1
|
Kou YX, Liu ML, López-Pujol J, Zhang QJ, Zhang ZY, Li ZH. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): implications for conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2967-2981. [PMID: 39115017 DOI: 10.1111/tpj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
Demographic history and mutational load are of paramount importance for the adaptation of the endangered species. However, the effects of population evolutionary history and genetic load on the adaptive potential in endangered conifers remain unclear. Here, using population transcriptome sequencing, whole chloroplast genomes and mitochondrial DNA markers, combined with niche analysis, we determined the demographic history and mutational load for three threatened whitebark pines having different endangered statuses, Pinus bungeana, P. gerardiana and P. squamata. Demographic inference indicated that severe bottlenecks occurred in all three pines at different times, coinciding with periods of major climate and geological changes; in contrast, while P. bungeana experienced a recent population expansion, P. gerardiana and P. squamata maintained small population sizes after bottlenecking. Abundant homozygous-derived variants accumulated in the three pines, particularly in P. squamata, while the species with most heterozygous variants was P. gerardiana. Abundant moderately and few highly deleterious variants accumulated in the pine species that have experienced the most severe demographic bottlenecks (P. gerardiana and P. squamata), most likely because of purging effects. Finally, niche modeling showed that the distribution of P. bungeana might experience a significant expansion in the future, and the species' identified genetic clusters are also supported by differences in the ecological niche. The integration of genomic, demographic and niche data has allowed us to prove that the three threatened pines have contrasting patterns of demographic history and mutational load, which may have important implications in their adaptive potential and thus are also key for informing conservation planning.
Collapse
Affiliation(s)
- Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Qi-Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
2
|
Son I, Kasazumi N, Okada M, Takumi S, Yoshida K. Discrepancy of flowering time between genetically close sublineages of Aegilops umbellulata Zhuk. Sci Rep 2024; 14:7437. [PMID: 38548857 PMCID: PMC10978908 DOI: 10.1038/s41598-024-57935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/22/2024] [Indexed: 04/01/2024] Open
Abstract
Aegilops umbellulata Zhuk., a wild diploid wheat-related species, has been used as a genetic resource for several important agronomic traits. However, its genetic variations have not been comprehensively studied. We sequenced RNA from 114 accessions of Ae. umbellulata to evaluate DNA polymorphisms and phenotypic variations. Bayesian clustering and phylogenetic analysis based on SNPs detected by RNA sequencing revealed two divergent lineages, UmbL1 and UmbL2. The main differences between them were in the sizes of spikes and spikelets, and culm diameter. UmbL1 is divided into two sublineages, UmbL1e and UmbL1w. These genetic differences corresponded to geographic distributions. UmbL1e, UmbL1w, and UmbL2 are found in Turkey, Iran/Iraq, and Greece, respectively. Although UmbL1e and UmbL1w were genetically similar, flowering time and other morphological traits were more distinct between these sublineages than those between the lineages. This discrepancy can be explained by the latitudinal and longitudinal differences in habitats. Specifically, latitudinal clines of flowering time were clearly observed in Ae. umbellulata, strongly correlated with solar radiation in the winter season. This observation implies that latitudinal differences are a factor in differences in the flowering times of Ae. umbellulata. Differences in flowering time could influence other morphological differences and promote genetic divergence between sublineages.
Collapse
Affiliation(s)
- In Son
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Nozomi Kasazumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Moeko Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Duan T, Sicard A, Glémin S, Lascoux M. Separating phases of allopolyploid evolution with resynthesized and natural Capsella bursa-pastoris. eLife 2024; 12:RP88398. [PMID: 38189348 PMCID: PMC10945474 DOI: 10.7554/elife.88398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Allopolyploidization is a frequent evolutionary transition in plants that combines whole-genome duplication (WGD) and interspecific hybridization. The genome of an allopolyploid species results from initial interactions between parental genomes and long-term evolution. Distinguishing the contributions of these two phases is essential to understanding the evolutionary trajectory of allopolyploid species. Here, we compared phenotypic and transcriptomic changes in natural and resynthesized Capsella allotetraploids with their diploid parental species. We focused on phenotypic traits associated with the selfing syndrome and on transcription-level phenomena such as expression-level dominance (ELD), transgressive expression (TRE), and homoeolog expression bias (HEB). We found that selfing syndrome, high pollen, and seed quality in natural allotetraploids likely resulted from long-term evolution. Similarly, TRE and most down-regulated ELD were only found in natural allopolyploids. Natural allotetraploids also had more ELD toward the self-fertilizing parental species than resynthesized allotetraploids, mirroring the establishment of the selfing syndrome. However, short-term changes mattered, and 40% of the cases of ELD in natural allotetraploids were already observed in resynthesized allotetraploids. Resynthesized allotetraploids showed striking variation of HEB among chromosomes and individuals. Homoeologous synapsis was its primary source and may still be a source of genetic variation in natural allotetraploids. In conclusion, both short- and long-term mechanisms contributed to transcriptomic and phenotypic changes in natural allotetraploids. However, the initial gene expression changes were largely reshaped during long-term evolution leading to further morphological changes.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural SciencesUppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
- UMR CNRS 6553 ECOBIO, Campus BeaulieuRennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| |
Collapse
|
4
|
Omori Y, Burgess SM. The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. Methods Mol Biol 2024; 2707:335-355. [PMID: 37668923 DOI: 10.1007/978-1-0716-3401-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
5
|
Yew CL, Tsuchimatsu T, Shimizu-Inatsugi R, Yasuda S, Hatakeyama M, Kakui H, Ohta T, Suwabe K, Watanabe M, Takayama S, Shimizu KK. Dominance in self-compatibility between subgenomes of allopolyploid Arabidopsis kamchatica shown by transgenic restoration of self-incompatibility. Nat Commun 2023; 14:7618. [PMID: 38030610 PMCID: PMC10687001 DOI: 10.1038/s41467-023-43275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported. Here we employ transgenic techniques to the allotetraploid plant A. kamchatica. We find that when the dominant SCR-B is repaired by removing a transposable element insertion, self-incompatibility is restored. This suggests that SCR was responsible for the evolution of self-compatibility. By contrast, the reconstruction of recessive SCR-D cannot restore self-incompatibility. These data indicate that the insertion in SCR-B conferred dominant self-compatibility to A. kamchatica. Dominant self-compatibility supports the prediction that dominant mutations increasing selfing rate can pass through Haldane's sieve against recessive mutations. The dominance regulation between subgenomes inherited from progenitors contrasts with previous studies on novel epigenetic mutations at polyploidization termed genome shock.
Collapse
Grants
- JPMJCR16O3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- 310030_212551, 31003A_182318, 31003A_159767, 31003A_140917, 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- grant numbers 16H06469, 16K21727, 22H02316, 22K21352, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- Postdoctoral fellowship, 22K21352, 16H06467 and 17H05833 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H02162, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H04711 and 21H05030 MEXT | Japan Society for the Promotion of Science (JSPS)
- URPP Evolutoin in Action, Global Strategy and Partnerships Funding Scheme Universität Zürich (University of Zurich)
- URPP Evolutoini in Action Universität Zürich (University of Zurich)
- fellowship European Molecular Biology Organization (EMBO)
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Department of Biological Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Shinsuke Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Functional Genomics Center Zurich, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
- Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo, 188-0002, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takuma Ohta
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
6
|
Bramsiepe J, Krabberød AK, Bjerkan KN, Alling RM, Johannessen IM, Hornslien KS, Miller JR, Brysting AK, Grini PE. Structural evidence for MADS-box type I family expansion seen in new assemblies of Arabidopsis arenosa and A. lyrata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:942-961. [PMID: 37517071 DOI: 10.1111/tpj.16401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Arabidopsis thaliana diverged from A. arenosa and A. lyrata at least 6 million years ago. The three species differ by genome-wide polymorphisms and morphological traits. The species are to a high degree reproductively isolated, but hybridization barriers are incomplete. A special type of hybridization barrier is based on the triploid endosperm of the seed, where embryo lethality is caused by endosperm failure to support the developing embryo. The MADS-box type I family of transcription factors is specifically expressed in the endosperm and has been proposed to play a role in endosperm-based hybridization barriers. The gene family is well known for its high evolutionary duplication rate, as well as being regulated by genomic imprinting. Here we address MADS-box type I gene family evolution and the role of type I genes in the context of hybridization. Using two de-novo assembled and annotated chromosome-level genomes of A. arenosa and A. lyrata ssp. petraea we analyzed the MADS-box type I gene family in Arabidopsis to predict orthologs, copy number, and structural genomic variation related to the type I loci. Our findings were compared to gene expression profiles sampled before and after the transition to endosperm cellularization in order to investigate the involvement of MADS-box type I loci in endosperm-based hybridization barriers. We observed substantial differences in type-I expression in the endosperm of A. arenosa and A. lyrata ssp. petraea, suggesting a genetic cause for the endosperm-based hybridization barrier between A. arenosa and A. lyrata ssp. petraea.
Collapse
Affiliation(s)
- Jonathan Bramsiepe
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Anders K Krabberød
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Katrine N Bjerkan
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Renate M Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Ida M Johannessen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Karina S Hornslien
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Jason R Miller
- College of STEM, Shepherd University, Shepherdstown, West Virginia, 25443-5000, USA
| | - Anne K Brysting
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Paul E Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
7
|
Akiyama R, Goto T, Tameshige T, Sugisaka J, Kuroki K, Sun J, Akita J, Hatakeyama M, Kudoh H, Kenta T, Tonouchi A, Shimahara Y, Sese J, Kutsuna N, Shimizu-Inatsugi R, Shimizu KK. Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation. Nat Commun 2023; 14:5792. [PMID: 37737204 PMCID: PMC10517152 DOI: 10.1038/s41467-023-41260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura".
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Takao Goto
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192, Japan
| | - Jiro Sugisaka
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Ken Kuroki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jianqiang Sun
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Junichi Akita
- Department of Electric and Computer Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Tanaka Kenta
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-kogen, Ueda, 386-2204, Japan
| | - Aya Tonouchi
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Yuki Shimahara
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, AIST, 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- Humanome Lab, Inc., L-HUB 3F, 1-4, Shumomiyabi-cho, Shinjuku, Tokyo, 162-0822, Japan
- AIST-Tokyo Tech RWBC-OIL, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Natsumaro Kutsuna
- Research and Development Division, LPIXEL Inc., Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- Kihara Institute for Biological Research (KIBR), Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan.
| |
Collapse
|
8
|
Kolesnikova UK, Scott AD, Van de Velde JD, Burns R, Tikhomirov NP, Pfordt U, Clarke AC, Yant L, Seregin AP, Vekemans X, Laurent S, Novikova PY. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes. Mol Biol Evol 2023; 40:msad122. [PMID: 37432770 PMCID: PMC10335350 DOI: 10.1093/molbev/msad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.
Collapse
Affiliation(s)
- Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jozefien D Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nikita P Tikhomirov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Ursula Pfordt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrew C Clarke
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey P Seregin
- Herbarium (MW), Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Xavier Vekemans
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille, France
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
9
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
10
|
Abstract
Whole-genome duplications yield varied chromosomal pairing patterns, ranging from strictly bivalent to multivalent, resulting in disomic and polysomic inheritance modes. In the bivalent case, homeologous chromosomes form pairs, where in a multivalent pattern all copies are homologous and are therefore free to pair and recombine. As sufficient sequencing data is more readily available than high-quality cytological assessments of meiotic behavior or population genetic assessment of allelic segregation, especially for non-model organisms, bioinformatics approaches to infer origins and inheritance modes of polyploids using short-read sequencing data are attractive. Here we describe two such approaches, where the first is based on distributions of allelic read depth at heterozygous sites within an individual, as the expectations of such distributions are different for disomic and polysomic inheritance modes. The second approach is more laborious and based on a phylogenetic assessment of partially phased haplotypes of a polyploid in comparison to the closest diploid relatives. We discuss the sources of deviations from expected inheritance patterns, advantages and pitfalls of both methods, effects of mating types on the performance of the methods, and possible future developments.
Collapse
|
11
|
Shimizu-Inatsugi R, Morishima A, Mourato B, Shimizu KK, Sato Y. Phenotypic variation of a new synthetic allotetraploid Arabidopsis kamchatica enhanced in natural environment. FRONTIERS IN PLANT SCIENCE 2023; 13:1058522. [PMID: 36684772 PMCID: PMC9846130 DOI: 10.3389/fpls.2022.1058522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The phenotypic variation of vegetative organs and reproductive organs of newly synthesized and natural Arabidopsis kamchatica genotypes was investigated in both a controlled environment and a natural environment in an experimental garden. When we compared the variation of their leaf shape as a vegetative organ, the synthetic A. kamchatica individuals grown in the garden showed larger variation compared with the individuals incubated in a growth chamber, suggesting enhanced phenotypic variation in a natural fluctuating environment. In contrast, the natural A. kamchatica genotypes did not show significant change in variation by growth condition. The phenotypic variation of floral organs by growth condition was much smaller in both synthetic and natural A. kamchatica genotypes, and the difference in variation width between the growth chamber and the garden was not significant in each genotype as well as among genotypes. The higher phenotypic variation in synthetic leaf may imply flexible transcriptomic regulation of a newly synthesized polyploid compared with a natural polyploid.
Collapse
Affiliation(s)
- Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Aki Morishima
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Beatriz Mourato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Watanabe K, Yaneshita M, Denda T, Yokota M, Hirota SK, Suyama Y, Tsumura Y. Genetic Structure of the Liriope muscari Polyploid Complex and the Possibility of Its Genetic Disturbance in Japan. PLANTS (BASEL, SWITZERLAND) 2022; 11:3015. [PMID: 36432743 PMCID: PMC9697476 DOI: 10.3390/plants11223015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities, such as the movement of plants through greening, can result in genetic disturbance that can interfere with local adaptation in wild populations. Although research is underway to prevent genetic disturbance associated with greening, genetic disturbance of intraspecific polyploidy, which is estimated to be present in 24% of vascular plants, has not been well studied. Liriope muscari is a polyploid complex with known diploid (2n = 36), tetraploid (2n = 72), and hexaploid (2n = 108) forms. The plants of this species tolerate dry and hot conditions and are therefore frequently used for greening and gardening. However, the distribution of this polyploid in Japan, its genetic structure, and genetic disturbance are not known. In this study, we investigated the polyploidy distribution and genetic structure in naturally distributed L. muscari in Japan using chloroplast DNA (cpDNA) haplotypes and nuclear DNA (nDNA). Commercially produced individuals were also studied and compared with natural populations to assess any genetic disturbance of the ploidy complex in this species. Chromosome counts, cpDNA, and nDNA results showed three genetically and cytologically distinct groups in Japan: first, a tetraploid group in mainland Japan; second, a hexaploid group in the Ryukyu Islands; and third, a diploid and tetraploid group in the Ryukyu Islands. Significant isolation by distance was also detected within the three groups (p = 0.001). Genetic disturbance due to greening and gardening should be avoided among the three groups. Genetic disturbance can be reduced by using individuals derived from natural populations that are close to the sites used for greening and gardening. For commercially produced individuals, genetic disturbance is unlikely in the Kanto region, an area of high usage, while genetic disturbance is thought possible in the Ryukyu Islands.
Collapse
Affiliation(s)
- Keita Watanabe
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan
- Environment Research Section Urban Engineering Research Department, Taisei Corporation, Yokohama 245-0051, Japan
| | - Makoto Yaneshita
- Environment Research Section Urban Engineering Research Department, Taisei Corporation, Yokohama 245-0051, Japan
| | - Tetsuo Denda
- Laboratory of Ecology and Systematics, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Masatsugu Yokota
- Laboratory of Ecology and Systematics, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Shun K. Hirota
- Botanical Gardens, Osaka Metropolitan University, Katano 576-0004, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Osaki 989-6711, Japan
| | - Yoshihiko Tsumura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8786, Japan
| |
Collapse
|
13
|
Shimizu KK. Robustness and the generalist niche of polyploid species: Genome shock or gradual evolution? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102292. [PMID: 36063635 DOI: 10.1016/j.pbi.2022.102292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
The prevalence of polyploidy in wild and crop species has stimulated debate over its evolutionary advantages and disadvantages. Previous studies have focused on changes occurring at the polyploidization events, including genome-wide changes termed "genome shock," as well as ancient polyploidy. Recent bioinformatics advances and empirical studies of Arabidopsis and wheat relatives are filling a research gap: the functional evolutionary study of polyploid species using RNA-seq, DNA polymorphism, and epigenomics. Polyploid species can become generalists in natura through environmental robustness by inheriting and merging parental stress responses. Their evolvability is enhanced by mutational robustness working on inherited standing variation. The identification of key genes responsible for gradual adaptive evolution will encourage synthetic biological approaches to transfer polyploid advantages to other species.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan.
| |
Collapse
|
14
|
Sotiropoulos AG, Arango-Isaza E, Ban T, Barbieri C, Bourras S, Cowger C, Czembor PC, Ben-David R, Dinoor A, Ellwood SR, Graf J, Hatta K, Helguera M, Sánchez-Martín J, McDonald BA, Morgounov AI, Müller MC, Shamanin V, Shimizu KK, Yoshihira T, Zbinden H, Keller B, Wicker T. Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat Commun 2022; 13:4315. [PMID: 35882860 PMCID: PMC9315327 DOI: 10.1038/s41467-022-31975-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
The fungus Blumeria graminis f. sp. tritici causes wheat powdery mildew disease. Here, we study its spread and evolution by analyzing a global sample of 172 mildew genomes. Our analyses show that B.g. tritici emerged in the Fertile Crescent during wheat domestication. After it spread throughout Eurasia, colonization brought it to America, where it hybridized with unknown grass mildew species. Recent trade brought USA strains to Japan, and European strains to China. In both places, they hybridized with local ancestral strains. Thus, although mildew spreads by wind regionally, our results indicate that humans drove its global spread throughout history and that mildew rapidly evolved through hybridization.
Collapse
Affiliation(s)
| | - Epifanía Arango-Isaza
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Chiara Barbieri
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christina Cowger
- USDA-ARS Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Paweł C Czembor
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Roi Ben-David
- Department of Vegetables and Field crops, Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZion, 7528809, Israel
| | - Amos Dinoor
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Simon R Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Koichi Hatta
- Hokkaido Agricultural Research Center Field Crop Research and Development, National Agricultural Research Organization, Sapporo, Hokkaido, Japan
| | - Marcelo Helguera
- Centro de Investigaciones Agropecuarias (CIAP), INTA, Córdoba, Argentina
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Alexey I Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Marion C Müller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Taiki Yoshihira
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Helen Zbinden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Liang YY, Chen XY, Zhou BF, Mitchell-Olds T, Wang B. Globally Relaxed Selection and Local Adaptation in Boechera stricta. Genome Biol Evol 2022; 14:evac043. [PMID: 35349686 PMCID: PMC9011030 DOI: 10.1093/gbe/evac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The strength of selection varies among populations and across the genome, but the determinants of efficacy of selection remain unclear. In this study, we used whole-genome sequencing data from 467 Boechera stricta accessions to quantify the strength of selection and characterize the pattern of local adaptation. We found low genetic diversity on 0-fold degenerate sites and conserved non-coding sites, indicating functional constraints on these regions. The estimated distribution of fitness effects and the proportion of fixed substitutions suggest relaxed negative and positive selection in B. stricta. Among the four population groups, the NOR and WES groups have smaller effective population size (Ne), higher proportions of effectively neutral sites, and lower rates of adaptive evolution compared with UTA and COL groups, reflecting the effect of Ne on the efficacy of natural selection. We also found weaker selection on GC-biased sites compared with GC-conservative (unbiased) sites, suggested that GC-biased gene conversion has affected the strength of selection in B. stricta. We found mixed evidence for the role of the recombination rate on the efficacy of selection. The positive and negative selection was stronger in high-recombination regions compared with low-recombination regions in COL but not in other groups. By scanning the genome, we found different subsets of selected genes suggesting differential adaptation among B. stricta groups. These results show that differences in effective population size, nucleotide composition, and recombination rate are important determinants of the efficacy of selection. This study enriches our understanding of the roles of natural selection and local adaptation in shaping genomic variation.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Conover JL, Wendel JF. Deleterious Mutations Accumulate Faster in Allopolyploid than Diploid Cotton (Gossypium) and Unequally between Subgenomes. Mol Biol Evol 2022; 39:6517786. [PMID: 35099532 PMCID: PMC8841602 DOI: 10.1093/molbev/msac024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Whole genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1-2 million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two co-resident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g. dN/dS, πN/πS) may be biased when species of different ploidy levels are compared.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
17
|
Dittberner H, Tellier A, de Meaux J. Approximate Bayesian computation untangles signatures of contemporary and historical hybridization between two endangered species. Mol Biol Evol 2022; 39:6516021. [PMID: 35084503 PMCID: PMC8826969 DOI: 10.1093/molbev/msac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Contemporary gene flow, when resumed after a period of isolation, can have crucial consequences for endangered species, as it can both increase the supply of adaptive alleles and erode local adaptation. Determining the history of gene flow and thus the importance of contemporary hybridization, however, is notoriously difficult. Here, we focus on two endangered plant species, Arabis nemorensis and A. sagittata, which hybridize naturally in a sympatric population located on the banks of the Rhine. Using reduced genome sequencing, we determined the phylogeography of the two taxa but report only a unique sympatric population. Molecular variation in chloroplast DNA indicated that A. sagittata is the principal receiver of gene flow. Applying classical D-statistics and its derivatives to whole-genome data of 35 accessions, we detect gene flow not only in the sympatric population but also among allopatric populations. Using an Approximate Bayesian computation approach, we identify the model that best describes the history of gene flow between these taxa. This model shows that low levels of gene flow have persisted long after speciation. Around 10 000 years ago, gene flow stopped and a period of complete isolation began. Eventually, a hotspot of contemporary hybridization was formed in the unique sympatric population. Occasional sympatry may have helped protect these lineages from extinction in spite of their extremely low diversity.
Collapse
Affiliation(s)
- Hannes Dittberner
- Institute of Plant Sciences,University of Cologne, Zülpicher str. 47b, Germany
| | - Aurelien Tellier
- Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Juliette de Meaux
- Institute of Plant Sciences,University of Cologne, Zülpicher str. 47b, Germany
| |
Collapse
|
18
|
Dai WT, Li J, Ban LP. Genome-Wide Selective Signature Analysis Revealed Insecticide Resistance Mechanisms in Cydia pomonella. INSECTS 2021; 13:2. [PMID: 35055845 PMCID: PMC8781923 DOI: 10.3390/insects13010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a serious invasive pest of pome fruits. Currently, C. pomonella management mainly relies on the application of insecticides, which have driven the development of resistance in the insect. Understanding the genetic mechanisms of insecticide resistance is of great significance for developing new pest resistance management techniques and formulating effective resistance management strategies. Using existing genome resequencing data, we performed selective sweep analysis by comparing two resistant strains and one susceptible strain of the insect pest and identified seven genes, among which, two (glycine receptor and glutamate receptor) were under strong insecticide selection, suggesting their functional importance in insecticide resistance. We also found that eight genes including CYP6B2, CYP307a1, 5-hydroxytryptamine receptor, cuticle protein, and acetylcholinesterase, are potentially involved in cross-resistance to azinphos-methyl and deltamethrin. Moreover, among several P450s identified as positively selected genes, CYP6B2, CYP4C1, and CYP4d2 showed the highest expression level in larva compared to other stages tested, and CYP6B2 also showed the highest expression level in midgut, supporting the roles they may play in insecticide metabolism. Our results provide several potential genes that can be studied further to advance understanding of complexity of insecticide resistance mechanisms in C. pomonella.
Collapse
Affiliation(s)
| | | | - Li-Ping Ban
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (W.-T.D.); (J.L.)
| |
Collapse
|
19
|
Ng KKS, Kobayashi MJ, Fawcett JA, Hatakeyama M, Paape T, Ng CH, Ang CC, Tnah LH, Lee CT, Nishiyama T, Sese J, O'Brien MJ, Copetti D, Isa MNM, Ong RC, Putra M, Siregar IZ, Indrioko S, Kosugi Y, Izuno A, Isagi Y, Lee SL, Shimizu KK. The genome of Shorea leprosula (Dipterocarpaceae) highlights the ecological relevance of drought in aseasonal tropical rainforests. Commun Biol 2021; 4:1166. [PMID: 34620991 PMCID: PMC8497594 DOI: 10.1038/s42003-021-02682-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.
Collapse
Affiliation(s)
- Kevin Kit Siong Ng
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia.
| | - Masaki J Kobayashi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
- Forestry Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Jeffrey A Fawcett
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
- RIKEN iTHEMS, Wako, Saitama, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
| | - Chin Hong Ng
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Choon Cheng Ang
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
| | - Lee Hong Tnah
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Chai Ting Lee
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Tomoaki Nishiyama
- Division of Integrated Omics research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- AIST-Tokyo Tech RWBC-OIL, Meguro-ku, Tokyo, Japan
- Humanome Lab Inc., Chuo-ku, Tokyo, Japan
| | - Michael J O'Brien
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/Tulipán s/n., E-28933, Móstoles, Spain
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Mahardika Putra
- Faculty of Forestry, Bogor Agricultural University, Bogor, Indonesia
| | | | - Sapto Indrioko
- Faculty of Forestry, Gadjah Mada University, Yogyakarta, Indonesia
| | - Yoshiko Kosugi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ayako Izuno
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Soon Leong Lee
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
20
|
Jiang X, Song Q, Ye W, Chen ZJ. Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids. Nat Ecol Evol 2021; 5:1382-1393. [PMID: 34413505 PMCID: PMC8484014 DOI: 10.1038/s41559-021-01523-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
During evolution successful allopolyploids must overcome 'genome shock' between hybridizing species but the underlying process remains elusive. Here, we report concerted genomic and epigenomic changes in resynthesized and natural Arabidopsis suecica (TTAA) allotetraploids derived from Arabidopsis thaliana (TT) and Arabidopsis arenosa (AA). A. suecica shows conserved gene synteny and content with more gene family gain and loss in the A and T subgenomes than respective progenitors, although A. arenosa-derived subgenome has more structural variation and transposon distributions than A. thaliana-derived subgenome. These balanced genomic variations are accompanied by pervasive convergent and concerted changes in DNA methylation and gene expression among allotetraploids. The A subgenome is hypomethylated rapidly from F1 to resynthesized allotetraploids and convergently to the T-subgenome level in natural A. suecica, despite many other methylated loci being inherited from F1 to all allotetraploids. These changes in DNA methylation, including small RNAs, in allotetraploids may affect gene expression and phenotypic variation, including flowering, silencing of self-incompatibility and upregulation of meiosis- and mitosis-related genes. In conclusion, concerted genomic and epigenomic changes may improve stability and adaptation during polyploid evolution.
Collapse
Affiliation(s)
- Xinyu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
21
|
Halstead-Nussloch G, Tanaka T, Copetti D, Paape T, Kobayashi F, Hatakeyama M, Kanamori H, Wu J, Mascher M, Kawaura K, Shimizu KK, Handa H. Multiple Wheat Genomes Reveal Novel Gli-2 Sublocus Location and Variation of Celiac Disease Epitopes in Duplicated α-Gliadin Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:715985. [PMID: 34539709 PMCID: PMC8446623 DOI: 10.3389/fpls.2021.715985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 05/28/2023]
Abstract
The seed protein α-gliadin is a major component of wheat flour and causes gluten-related diseases. However, due to the complexity of this multigene family with a genome structure composed of dozens of copies derived from tandem and genome duplications, little was known about the variation between accessions, and thus little effort has been made to explicitly target α-gliadin for bread wheat breeding. Here, we analyzed genomic variation in α-gliadins across 11 recently published chromosome-scale assemblies of hexaploid wheat, with validation using long-read data. We unexpectedly found that the Gli-B2 locus is not a single contiguous locus but is composed of two subloci, suggesting the possibility of recombination between the two during breeding. We confirmed that the number of immunogenic epitopes among 11 accessions varied. The D subgenome of a European spelt line also contained epitopes, in agreement with its hybridization history. Evolutionary analysis identified amino acid sites under diversifying selection, suggesting their functional importance. The analysis opens the way for improved grain quality and safety through wheat breeding.
Collapse
Affiliation(s)
- Gwyneth Halstead-Nussloch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Tsuyoshi Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Brookhaven National Laboratory, Upton, NY, United States
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
22
|
Kuo TCY, Hatakeyama M, Tameshige T, Shimizu KK, Sese J. Homeolog expression quantification methods for allopolyploids. Brief Bioinform 2021; 21:395-407. [PMID: 30590436 PMCID: PMC7299288 DOI: 10.1093/bib/bby121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
Genome duplication with hybridization, or allopolyploidization, occurs in animals, fungi and plants, and is especially common in crop plants. There is an increasing interest in the study of allopolyploids because of advances in polyploid genome assembly; however, the high level of sequence similarity in duplicated gene copies (homeologs) poses many challenges. Here we compared standard RNA-seq expression quantification approaches used currently for diploid species against subgenome-classification approaches which maps reads to each subgenome separately. We examined mapping error using our previous and new RNA-seq data in which a subgenome is experimentally added (synthetic allotetraploid Arabidopsis kamchatica) or reduced (allohexaploid wheat Triticum aestivum versus extracted allotetraploid) as ground truth. The error rates in the two species were very similar. The standard approaches showed higher error rates (>10% using pseudo-alignment with Kallisto) while subgenome-classification approaches showed much lower error rates (<1% using EAGLE-RC, <2% using HomeoRoq). Although downstream analysis may partly mitigate mapping errors, the difference in methods was substantial in hexaploid wheat, where Kallisto appeared to have systematic differences relative to other methods. Only approximately half of the differentially expressed homeologs detected using Kallisto overlapped with those by any other method in wheat. In general, disagreement in low-expression genes was responsible for most of the discordance between methods, which is consistent with known biases in Kallisto. We also observed that there exist uncertainties in genome sequences and annotation which can affect each method differently. Overall, subgenome-classification approaches tend to perform better than standard approaches with EAGLE-RC having the highest precision.
Collapse
Affiliation(s)
- Tony C Y Kuo
- Artificial Intelligence Research Center, AIST, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan.,AIST-Tokyo Tech RWBC-OIL, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland.,Functional Genomics Center Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, Lausanne 1015, Switzerland
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, 641-12, Maioka, Totsuka-ku, Yokohama 244-0813, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, 641-12, Maioka, Totsuka-ku, Yokohama 244-0813, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, AIST, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan.,AIST-Tokyo Tech RWBC-OIL, 2-12-1 Okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
23
|
Milosavljevic S, Kuo T, Decarli S, Mohn L, Sese J, Shimizu KK, Shimizu-Inatsugi R, Robinson MD. ARPEGGIO: Automated Reproducible Polyploid EpiGenetic GuIdance workflOw. BMC Genomics 2021; 22:547. [PMID: 34273949 PMCID: PMC8285871 DOI: 10.1186/s12864-021-07845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genome duplication (WGD) events are common in the evolutionary history of many living organisms. For decades, researchers have been trying to understand the genetic and epigenetic impact of WGD and its underlying molecular mechanisms. Particular attention was given to allopolyploid study systems, species resulting from an hybridization event accompanied by WGD. Investigating the mechanisms behind the survival of a newly formed allopolyploid highlighted the key role of DNA methylation. With the improvement of high-throughput methods, such as whole genome bisulfite sequencing (WGBS), an opportunity opened to further understand the role of DNA methylation at a larger scale and higher resolution. However, only a few studies have applied WGBS to allopolyploids, which might be due to lack of genomic resources combined with a burdensome data analysis process. To overcome these problems, we developed the Automated Reproducible Polyploid EpiGenetic GuIdance workflOw (ARPEGGIO): the first workflow for the analysis of epigenetic data in polyploids. This workflow analyzes WGBS data from allopolyploid species via the genome assemblies of the allopolyploid's parent species. ARPEGGIO utilizes an updated read classification algorithm (EAGLE-RC), to tackle the challenge of sequence similarity amongst parental genomes. ARPEGGIO offers automation, but more importantly, a complete set of analyses including spot checks starting from raw WGBS data: quality checks, trimming, alignment, methylation extraction, statistical analyses and downstream analyses. A full run of ARPEGGIO outputs a list of genes showing differential methylation. ARPEGGIO was made simple to set up, run and interpret, and its implementation ensures reproducibility by including both package management and containerization. RESULTS We evaluated ARPEGGIO in two ways. First, we tested EAGLE-RC's performance with publicly available datasets given a ground truth, and we show that EAGLE-RC decreases the error rate by 3 to 4 times compared to standard approaches. Second, using the same initial dataset, we show agreement between ARPEGGIO's output and published results. Compared to other similar workflows, ARPEGGIO is the only one supporting polyploid data. CONCLUSIONS The goal of ARPEGGIO is to promote, support and improve polyploid research with a reproducible and automated set of analyses in a convenient implementation. ARPEGGIO is available at https://github.com/supermaxiste/ARPEGGIO .
Collapse
Affiliation(s)
- Stefan Milosavljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Tony Kuo
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
| | - Samuele Decarli
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Lucas Mohn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jun Sese
- AIST Artificial Intelligence Research Center, Tokyo, Japan
- Humanome Lab Inc., Chuo-ku, Tokyo, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Qi X, An H, Hall TE, Di C, Blischak PD, McKibben MTW, Hao Y, Conant GC, Pires JC, Barker MS. Genes derived from ancient polyploidy have higher genetic diversity and are associated with domestication in Brassica rapa. THE NEW PHYTOLOGIST 2021; 230:372-386. [PMID: 33452818 DOI: 10.1111/nph.17194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Many crops are polyploid or have a polyploid ancestry. Recent phylogenetic analyses have found that polyploidy often preceded the domestication of crop plants. One explanation for this observation is that increased genetic diversity following polyploidy may have been important during the strong artificial selection that occurs during domestication. In order to test the connection between domestication and polyploidy, we identified and examined candidate genes associated with the domestication of the diverse crop varieties of Brassica rapa. Like all 'diploid' flowering plants, B. rapa has a diploidized paleopolyploid genome and experienced many rounds of whole genome duplication (WGD). We analyzed transcriptome data of more than 100 cultivated B. rapa accessions. Using a combination of approaches, we identified > 3000 candidate genes associated with the domestication of four major B. rapa crop varieties. Consistent with our expectation, we found that the candidate genes were significantly enriched with genes derived from the Brassiceae mesohexaploidy. We also observed that paleologs were significantly more diverse than non-paleologs. Our analyses find evidence for that genetic diversity derived from ancient polyploidy played a key role in the domestication of B. rapa and provide support for its importance in the success of modern agriculture.
Collapse
Affiliation(s)
- Xinshuai Qi
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tara E Hall
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Chenlu Di
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Paul D Blischak
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael T W McKibben
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
25
|
Shimizu KK, Copetti D, Okada M, Wicker T, Tameshige T, Hatakeyama M, Shimizu-Inatsugi R, Aquino C, Nishimura K, Kobayashi F, Murata K, Kuo T, Delorean E, Poland J, Haberer G, Spannagl M, Mayer KFX, Gutierrez-Gonzalez J, Muehlbauer GJ, Monat C, Himmelbach A, Padmarasu S, Mascher M, Walkowiak S, Nakazaki T, Ban T, Kawaura K, Tsuji H, Pozniak C, Stein N, Sese J, Nasuda S, Handa H. De Novo Genome Assembly of the Japanese Wheat Cultivar Norin 61 Highlights Functional Variation in Flowering Time and Fusarium-Resistant Genes in East Asian Genotypes. PLANT & CELL PHYSIOLOGY 2021; 62:8-27. [PMID: 33244607 PMCID: PMC7991897 DOI: 10.1093/pcp/pcaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 05/08/2023]
Abstract
Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Environmental Systems Science, Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Moeko Okada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| | - Fuminori Kobayashi
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Japan
| | - Kazuki Murata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tony Kuo
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- University of Guelph, Centre for Biodiversity Genomics, Guelph, ON, Canada
| | - Emily Delorean
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Georg Haberer
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Weihenstephan, Germany
| | | | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Cecile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sean Walkowiak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Crop Science, Center of Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Humanome Lab, Inc, Tokyo, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirokazu Handa
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Japan
- Laboratoty of Plant Breeding, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
26
|
Hall ND, Patel JD, McElroy JS, Goertzen LR. Detection of subgenome bias using an anchored syntenic approach in Eleusine coracana (finger millet). BMC Genomics 2021; 22:175. [PMID: 33706694 PMCID: PMC7953713 DOI: 10.1186/s12864-021-07447-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
Background Finger millet (Eleusine coracana 2n = 4x = 36) is a hardy, nutraceutical, climate change tolerant, orphan crop that is consumed throughout eastern Africa and India. Its genome has been sequenced multiple times, but A and B subgenomes could not be separated because no published genome for E. indica existed. The classification of A and B subgenomes is important for understanding the evolution of this crop and provide a means to improve current and future breeding programs. Results We produced subgenome calls for 704 syntenic blocks and inferred A or B subgenomic identity for 59,377 genes 81% of the annotated genes. Phylogenetic analysis of a super matrix containing 455 genes shows high support for A and B divergence within the Eleusine genus. Synonymous substitution rates between A and B genes support A and B calls. The repetitive content on highly supported B contigs is higher than that on similar A contigs. Analysis of syntenic singletons showed evidence of biased fractionation showed a pattern of A genome dominance, with 61% A, 37% B and 1% unassigned, and was further supported by the pattern of loss observed among cyto-nuclear interacting genes. Conclusion The evidence of individual gene calls within each syntenic block, provides a powerful tool for inference for subgenome classification. Our results show the utility of a draft genome in resolving A and B subgenomes calls, primarily it allows for the proper polarization of A and B syntenic blocks. There have been multiple calls for the use of phylogenetic inference in subgenome classification, our use of synteny is a practical application in a system that has only one parental genome available. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07447-y.
Collapse
Affiliation(s)
- Nathan D Hall
- Department of Crop, Soil and Environmental Science Auburn University, Auburn, AL, USA.
| | - Jinesh D Patel
- Department of Crop, Soil and Environmental Science Auburn University, Auburn, AL, USA
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Science Auburn University, Auburn, AL, USA
| | - Leslie R Goertzen
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
27
|
Akiyama R, Sun J, Hatakeyama M, Lischer HEL, Briskine RV, Hay A, Gan X, Tsiantis M, Kudoh H, Kanaoka MM, Sese J, Shimizu KK, Shimizu‐Inatsugi R. Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. THE NEW PHYTOLOGIST 2021; 229:3587-3601. [PMID: 33222195 PMCID: PMC7986779 DOI: 10.1111/nph.17101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/09/2020] [Indexed: 05/09/2023]
Abstract
Polyploidization is pervasive in plants, but little is known about the niche divergence of wild allopolyploids (species that harbor polyploid genomes originating from different diploid species) relative to their diploid progenitor species and the gene expression patterns that may underlie such ecological divergence. We conducted a fine-scale empirical study on habitat and gene expression of an allopolyploid and its diploid progenitors. We quantified soil properties and light availability of habitats of an allotetraploid Cardamine flexuosa and its diploid progenitors Cardamine amara and Cardamine hirsuta in two seasons. We analyzed expression patterns of genes and homeologs (homeologous gene copies in allopolyploids) using RNA sequencing. We detected niche divergence between the allopolyploid and its diploid progenitors along water availability gradient at a fine scale: the diploids in opposite extremes and the allopolyploid in a broader range between diploids, with limited overlap with diploids at both ends. Most of the genes whose homeolog expression ratio changed among habitats in C. flexuosa varied spatially and temporally. These findings provide empirical evidence for niche divergence between an allopolyploid and its diploid progenitor species at a fine scale and suggest that divergent expression patterns of homeologs in an allopolyploid may underlie its persistence in diverse habitats.
Collapse
Affiliation(s)
- Reiko Akiyama
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| | - Jianqiang Sun
- Research Center for Agricultural Information TechnologyNational Agriculture and Food Research Organization3‐1‐1 KannondaiTsukubaIbaraki305‐8517Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Functional Genomics Center ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Swiss Institute of BioinformaticsQuartier Sorge – Batiment GenopodeLausanneCH‐1015Switzerland
| | - Heidi E. L. Lischer
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Swiss Institute of BioinformaticsQuartier Sorge – Batiment GenopodeLausanneCH‐1015Switzerland
- Interfaculty Bioinformatics UnitUniversity of BernBaltzerstrasse 6BernCH‐3012Switzerland
| | - Roman V. Briskine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Functional Genomics Center ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| | - Angela Hay
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Xiangchao Gan
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Miltos Tsiantis
- Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Hiroshi Kudoh
- Center for Ecological ResearchKyoto UniversityHirano 2‐509‐3Otsu520‐2113Japan
| | - Masahiro M. Kanaoka
- Division of Biological Science, Graduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Jun Sese
- Humanome Lab, Inc.L‐HUB 3F1‐4, Shumomiyabi‐choShinjukuTokyo162‐0822Japan
- Artificial Intelligence Research CenterAIST2‐3‐26 AomiKoto‐kuTokyo135‐0064Japan
- AIST‐Tokyo Tech RWBC‐OIL2‐12‐1 OkayamaMeguro‐kuTokyo152‐8550Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
- Kihara Institute for Biological Research (KIBR)Yokohama City University641‐12 MaiokaTotsuka‐wardYokohama244‐0813Japan
| | - Rie Shimizu‐Inatsugi
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| |
Collapse
|
28
|
Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat Ecol Evol 2021; 5:1367-1381. [PMID: 34413506 PMCID: PMC8484011 DOI: 10.1038/s41559-021-01525-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Most diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of 'genome shock', such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.
Collapse
Affiliation(s)
- Robin Burns
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Terezie Mandáková
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Joanna Gunis
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Luz Mayela Soto-Jiménez
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Chang Liu
- grid.9464.f0000 0001 2290 1502Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Martin A. Lysak
- grid.10267.320000 0001 2194 0956CEITEC - Central European Institute of Technology, and Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Polina Yu. Novikova
- grid.511033.5VIB-UGent Center for Plant Systems Biology, Ghent, Belgium ,grid.419498.90000 0001 0660 6765Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Magnus Nordborg
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
29
|
Multiple wheat genomes reveal global variation in modern breeding. Nature 2020; 588:277-283. [PMID: 33239791 PMCID: PMC7759465 DOI: 10.1038/s41586-020-2961-x] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars. Comparison of multiple genome assemblies from wheat reveals extensive diversity that results from the complex breeding history of wheat and provides a basis for further potential improvements to this important food crop.
Collapse
|
30
|
Paape T, Akiyama R, Cereghetti T, Onda Y, Hirao AS, Kenta T, Shimizu KK. Experimental and Field Data Support Range Expansion in an Allopolyploid Arabidopsis Owing to Parental Legacy of Heavy Metal Hyperaccumulation. Front Genet 2020; 11:565854. [PMID: 33193650 PMCID: PMC7554548 DOI: 10.3389/fgene.2020.565854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/04/2020] [Indexed: 01/31/2023] Open
Abstract
Empirical evidence is limited on whether allopolyploid species combine or merge parental adaptations to broaden habitats. The allopolyploid Arabidopsis kamchatica is a hybrid of the two diploid parents Arabidopsis halleri and Arabidopsis lyrata. A. halleri is a facultative heavy metal hyperaccumulator, and may be found in cadmium (Cd) and zinc (Zn) contaminated environments, as well as non-contaminated environments. A. lyrata is considered non-tolerant to these metals, but can be found in serpentine habitats. Therefore, the parents have adaptation to different environments. Here, we measured heavy metals in soils from native populations of A. kamchatica. We found that soil Zn concentration of nearly half of the sampled 40 sites was higher than the critical toxicity level. Many of the sites were near human construction, suggesting adaptation of A. kamchatica to artificially contaminated soils. Over half of the A. kamchatica populations had >1,000 μg g–1 Zn in leaf tissues. Using hydroponic treatments, most genotypes accumulated >3,000 μg g–1 Zn, with high variability among them, indicating substantial genetic variation in heavy metal accumulation. Genes involved in heavy metal hyperaccumulation showed an expression bias in the A. halleri-derived homeolog in widely distributed plant genotypes. We also found that two populations were found growing on serpentine soils. These data suggest that A. kamchatica can inhabit a range of both natural and artificial soil environments with high levels of ions that either of the parents specializes and that it can accumulate varying amount of heavy metals. Our field and experimental data provide a compelling example of combining genetic toolkits for soil adaptations to expand the habitat of an allopolyploid species.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Teo Cereghetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Yoshihiko Onda
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Akira S Hirao
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan.,Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Japan
| | - Tanaka Kenta
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
31
|
Abstract
The number of pollen grains is a critical part of the reproductive strategies in plants and varies greatly between and within species. In agriculture, pollen viability is important for crop breeding. It is a laborious work to count pollen tubes using a counting chamber under a microscope. Here, we present a method of counting the number of pollen grains using a cell counter. In this method, the counting step is shortened to 3 min per flower, which, in our setting, is more than five times faster than the counting chamber method. This technique is applicable to species with a lower and higher number of pollen grains, as it can count particles in a wide range, from 0 to 20,000 particles, in one measurement. The cell counter also estimates the size of the particles together with the number. Because aborted pollen shows abnormal membrane characteristics and/or a distorted or smaller shape, a cell counter can quantify the number of normal and aborted pollen separately. We explain how to count the number of pollen grains and measure pollen size in Arabidopsis thaliana, Arabidopsis kamchatica, and wheat (Triticum aestivum).
Collapse
|
32
|
Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SIS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020; 30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Daiki Yoshihara
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Arakawa
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Armstrong JJ, Takebayashi N, Wolf DE. Cold tolerance in the genus Arabidopsis. AMERICAN JOURNAL OF BOTANY 2020; 107:489-497. [PMID: 32096224 PMCID: PMC7137905 DOI: 10.1002/ajb2.1442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/02/2020] [Indexed: 05/11/2023]
Abstract
PREMISE Cold tolerance is an important factor limiting the geographic distribution and growing season for many plant species, yet few studies have examined variation in cold tolerance extensively within and among closely related species and compared that to their geographic distribution. METHODS This study examines cold tolerance within and among species in the genus Arabidopsis. We assessed cold tolerance by measuring electrolyte leakage from detached leaves in multiple populations of five Arabidopsis taxa. The temperature at which 50% of cells were lysed was considered the lethal temperature (LT50 ). RESULTS We found variability within and among taxa in cold tolerance. There was no significant within-species relationship between latitude and cold tolerance. However, the northern taxa, A. kamchatica, A. lyrata subsp. petraea, and A. lyrata subsp. lyrata, were more cold tolerant than A. thaliana and A. halleri subsp. gemmifera both before and after cold acclimation. Cold tolerance increased after cold acclimation (exposure to low, but nonfreezing temperatures) for all taxa, although the difference was not significant for A. halleri subsp. gemmifera. For all taxa except A. lyrata subsp. lyrata, the LT50 values for cold-acclimated plants were higher than the January mean daily minimum temperature (Tmin ), indicating that if plants were not insulated by snow cover, they would not likely survive winter at the northern edge of their range. CONCLUSIONS Arabidopsis lyrata and A. kamchatica were far more cold tolerant than A. thaliana. These extremely cold-tolerant taxa are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.
Collapse
Affiliation(s)
- Jessica J. Armstrong
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- University of Alaska Fairbanks, eCampus, P. O. Box 756700,
Fairbanks, AK 99775 USA
| | - Naoki Takebayashi
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
| | - Diana E. Wolf
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- Author for correspondence
()
| |
Collapse
|
34
|
Cai Y, Cai X, Wang Q, Wang P, Zhang Y, Cai C, Xu Y, Wang K, Zhou Z, Wang C, Geng S, Li B, Dong Q, Hou Y, Wang H, Ai P, Liu Z, Yi F, Sun M, An G, Cheng J, Zhang Y, Shi Q, Xie Y, Shi X, Chang Y, Huang F, Chen Y, Hong S, Mi L, Sun Q, Zhang L, Zhou B, Peng R, Zhang X, Liu F. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:814-828. [PMID: 31479566 PMCID: PMC7004908 DOI: 10.1111/pbi.13249] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 05/09/2023]
Abstract
The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.
Collapse
Affiliation(s)
- Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Xiaoyan Cai
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Qinglian Wang
- School of Life Science and TechnologyHenan Institute of Science and TechnologyCollaborative Innovation Center of Modern Biological Breeding of Henan ProvinceHenan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and WheatXinxiangChina
| | - Ping Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yu Zhang
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yanchao Xu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Kunbo Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhongli Zhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Chenxiao Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Shuaipeng Geng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Bo Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Qi Dong
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Yuqing Hou
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Heng Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Peng Ai
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Zhen Liu
- Anyang Institute of TechnologyAnyangChina
| | - Feifei Yi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Minshan Sun
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Guoyong An
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Jieru Cheng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yuanyuan Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Qian Shi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yuanhui Xie
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Xinying Shi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Ying Chang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Feifei Huang
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Yun Chen
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Shimiao Hong
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Lingyu Mi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Quan Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Lin Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | | | | | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Fang Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
35
|
Yin D, Ji C, Song Q, Zhang W, Zhang X, Zhao K, Chen CY, Wang C, He G, Liang Z, Ma X, Li Z, Tang Y, Wang Y, Li K, Ning L, Zhang H, Zhao K, Li X, Yu H, Lei Y, Wang M, Ma L, Zheng H, Zhang Y, Zhang J, Hu W, Chen ZJ. Comparison of Arachis monticola with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901672. [PMID: 32099754 PMCID: PMC7029647 DOI: 10.1002/advs.201901672] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Indexed: 05/05/2023]
Abstract
Like many important crops, peanut is a polyploid that underwent polyploidization, evolution, and domestication. The wild allotetraploid peanut species Arachis monticola (A. monticola) is an important and unique link from the wild diploid species to cultivated tetraploid species in the Arachis lineage. However, little is known about A. monticola and its role in the evolution and domestication of this important crop. A fully annotated sequence of ≈2.6 Gb A. monticola genome and comparative genomics of the Arachis species is reported. Genomic reconstruction of 17 wild diploids from AA, BB, EE, KK, and CC groups and 30 tetraploids demonstrates a monophyletic origin of A and B subgenomes in allotetraploid peanuts. The wild and cultivated tetraploids undergo asymmetric subgenome evolution, including homoeologous exchanges, homoeolog expression bias, and structural variation (SV), leading to subgenome functional divergence during peanut domestication. Significantly, SV-associated homoeologs tend to show expression bias and correlation with pod size increase from diploids to wild and cultivated tetraploids. Moreover, genomic analysis of disease resistance genes shows the unique alleles present in the wild peanut can be introduced into breeding programs to improve some resistance traits in the cultivated peanuts. These genomic resources are valuable for studying polyploid genome evolution, domestication, and improvement of peanut production and resistance.
Collapse
Affiliation(s)
- Dongmei Yin
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Changmian Ji
- Biomarker Technologies CorporationBeijing101300China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- Department of Molecular Biosciences and Center for Computational Biology and BioinformaticsThe University of Texas at AustinAustin78705USA
| | - Wanke Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijing100101China
| | - Xingguo Zhang
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Kunkun Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | | | | | - Guohao He
- Department of Agricultural and Environmental SciencesTuskegee UniversityTuskegeeAL36088USA
| | - Zhe Liang
- Centre for Organismal StudiesUniversity of HeidelbergD‐69120HeidelbergGermany
| | - Xingli Ma
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Zhongfeng Li
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Yueyi Tang
- Shandong Peanut Research InstituteQingdao266000China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular GeneticsCenter for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200032China
| | - Ke Li
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Longlong Ning
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Hui Zhang
- College of AgricultureAuburn UniversityAuburnAL36849USA
| | - Kai Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Xuming Li
- Biomarker Technologies CorporationBeijing101300China
| | - Haiyan Yu
- Biomarker Technologies CorporationBeijing101300China
| | - Yan Lei
- Biomarker Technologies CorporationBeijing101300China
| | | | - Liming Ma
- Biomarker Technologies CorporationBeijing101300China
| | - Hongkun Zheng
- Biomarker Technologies CorporationBeijing101300China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular GeneticsCenter for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200032China
| | - Jinsong Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijing100101China
| | - Wei Hu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Z. Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- Department of Molecular Biosciences and Center for Computational Biology and BioinformaticsThe University of Texas at AustinAustin78705USA
| |
Collapse
|
36
|
Kryvokhyzha D, Salcedo A, Eriksson MC, Duan T, Tawari N, Chen J, Guerrina M, Kreiner JM, Kent TV, Lagercrantz U, Stinchcombe JR, Glémin S, Wright SI, Lascoux M. Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae). PLoS Genet 2019; 15:e1007949. [PMID: 30768594 PMCID: PMC6395008 DOI: 10.1371/journal.pgen.1007949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Allopolyploidy is generally perceived as a major source of evolutionary novelties and as an instantaneous way to create isolation barriers. However, we do not have a clear understanding of how two subgenomes evolve and interact once they have fused in an allopolyploid species nor how isolated they are from their relatives. Here, we address these questions by analyzing genomic and transcriptomic data of allotetraploid Capsella bursa-pastoris in three differentiated populations, Asia, Europe, and the Middle East. We phased the two subgenomes, one descended from the outcrossing and highly diverse Capsella grandiflora (CbpCg) and the other one from the selfing and genetically depauperate Capsella orientalis (CbpCo). For each subgenome, we assessed its relationship with the diploid relatives, temporal changes of effective population size (Ne), signatures of positive and negative selection, and gene expression patterns. In all three regions, Ne of the two subgenomes decreased gradually over time and the CbpCo subgenome accumulated more deleterious changes than CbpCg. There were signs of widespread admixture between C. bursa-pastoris and its diploid relatives. The two subgenomes were impacted differentially depending on geographic region suggesting either strong interploidy gene flow or multiple origins of C. bursa-pastoris. Selective sweeps were more common on the CbpCg subgenome in Europe and the Middle East, and on the CbpCo subgenome in Asia. In contrast, differences in expression were limited with the CbpCg subgenome slightly more expressed than CbpCo in Europe and the Middle-East. In summary, after more than 100,000 generations of co-existence, the two subgenomes of C. bursa-pastoris still retained a strong signature of parental legacy but their evolutionary trajectory strongly varied across geographic regions.
Collapse
Affiliation(s)
- Dmytro Kryvokhyzha
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adriana Salcedo
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Mimmi C. Eriksson
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Tianlin Duan
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nilesh Tawari
- Computational and Systems Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research (A*Star), Singapore
| | - Jun Chen
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Guerrina
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia M. Kreiner
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Tyler V. Kent
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Ulf Lagercrantz
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Sylvain Glémin
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- CNRS, Université de Rennes 1, ECOBIO (Ecosystémes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - Stephen I. Wright
- Department of Ecology and Evolution, University of Toronto, Toronto, Canada
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|