal, cell-biological readouts that are in the majority based on changes in nerve cell activity or morphology. In this review, we focus on behavioral phenotypes. Importantly, Drosophila modeling is independent of, and complementary to, other approaches that are computational and based on systems analysis. The large number of known epilepsy-associated gene variants indicates a need for efficient research strategies. We will discuss the status quo of epilepsy disease modelling in Drosophila and describe promising steps towards the development of new drugs to reduce seizure rates and alleviate other epileptic symptoms.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Kevin Lüthy
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
35
|
Garcia-Rosa S, de Freitas Brenha B, Felipe da Rocha V, Goulart E, Araujo BHS. Personalized Medicine Using Cutting Edge Technologies for Genetic Epilepsies. Curr Neuropharmacol 2021; 19:813-831. [PMID: 32933463 PMCID: PMC8686309 DOI: 10.2174/1570159x18666200915151909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is the most common chronic neurologic disorder in the world, affecting 1-2% of the population. Besides, 30% of epilepsy patients are drug-resistant. Genomic mutations seem to play a key role in its etiology and knowledge of strong effect mutations in protein structures might improve prediction and the development of efficacious drugs to treat epilepsy. Several genetic association studies have been undertaken to examine the effect of a range of candidate genes for resistance. Although, few studies have explored the effect of the mutations into protein structure and biophysics in the epilepsy field. Much work remains to be done, but the plans made for exciting developments will hold therapeutic potential for patients with drug-resistance. In summary, we provide a critical review of the perspectives for the development of individualized medicine for epilepsy based on genetic polymorphisms/mutations in light of core elements such as transcriptomics, structural biology, disease model, pharmacogenomics and pharmacokinetics in a manner to improve the success of trial designs of antiepileptic drugs.
Collapse
Affiliation(s)
- Sheila Garcia-Rosa
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Bianca de Freitas Brenha
- Laboratory of Embryonic Genetic Regulation, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Vinicius Felipe da Rocha
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
36
|
|
37
|
Conte G, Parras A, Alves M, Ollà I, De Diego-Garcia L, Beamer E, Alalqam R, Ocampo A, Mendez R, Henshall DC, Lucas JJ, Engel T. High concordance between hippocampal transcriptome of the mouse intra-amygdala kainic acid model and human temporal lobe epilepsy. Epilepsia 2020; 61:2795-2810. [PMID: 33070315 DOI: 10.1111/epi.16714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Pharmacoresistance and the lack of disease-modifying actions of current antiseizure drugs persist as major challenges in the treatment of epilepsy. Experimental models of chemoconvulsant-induced status epilepticus remain the models of choice to discover potential antiepileptogenic drugs, but doubts remain as to the extent to which they model human pathophysiology. The aim of the present study was to compare the molecular landscape of the intra-amygdala kainic acid model of status epilepticus in mice with findings in resected brain tissue from patients with drug-resistant temporal lobe epilepsy (TLE). METHODS Status epilepticus was induced via intra-amygdala microinjection of kainic acid in C57BL/6 mice, and gene expression was analyzed via microarrays in hippocampal tissue at acute and chronic time-points. Results were compared to reference datasets in the intraperitoneal pilocarpine and intrahippocampal kainic acid model and to human resected brain tissue (hippocampus and cortex) from patients with drug-resistant TLE. RESULTS Intra-amygdala kainic acid injection in mice triggered extensive dysregulation of gene expression that was ~3-fold greater shortly after status epilepticus (2729 genes) when compared to epilepsy (412). Comparison to samples from patients with TLE revealed a particularly high correlation of gene dysregulation during established epilepsy. Pathway analysis found suppression of calcium signaling to be highly conserved across different models of epilepsy and patients. cAMP response element-binding protein (CREB) was predicted as one of the main upstream transcription factors regulating gene expression during acute and chronic phases, and inhibition of CREB reduced seizure severity in the intra-amygdala kainic acid model. SIGNIFICANCE Our findings suggest the intra-amygdala kainic acid model faithfully replicates key molecular features of human drug-resistant TLE and provides potential rational target approaches for disease-modification through new insights into the unique and shared gene expression landscape in experimental epilepsy.
Collapse
Affiliation(s)
- Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Alberto Parras
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Severo Ochoa Center for Molecular Biology-CBMSO, CSIC/UAM, Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases-CiberNed, Carlos III Institute of Health, Madrid, Spain
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Ivana Ollà
- Severo Ochoa Center for Molecular Biology-CBMSO, CSIC/UAM, Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases-CiberNed, Carlos III Institute of Health, Madrid, Spain
| | - Laura De Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Science and Engineering, John Dalton Building, All Saints Campus, Metropolitan University, Manchester, UK
| | - Razi Alalqam
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raúl Mendez
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - José J Lucas
- Severo Ochoa Center for Molecular Biology-CBMSO, CSIC/UAM, Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases-CiberNed, Carlos III Institute of Health, Madrid, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
38
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs (“precision medicine”) for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
39
|
Vezzani A. Brain Inflammation and Seizures: Evolving Concepts and New Findings in the Last 2 Decades. Epilepsy Curr 2020; 20:40S-43S. [PMID: 33012196 PMCID: PMC7726731 DOI: 10.1177/1535759720948900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Annamaria Vezzani
- Dept of Neuroscience, 9361Istituto di Ricerche Farmacologiche Mario Negri IRCCSVia Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
40
|
Jha M, Alam O, Naim MJ, Sharma V, Bhatia P, Sheikh AA, Nawaz F, Alam P, Manaithiya A, Kumar V, Nazar S, Siddiqui N. Recent advancement in the discovery and development of anti-epileptic biomolecules: An insight into structure activity relationship and Docking. Eur J Pharm Sci 2020; 153:105494. [PMID: 32730845 DOI: 10.1016/j.ejps.2020.105494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
Although there have been many advancements in scientific research and development, the cause of epilepsy still remains an open challenge. In spite of high throughput research in the field of anti-epileptic drugs, efficacy void is still prevalent before the researchers. Researchers have persistently been exploring all the possibilities to curb undesirable side effects of the anti-epileptic drugs or looking for a more substantial approach to diminish or cure epilepsy. The drug development has shown a hope to medicinal chemists and researchers to carry further research by going through a substantial literature survey. This review article attempts to describe the recent developments in the anti-epileptic agents, pertaining to different molecular scaffolds considering their structure-activity relationship, docking studies and their mechanism of actions.
Collapse
Affiliation(s)
- Mukund Jha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Aadil Ahmad Sheikh
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Nawaz
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vivek Kumar
- Department of Cardiology, Fortis Heart Institute, New Delhi, 110025, India
| | - Shagufi Nazar
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
41
|
Wu W, Li Y, Wei Y, Bosco DB, Xie M, Zhao MG, Richardson JR, Wu LJ. Microglial depletion aggravates the severity of acute and chronic seizures in mice. Brain Behav Immun 2020; 89:245-255. [PMID: 32621847 PMCID: PMC7572576 DOI: 10.1016/j.bbi.2020.06.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
Abstract
Microglia are the resident immune cells of the center nervous system and participate in various neurological diseases. Here we determined the function of microglia in epileptogenesis using microglial ablation approaches. Three different microglia-specific genetic tools were used, CX3CR1CreER/+:R26iDTA/+, CX3CR1CreER/+:R26iDTR/+, and CX3CR1CreER/+:Csf1rFlox/Flox mice. We found that microglial depletion led to worse kainic acid (KA)-induced status epilepticus, higher mortality rate, and increased neuronal degeneration in the hippocampus. In KA-induced chronic spontaneous recurrent seizures, microglial depletion increased seizure frequency, interictal spiking, and seizure duration. Therefore, microglial depletion aggravates the severity of KA-induced acute and chronic seizures. Interestingly, microglial repopulation reversed the effects of depletion upon KA-induced status epilepticus. Our results demonstrate a beneficial role of microglia in suppressing both acute and chronic seizures, suggesting that microglia are a potential therapeutic target for the management of epilepsy.
Collapse
Affiliation(s)
- Wenning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yujiao Li
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yujia Wei
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jason R Richardson
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Departments of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
42
|
Microglial mTOR is Neuronal Protective and Antiepileptogenic in the Pilocarpine Model of Temporal Lobe Epilepsy. J Neurosci 2020; 40:7593-7608. [PMID: 32868461 DOI: 10.1523/jneurosci.2754-19.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
Excessive activation of mammalian target of rapamycin (mTOR) signaling is epileptogenic in genetic epilepsy. However, the exact role of microglial mTOR in acquired epilepsy remains to be clarified. In the present study, we found that mTOR is strongly activated in microglia following excitatory injury elicited by status epilepticus. To determine the role of microglial mTOR signaling in excitatory injury and epileptogenesis, we generated mice with restrictive deletion of mTOR in microglia. Both male and female mice were used in the present study. We found that mTOR-deficient microglia lost their typical proliferative and inflammatory responses to excitatory injury, whereas the proliferation of astrocytes was preserved. In addition, mTOR-deficient microglia did not effectively engulf injured/dying neurons. More importantly, microglial mTOR-deficient mice displayed increased neuronal loss and developed more severe spontaneous seizures. These findings suggest that microglial mTOR plays a protective role in mitigating neuronal loss and attenuating epileptogenesis in the excitatory injury model of epilepsy.SIGNIFICANCE STATEMENT The mammalian target of rapamycin (mTOR) pathway is strongly implicated in epilepsy. However, the effect of mTOR inhibitors in preclinical models of acquired epilepsy is inconsistent. The broad presence of mTOR signaling in various brain cells could prevent mTOR inhibitors from achieving a net therapeutic effect. This conundrum has spurred further investigation of the cell type-specific effects of mTOR signaling in the CNS. We found that activation of microglial mTOR is antiepileptogenic. Thus, microglial mTOR activation represents a novel antiepileptogenic route that appears to parallel the proepileptogenic route of neuronal mTOR activation. This may explain why the net effect of mTOR inhibitors is paradoxical in the acquired models of epilepsy. Our findings could better guide the use of mTOR inhibitors in preventing acquired epilepsy.
Collapse
|
43
|
The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020; 52:1239-1254. [PMID: 32801364 PMCID: PMC8080670 DOI: 10.1038/s12276-020-0484-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions. Drugs directed at a key signaling receptor involved in breaking down bone tissue could help treat diseases marked by pathological bone loss and destruction. In a review article, Kyung-Hyun Park-Min and colleagues from the Hospital for Special Surgery in New York, USA, discuss the essential roles played by the colony-stimulating factor 1 receptor (CSF1R) protein in the survival, function, proliferation and differentiation of myeloid lineage stem cells in the bone marrow, including bone-resorbing osteoclasts. They explore the links between the CSF1R-mediated signaling pathway and diseases such as cancer and neurodegeneration. The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer. Clinical trials are ongoing to test therapeutic applications.
Collapse
|
44
|
Venø MT, Reschke CR, Morris G, Connolly NMC, Su J, Yan Y, Engel T, Jimenez-Mateos EM, Harder LM, Pultz D, Haunsberger SJ, Pal A, Heller JP, Campbell A, Langa E, Brennan GP, Conboy K, Richardson A, Norwood BA, Costard LS, Neubert V, Del Gallo F, Salvetti B, Vangoor VR, Sanz-Rodriguez A, Muilu J, Fabene PF, Pasterkamp RJ, Prehn JHM, Schorge S, Andersen JS, Rosenow F, Bauer S, Kjems J, Henshall DC. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc Natl Acad Sci U S A 2020; 117:15977-15988. [PMID: 32581127 PMCID: PMC7355001 DOI: 10.1073/pnas.1919313117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-β signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-β signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.
Collapse
Affiliation(s)
- Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Cristina R Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gareth Morris
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Junyi Su
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yan Yan
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Lea M Harder
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Dennis Pultz
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stefan J Haunsberger
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ajay Pal
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Janosch P Heller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Aoife Campbell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Karen Conboy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Amy Richardson
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Braxton A Norwood
- Department of Neuroscience, Expesicor Inc, Kalispell, MT 59901
- Diagnostics Development, FYR Diagnostics, Missoula, MT 59801
| | - Lara S Costard
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Valentin Neubert
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, 18051, Germany
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Beatrice Salvetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Vamshidhar R Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Juha Muilu
- Research and Development, BC Platforms, FI-02130, Espoo, Finland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - R Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
- UCL School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jens S Andersen
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Felix Rosenow
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Sebastian Bauer
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland;
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| |
Collapse
|
45
|
Parras A, de Diego-Garcia L, Alves M, Beamer E, Conte G, Jimenez-Mateos EM, Morgan J, Ollà I, Hernandez-Santana Y, Delanty N, Farrell MA, O'Brien DF, Ocampo A, Henshall DC, Méndez R, Lucas JJ, Engel T. Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain 2020; 143:2139-2153. [PMID: 32594159 DOI: 10.1093/brain/awaa168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Temporal lobe epilepsy is the most common and refractory form of epilepsy in adults. Gene expression within affected structures such as the hippocampus displays extensive dysregulation and is implicated as a central pathomechanism. Post-transcriptional mechanisms are increasingly recognized as determinants of the gene expression landscape, but key mechanisms remain unexplored. Here we show, for first time, that cytoplasmic mRNA polyadenylation, one of the post-transcriptional mechanisms regulating gene expression, undergoes widespread reorganization in temporal lobe epilepsy. In the hippocampus of mice subjected to status epilepticus and epilepsy, we report >25% of the transcriptome displays changes in their poly(A) tail length, with deadenylation disproportionately affecting genes previously associated with epilepsy. Suggesting cytoplasmic polyadenylation element binding proteins (CPEBs) being one of the main contributors to mRNA polyadenylation changes, transcripts targeted by CPEBs were particularly enriched among the gene pool undergoing poly(A) tail alterations during epilepsy. Transcripts bound by CPEB4 were over-represented among transcripts with poly(A) tail alterations and epilepsy-related genes and CPEB4 expression was found to be increased in mouse models of seizures and resected hippocampi from patients with drug-refractory temporal lobe epilepsy. Finally, supporting an adaptive function for CPEB4, deletion of Cpeb4 exacerbated seizure severity and neurodegeneration during status epilepticus and the development of epilepsy in mice. Together, these findings reveal an additional layer of gene expression regulation during epilepsy and point to novel targets for seizure control and disease-modification in epilepsy.
Collapse
Affiliation(s)
- Alberto Parras
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin D02 R590, Ireland
| | - James Morgan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Ivana Ollà
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Yasmina Hernandez-Santana
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Norman Delanty
- Beaumont Hospital, Beaumont, Dublin 9, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| | | | | | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculté de Biologie et Médecine, Université de Lausanne, Lausanne, Switzerland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - José J Lucas
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| |
Collapse
|
46
|
De Luca SN, Miller AA, Sominsky L, Spencer SJ. Microglial regulation of satiety and cognition. J Neuroendocrinol 2020; 32:e12838. [PMID: 32097992 DOI: 10.1111/jne.12838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Microglia have been known for decades as key immune cells that shape the central nervous system (CNS) during development and respond to brain pathogens and injury in adult life. Recent findings now suggest that these cells also play a highly complex role in several other functions of the CNS. In this review, we provide a brief overview of the established microglial functions in development and disease. We also discuss emerging research suggesting that microglia are important for both cognitive function and the regulation of food intake. With respect to cognitive function, current data suggest microglia are not indispensable for neurogenesis, synaptogenesis or cognition in the healthy young adult, although they crucially modulate and support these functions. In doing so, they are likely important in supporting the balance between apoptosis and survival of newborn neurones and in orchestrating appropriate synaptic remodelling in response to a learning stimulus. We also explore the possibility of a role for microglia in feeding and satiety. Microglia have been implicated in both appetite suppression with sickness and obesity and in promoting feeding under some conditions and we discuss these findings here, highlighting the contribution of these cells to healthy brain function.
Collapse
Affiliation(s)
- Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Alyson A Miller
- Institute of Cardiovascular & Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Fu Y, Wu Z, Guo Z, Chen L, Ma Y, Wang Z, Xiao W, Wang Y. Systems-level analysis identifies key regulators driving epileptogenesis in temporal lobe epilepsy. Genomics 2020; 112:1768-1780. [DOI: 10.1016/j.ygeno.2019.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023]
|
48
|
Lim WK, Mathuru AS. Design, challenges, and the potential of transcriptomics to understand social behavior. Curr Zool 2020; 66:321-330. [PMID: 32684913 PMCID: PMC7357267 DOI: 10.1093/cz/zoaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Rapid advances in Ribonucleic Acid sequencing (or RNA-seq) technology for analyzing entire transcriptomes of desired tissue samples, or even of single cells at scale, have revolutionized biology in the past decade. Increasing accessibility and falling costs are making it possible to address many problems in biology that were once considered intractable, including the study of various social behaviors. RNA-seq is opening new avenues to understand long-standing questions on the molecular basis of behavioral plasticity and individual variation in the expression of a behavior. As whole transcriptomes are examined, it has become possible to make unbiased discoveries of underlying mechanisms with little or no necessity to predict genes involved in advance. However, researchers need to be aware of technical limitations and have to make specific decisions when applying RNA-seq to study social behavior. Here, we provide a perspective on the applications of RNA-seq and experimental design considerations for behavioral scientists who are unfamiliar with the technology but are considering using it in their research.
Collapse
Affiliation(s)
- Wen Kin Lim
- Science Division, Yale-NUS College, 12 College Avenue West, Singapore
| | - Ajay S Mathuru
- Science Division, Yale-NUS College, 12 College Avenue West, Singapore.,Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine (YLL), National University of Singapore, Singapore
| |
Collapse
|
49
|
Mouse Systems Genetics as a Prelude to Precision Medicine. Trends Genet 2020; 36:259-272. [PMID: 32037011 DOI: 10.1016/j.tig.2020.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Mouse models have been instrumental in understanding human disease biology and proposing possible new treatments. The precise control of the environment and genetic composition of mice allows more rigorous observations, but limits the generalizability and translatability of the results into human applications. In the era of precision medicine, strategies using mouse models have to be revisited to effectively emulate human populations. Systems genetics is one promising paradigm that may promote the transition to novel precision medicine strategies. Here, we review the state-of-the-art resources and discuss how mouse systems genetics helps to understand human diseases and to advance the development of precision medicine, with an emphasis on the existing resources and strategies.
Collapse
|
50
|
Lee SY, Song MY, Kim D, Park C, Park DK, Kim DG, Yoo JS, Kim YH. A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer's Disease. Front Pharmacol 2020; 10:1653. [PMID: 32063857 PMCID: PMC7000455 DOI: 10.3389/fphar.2019.01653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous clinical trials of drug candidates for Alzheimer’s disease (AD) have failed, and computational drug repositioning approaches using omics data have been proposed as effective alternative approaches to the discovery of drug candidates. However, little multi-omics data is available for AD, due to limited availability of brain tissues. Even if omics data exist, systematic drug repurposing study for AD has suffered from lack of big data, insufficient clinical information, and difficulty in data integration on account of sample heterogeneity derived from poor diagnosis or shortage of qualified post-mortem tissue. In this study, we developed a proteotranscriptomic-based computational drug repositioning method named Drug Repositioning Perturbation Score/Class (DRPS/C) based on inverse associations between disease- and drug-induced gene and protein perturbation patterns, incorporating pharmacogenomic knowledge. We constructed a Drug-induced Gene Perturbation Signature Database (DGPSD) comprised of 61,019 gene signatures perturbed by 1,520 drugs from the Connectivity Map (CMap) and the L1000 CMap. Drugs were classified into three DRPCs (High, Intermediate, and Low) according to DRPSs that were calculated using drug- and disease-induced gene perturbation signatures from DGPSD and The Cancer Genome Atlas (TCGA), respectively. The DRPS/C method was evaluated using the area under the ROC curve, with a prescribed drug list from TCGA as the gold standard. Glioblastoma had the highest AUC. To predict anti-AD drugs, DRPS were calculated using DGPSD and AD-induced gene/protein perturbation signatures generated from RNA-seq, microarray and proteomic datasets in the Synapse database, and the drugs were classified into DRPCs. We predicted 31 potential anti-AD drug candidates commonly belonged to high DRPCs of transcriptomic and proteomic signatures. Of these, four drugs classified into the nervous system group of Anatomical Therapeutic Chemical (ATC) system are voltage-gated sodium channel blockers (bupivacaine, topiramate) and monamine oxidase inhibitors (selegiline, iproniazid), and their mechanism of action was inferred from a potential anti-AD drug perspective. Our approach suggests a shortcut to discover new efficacy of drugs for AD.
Collapse
Affiliation(s)
- Soo Youn Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Min-Young Song
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Dain Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Chaewon Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Da Kyeong Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| | - Dong Geun Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Young Hye Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, South Korea
| |
Collapse
|