1
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Stream A, Corriden R, Döhrmann S, Gallo RL, Nizet V, Anderson EL. The Effect of Retinoic Acid on Neutrophil Innate Immune Interactions With Cutaneous Bacterial Pathogens. INFECTIOUS MICROBES & DISEASES 2024; 6:65-73. [PMID: 38952747 PMCID: PMC11216695 DOI: 10.1097/im9.0000000000000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Vitamin A and its biologically active derivative, retinoic acid (RA), are important for many immune processes. RA, in particular, is essential for the development of immune cells, including neutrophils, which serve as a front-line defense against infection. While vitamin A deficiency has been linked to higher susceptibility to infections, the precise role of vitamin A/RA in host-pathogen interactions remains poorly understood. Here, we provided evidence that RA boosts neutrophil killing of methicillin-resistant Staphylococcus aureus (MRSA). RA treatment stimulated primary human neutrophils to produce reactive oxygen species, neutrophil extracellular traps, and the antimicrobial peptide cathelicidin (LL-37). Because RA treatment was insufficient to reduce MRSA burden in an in vivo murine model of skin infection, we expanded our analysis to other infectious agents. RA did not affect the growth of a number of common bacterial pathogens, including MRSA, Escherichia coli K1 and Pseudomonas aeruginosa; however, RA directly inhibited the growth of group A Streptococcus (GAS). This antimicrobial effect, likely in combination with RA-mediated neutrophil boosting, resulted in substantial GAS killing in neutrophil killing assays conducted in the presence of RA. Furthermore, in a murine model of GAS skin infection, topical RA treatment showed therapeutic potential by reducing both skin lesion size and bacterial burden. These findings suggest that RA may hold promise as a therapeutic agent against GAS and perhaps other clinically significant human pathogens.
Collapse
Affiliation(s)
- Alexandra Stream
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Simon Döhrmann
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 3, USA
| | - Ericka L. Anderson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
3
|
Yue C, Hu Y, Yu J, Zhou H, Zhou P, Hu J, Wang X, Gu L, Li Y, Feng Y, Zeng F, Zhao F, Li G, Zhao Q, Zhang C, Zheng H, Wu W, Cui X, Huang N, Wang Z, Cui K, Li J. IL-38 Aggravates Atopic Dermatitis via Facilitating Migration of Langerhans cells. Int J Biol Sci 2024; 20:3094-3112. [PMID: 38904012 PMCID: PMC11186352 DOI: 10.7150/ijbs.93843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammation skin disease that involves dysregulated interplay between immune cells and keratinocytes. Interleukin-38 (IL-38), a poorly characterized IL-1 family cytokine, its role and mechanism in the pathogenesis of AD is elusive. Here, we show that IL-38 is mainly secreted by epidermal keratinocytes and highly expressed in the skin and downregulated in AD lesions. We generated IL-38 keratinocyte-specific knockout mice (K14Cre/+-IL-38f/f ) and induced AD models by 2,4-dinitrofluorobenzene (DNFB). Unexpectedly, after treatment with DNFB, K14Cre/+-IL-38f/f mice were less susceptible to cutaneous inflammation of AD. Moreover, keratinocyte-specific deletion of IL-38 suppressed the migration of Langerhans cells (LCs) into lymph nodes which results in disturbed differentiation of CD4+T cells and decreased the infiltration of immune cells into AD lesions. LCs are a type of dendritic cell that reside specifically in the epidermis and regulate immune responses. We developed LC-like cells in vitro from mouse bone marrow (BM) and treated with recombined IL-38. The results show that IL-38 depended on IL-36R, activated the phosphorylated expression of IRAK4 and NF-κB P65 and upregulated the expression of CCR7 to promoting the migration of LCs, nevertheless, the upregulation disappeared with the addition of IL-36 receptor antagonist (IL-36RA), IRAK4 or NF-κB P65 inhibitor. Furthermore, after treatment with IRAK4 inhibitors, the experimental AD phenotypes were alleviated and so IRAK4 is considered a promising target for the treatment of inflammatory diseases. Overall, our findings indicated a potential pathway that IL-38 depends on IL-36R, leading to LCs migration to promote AD by upregulating CCR7 via IRAK4/NF-κB and implied the prevention and treatment of AD, supporting potential clinical utilization of IRAK4 inhibitors in AD treatment.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xinai Cui
- CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, 37 Guo Xue Road, Chengdu, Sichuan 610041, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Minò A, Lopez F, Barbaro R, Barile M, Ambrosone L, Colella M. Effects of Anionic Liposome Delivery of All- Trans-Retinoic Acid on Neuroblastoma Cell Differentiation. Biomimetics (Basel) 2024; 9:257. [PMID: 38786467 PMCID: PMC11118614 DOI: 10.3390/biomimetics9050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
All-trans-retinoic acid (ATRA) has long been known to affect cell growth and differentiation. To improve ATRA's therapeutic efficacy and pharmacodynamics, several delivery systems have been used. In this study, free ATRA and anionic-liposome-encapsulated ATRA were compared for their effects on SK-N-SH human neuroblastoma cell growth and differentiation. Anionic liposomes made of L-α-phosphatidylcholine (PC) and L-α-phosphatidic acid (PA), empty (PC-PA) and loaded with ATRA (PC-PA-ATRA), were characterized by dynamic light scattering (DLS) and electrophoretic mobility measurements, and drug entrapment efficiency (EE%) was measured to evaluate the applicability of the new colloidal formulation. The results of brightfield microscopy and cell growth curves indicated that ATRA, whether free or encapsulated, reduced growth and induced differentiation, resulting in SK-N-SH cells changing from epithelioid to neuronal-like morphologies, and producing a significant increase in neurite growth. To further characterize the neuro-differentiation of SK-N-SH cells, the expression of βIII-Tubulin and synaptophysin and mitochondria localization were analyzed via immunofluorescence. Increased expression of neuronal markers and a peculiar localization of mitochondria in the neuritic extensions were apparent both in ATRA- and PC-PA-ATRA-differentiated cells. As a whole, our results strongly indicate that ATRA treatment, by any means, can induce the differentiation of parent SK-N-SH, and they highlight that its encapsulation in anionic liposomes increases its differentiation ability in terms of the percentage of neurite-bearing cells. Interestingly, our data also suggest an unexpected differentiation capability of anionic liposomes per se. This work highlights the importance of developing and carefully testing novel delivery nanocarriers, which are a necessary first "step" in the development of new therapeutic settings.
Collapse
Affiliation(s)
- Antonio Minò
- Department of Biosciences and Territory (DiBT), University of Molise, Contrada Lappone, 86090 Pesche, Italy;
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Roberto Barbaro
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| |
Collapse
|
5
|
Bazid HAS, Marae A, Tayel N, Serag E, Selim H, Mostafa MI, Abd El Gayed E. Assessment of cytochrome P450 1A1 gene polymorphism and vitamin A serum level in psoriasis vulgaris. J Immunoassay Immunochem 2023; 44:269-282. [PMID: 36921208 DOI: 10.1080/15321819.2023.2189471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Psoriasis is characterized by cutaneous hyperproliferation, secondary to immune system dysregulation. Vitamin A regulates the immune response and sustains epithelial tissue hemostasis. The CYP1A1 gene, has many biological actions, including vitamin A metabolism. To evaluate CYP1A1 gene polymorphism and serum vitamin A level in patients with psoriasis vulgaris, a case-control study involving two groups was conducted: group 1 (45 patients with psoriasis vulgaris) served as the cased group and group 2 (45 healthy participants who were sex and age matched) acted as the control group. CYP1A1 (rs1048943) gene polymorphism and vitamin A serum level were assessed by TaqMan allelic discrimination (PCR) and ELISA, respectively. AG genotype was present only in cases (22.2%), while AA genotype was present in all controls (P=.001). Vitamin A levels were lower in cases than in controls (32.0 ± 7.41 vs. 46.2 ± 15.7 μg/ml, respectively) (P<.001). AG genotype was associated with a lower vitamin A level (P=.001). The detected genotype difference between psoriasis patients and controls, which was associated with a lower serum vitamin A level and was also lower in more severe cases, suggests a role of the CYP1A1 gene and vitamin A in disease pathogenesis and prognosis.
Collapse
Affiliation(s)
- Heba A S Bazid
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Alaa Marae
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Nermin Tayel
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute, Egypt
| | - Etab Serag
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Hadeer Selim
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Mohammed I Mostafa
- Clinical Pathology Department, Medical Research Division, National Research Centre, Egypt
| | - Eman Abd El Gayed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
6
|
Khodaei T, Schmitzer E, Suresh AP, Acharya AP. Immune response differences in degradable and non-degradable alloy implants. Bioact Mater 2022; 24:153-170. [PMID: 36606252 PMCID: PMC9793227 DOI: 10.1016/j.bioactmat.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alloy based implants have made a great impact in the clinic and in preclinical research. Immune responses are one of the major causes of failure of these implants in the clinic. Although the immune responses toward non-degradable alloy implants are well documented, there is a poor understanding of the immune responses against degradable alloy implants. Recently, there have been several reports suggesting that degradable implants may develop substantial immune responses. This phenomenon needs to be further studied in detail to make the case for the degradable implants to be utilized in clinics. Herein, we review these new recent reports suggesting the role of innate and potentially adaptive immune cells in inducing immune responses against degradable implants. First, we discussed immune responses to allergen components of non-degradable implants to give a better overview on differences in the immune response between non-degradable and degradable implants. Furthermore, we also provide potential areas of research that can be undertaken that may shed light on the local and global immune responses that are generated in response to degradable implants.
Collapse
Affiliation(s)
- Taravat Khodaei
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | - Elizabeth Schmitzer
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | | | - Abhinav P. Acharya
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA,Biological Design, Arizona State University, Tempe, AZ, 85281, USA,Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State, University, Tempe, AZ, 85281, USA,Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA,Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA,Corresponding author. Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA.
| |
Collapse
|
7
|
Xuan S, Li Y, Wu Y, Adcock IM, Zeng X, Yao X. Langerin-expressing dendritic cells in pulmonary immune-related diseases. Front Med (Lausanne) 2022; 9:909057. [PMID: 36160158 PMCID: PMC9490018 DOI: 10.3389/fmed.2022.909057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are “frontline” immune cells dedicated to antigen presentation. They serve as an important bridge connecting innate and adaptive immunity, and express various receptors for antigen capture. DCs are divided into various subclasses according to their differential expression of cell surface receptors and different subclasses of DCs exhibit specific immunological characteristics. Exploring the common features of each sub-category has became the focus of many studies. There are certain amounts of DCs expressing langerin in airways and peripheral lungs while the precise mechanism by which langerin+ DCs drive pulmonary disease is unclear. Langerin-expressing DCs can be further subdivided into numerous subtypes based on the co-expressed receptors, but here, we identify commonalities across these subtypes that point to the major role of langerin. Better understanding is required to clarify key disease pathways and determine potential new therapeutic approaches.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuebei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiaoning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Yao
| |
Collapse
|
8
|
Zhao F, Zhang C, Li G, Zheng H, Gu L, Zhou H, Xiao Y, Wang Z, Yu J, Hu Y, Zeng F, Wang X, Zhao Q, Hu J, Yue C, Zhou P, Huang N, Hao Y, Wu W, Cui K, Li W, Li J. A role for whey acidic protein four-disulfide-core 12 (WFDC12) in the pathogenesis and development of psoriasis disease. Front Immunol 2022; 13:873720. [PMID: 36148224 PMCID: PMC9485559 DOI: 10.3389/fimmu.2022.873720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Whey acidic protein four-disulfide core domain protein 12 (WFDC12) has been implicated in the pathogenesis of psoriasis but the specific molecular mechanism is not clearly defined. In this study, we found the expression of WFDC12 protein closely correlated with psoriasis. WFDC12 in keratinocyte might increase infiltration of Langerhans cells (LCs) and monocyte-derived dendritic cells (moDDCs), up-regulating the co-stimulation molecular CD40/CD86. Th1 cells in lymph nodes were higher in K14-WFDC12 transgenic psoiasis-like mice. Meanwhile, the mRNA of IL-12 and IFN-γ in the lesion skin was significantly increased in transgenic mice. Moreover, we found that the expression of the proteins that participated in the retinoic acid–related pathway and immune signaling pathway was more changed in the lesion skin of K14-WFDC12 transgenic psoriasis-like mice. Collectively, the results implied that WFDC12 might affect the activation of the retinoic acid signaling pathway and regulate the infiltration of DC cells in the skin lesions and lymph nodes, thereby inducing Th1 cells differentiation and increasing the secretion of IFN-γ to exacerbate psoriasis in mice.
Collapse
Affiliation(s)
- Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
- *Correspondence: Jiong Li,
| |
Collapse
|
9
|
Tuong ZK, Lukowski SW, Nguyen QH, Chandra J, Zhou C, Gillinder K, Bashaw AA, Ferdinand JR, Stewart BJ, Teoh SM, Hanson SJ, Devitt K, Clatworthy MR, Powell JE, Frazer IH. A model of impaired Langerhans cell maturation associated with HPV induced epithelial hyperplasia. iScience 2021; 24:103326. [PMID: 34805788 PMCID: PMC8586807 DOI: 10.1016/j.isci.2021.103326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial microorganisms. Human papillomavirus (HPV) infection can promote malignant epithelial transformation. As LCs are considered important for controlling HPV infection, we compared the transcriptome of murine LCs from skin transformed by K14E7 oncoprotein and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal skin, associated with ontogeny, cell cycle, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was significantly disturbed in HPV16 E7-transformed skin. Hyperplastic skin was depleted of immune-stimulatory LCs and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte crosstalk was dysregulated. We identified reduced expression of interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers. Single cell atlas of Langerhans cells in cutaneous skin Stimulatory and inhibitory Langerhans cell states are in balance Inhibitory Langerhans cell states dominate HPV-transformed hyperplastic skin Langerhans cell imbalance is associated with disrupted IL-34 signaling
Collapse
Affiliation(s)
- Zewen K Tuong
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.,Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Samuel W Lukowski
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Quan H Nguyen
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chenhao Zhou
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kevin Gillinder
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Abate A Bashaw
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sarah J Hanson
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Katharina Devitt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
10
|
Mázló A, Kovács R, Miltner N, Tóth M, Veréb Z, Szabó K, Bacskai I, Pázmándi K, Apáti Á, Bíró T, Bene K, Rajnavölgyi É, Bácsi A. MSC-like cells increase ability of monocyte-derived dendritic cells to polarize IL-17-/IL-10-producing T cells via CTLA-4. iScience 2021; 24:102312. [PMID: 33855282 PMCID: PMC8027231 DOI: 10.1016/j.isci.2021.102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) in vitro. Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the in vitro differentiation of human monocytes into DCs were investigated. MSCl cells promote the differentiation of CTLA-4 expressing DCs via the production of all-trans retinoic acid (ATRA) functioning as a ligand of RARα, a key nuclear receptor in DC development. These semi-matured DCs exhibit an ability to activate allogeneic, naive T cells and polarize them into IL-10 + IL-17 + double-positive T helper cells in a CTLA-4-dependent manner. Mapping the molecular mechanisms of MSC-mediated indirect modulation of DC differentiation may help to expand MSCs' clinical application in cell-free therapies. Mesenchymal stromal cell-like cells alter moDC differentiation via RARα activation Mesenchymal stromal cell-like cells express genes known to play role in ATRA synthesis MoDCs, differentiated in the presence of MSCl-derived factors, express CTLA-4 CTLA-4+ moDCs are able to induce polarization of IL-10- and IL-17-producing helper T cells
Collapse
Affiliation(s)
- Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,MTA-DE Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ramóna Kovács
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Noémi Miltner
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Csongrád-Csanád County 6720, Hungary.,Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Csongrád-Csanád County 6720, Hungary
| | - Krisztina Szabó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ildikó Bacskai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117 Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Krisztián Bene
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Éva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| |
Collapse
|
11
|
Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021; 93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complex interactions between the environment and the mucosal immune system underlie inflammatory bowel disease (IBD). The involved cytokine signalling pathways are modulated by a number of transcription factors, one of which is runt-related transcription factor 3 (RUNX3). OBJECTIVE To systematically review the immune roles of RUNX3 in immune regulation, with a focus on the context of IBD. METHODS Relevant articles and reviews were identified through a Scopus search in April 2020. Information was categorized by immune cell types, analysed and synthesized. IBD transcriptome data sets and FANTOM5 regulatory networks were processed in order to complement the literature review. RESULTS The available evidence on the immune roles of RUNX3 allowed for its description in twelve cell types: intraepithelial lymphocyte, Th1, Th2, Th17, Treg, double-positive T, cytotoxic T, B, dendritic, innate lymphoid, natural killer and macrophages. In the gut, the activity of RUNX3 is multifaceted and context-dependent: it may promote homeostasis or exacerbated reactions via cytokine signalling and regulation of receptor expression. RUNX3 is mostly engaged in pathways involving ThPOK, T-bet, IFN-γ, TGF-β/IL-2Rβ, GATA/CBF-β, SMAD/p300 and a number of miRNAs. RUNX3 targets relevant to IBD may include RAG1, OSM and IL-17B. Moreover, in IBD RUNX3 expression correlates positively with GZMM, and negatively with IFNAR1, whereas in controls, it strongly associates with TGFBR3. CONCLUSIONS Dysregulation of RUNX3, mostly in the form of deficiency, likely contributes to IBD pathogenesis. More clinical research is needed to examine RUNX3 in IBD.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rémi Duclaux-Loras
- INSERM U1111, Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
12
|
Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, Qin S, Zhang L, Ouyang H, Du P, Jiang L, Zhang B, Yang Y, Wang X, Ren X, Bei JX, Hu X, Bu Z, Ji J, Zhang Z. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 2021; 184:792-809.e23. [PMID: 33545035 DOI: 10.1016/j.cell.2021.01.010] [Citation(s) in RCA: 591] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties across different tumors remain elusive. Here, by performing a pan-cancer analysis of single myeloid cells from 210 patients across 15 human cancer types, we identified distinct features of TIMs across cancer types. Mast cells in nasopharyngeal cancer were found to be associated with better prognosis and exhibited an anti-tumor phenotype with a high ratio of TNF+/VEGFA+ cells. Systematic comparison between cDC1- and cDC2-derived LAMP3+ cDCs revealed their differences in transcription factors and external stimulus. Additionally, pro-angiogenic tumor-associated macrophages (TAMs) were characterized with diverse markers across different cancer types, and the composition of TIMs appeared to be associated with certain features of somatic mutations and gene expressions. Our results provide a systematic view of the highly heterogeneous TIMs and suggest future avenues for rational, targeted immunotherapies.
Collapse
Affiliation(s)
- Sijin Cheng
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ziyi Li
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ranran Gao
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yunong Gao
- Department of Gynecologic Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yu Yang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shishang Qin
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hanqiang Ouyang
- Department of Orthopaedics, Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Peng Du
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liang Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
| | - Bin Zhang
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiliang Wang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianwen Ren
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Xueda Hu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhaode Bu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China; Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Peking University International Cancer Institute, Beijing 100191, China.
| |
Collapse
|
13
|
Illuminating the Role of Vitamin A in Skin Innate Immunity and the Skin Microbiome: A Narrative Review. Nutrients 2021; 13:nu13020302. [PMID: 33494277 PMCID: PMC7909803 DOI: 10.3390/nu13020302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is a fat-soluble vitamin that plays an important role in skin immunity. Deficiencies in Vitamin A have been linked to impaired immune response and increased susceptibility to skin infections and inflammatory skin disease. This narrative review summarizes recent primary evidence that elucidates the role of vitamin A and its derivatives on innate immune regulators through mechanisms that promote skin immunity and sustain the skin microbiome.
Collapse
|
14
|
Friesen L, Gu B, Kim C. A ligand-independent fast function of RARα promotes exit from metabolic quiescence upon T cell activation and controls T cell differentiation. Mucosal Immunol 2021; 14:100-112. [PMID: 32518366 PMCID: PMC7725911 DOI: 10.1038/s41385-020-0311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023]
Abstract
Vitamin A metabolites play important roles in T cell activation and differentiation. A conventional model of RARα function relies upon retinoic acid (RA)-liganded RARα binding to specific DNA motifs to regulate gene expression in the nucleus. However, this genomic function fails to explain many of the biological responses of the RA-RARα axis on T cells. We generated a mouse line where RARα is over-expressed in T cells to probe RARα function with unprecedented sensitivity. Using this model together with mice specifically lacking RARα in T cells, we found that RARα is required for prompt exit from metabolic quiescence in resting T cells upon T cell activation. The positive effect of RARα on metabolism is mediated through PI3K and subsequent activation of the Akt and mTOR signaling pathway. This largely non-genomic function of RARα is surprisingly ligand-independent and controls the differentiation of effector and regulatory T cell subsets.
Collapse
Affiliation(s)
- L.R. Friesen
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - B. Gu
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906
| | - C.H. Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109,Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
15
|
Lazow SP, Tracy SA, Chalphin AV, Kycia I, Zurakowski D, Fauza DO. Initial Mechanistic Screening of Transamniotic Stem Cell Therapy in the Rodent Model of Spina Bifida: Host Bone Marrow and Paracrine Activity. Fetal Diagn Ther 2020; 47:902-911. [PMID: 32877907 DOI: 10.1159/000509244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/06/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Transamniotic stem cell therapy (TRASCET) with mesenchymal stem cells (MSCs) can induce spina bifida coverage with neoskin. We initiated a mechanistic analysis of this host response. METHODS Pregnant dams (n = 28) exposed to retinoic acid to induce fetal spina bifida were divided into an untreated group and 2 groups receiving intra-amniotic injections on gestational day 17 (E17; term = E21-22) of either amniotic fluid-derived MSCs (afMSCs; n = 105) or saline (n = 107). Gene expressions of multiple paracrine and cell clonality markers were quantified at term by RT-qPCR at the defect and fetal bone marrow. Defects were examined histologically for neoskin coverage. Comparisons were by Mann-Whitney U tests and logistic regression. RESULTS Defect coverage was associated with significant downregulation of both epidermal growth factor (Egf; p = 0.031) and fibroblast growth factor-2 (Fgf-2; p = 0.042) expressions at the defect and with significant downregulation of transforming growth factor-beta-1 (Tgfb-1; p = 0.021) and CD45 (p = 0.028) expressions at the fetal bone marrow. CONCLUSIONS Coverage of experimental spina bifida is associated with local and bone marrow negative feedback of select paracrine factors, as well as increased relative mesenchymal stem cell activity in the bone marrow. Further analyses informed by these findings may lead to strategies of nonsurgical induction of prenatal coverage of spina bifida.
Collapse
Affiliation(s)
- Stefanie P Lazow
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A Tracy
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander V Chalphin
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ina Kycia
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA,
| |
Collapse
|
16
|
Ferreira R, Napoli J, Enver T, Bernardino L, Ferreira L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat Commun 2020; 11:4265. [PMID: 32848154 PMCID: PMC7450074 DOI: 10.1038/s41467-020-18042-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Retinoids regulate a wide spectrum of cellular functions from the embryo throughout adulthood, including cell differentiation, metabolic regulation, and inflammation. These traits make retinoids very attractive molecules for medical purposes. In light of some of the physicochemical limitations of retinoids, the development of drug delivery systems offers several advantages for clinical translation of retinoid-based therapies, including improved solubilization, prolonged circulation, reduced toxicity, sustained release, and improved efficacy. In this Review, we discuss advances in preclinical and clinical tests regarding retinoid formulations, specifically the ones based in natural retinoids, evaluated in the context of regenerative medicine, brain, cancer, skin, and immune diseases. Advantages and limitations of retinoid formulations, as well as prospects to push the field forward, will be presented.
Collapse
Grants
- MC_U137973817 Medical Research Council
- MR/N000838/1 Medical Research Council
- The authors would like to thank Andreia Vilaça for the illustrations and the financial support of ERA Chair project (ERA@UC, ref:669088) through EU Horizon 2020 program, the POCI-01-0145-FEDER-016390 (acronym: CANCEL STEM) and POCI-01-0145-FEDER-029414 (acronym: LIghtBRARY) projects through Compete 2020 and FCT programs, projects 2IQBIONEURO (reference: 0624_2IQBIONEURO_6_E) and NEUROATLANTIC (reference: EAPA_791/2018) co-funded by INTERREG (Atlantic program or V-A Spain-Portugal) and European fund for Regional Development (FEDER), FCT (Portugal, SFRH/BPD/102103/2014), National Funds by Foundation for Science and Technology (UID/Multi/00709/2013), “Programa Operacional do Centro, Centro 2020” through the funding of the ICON project (Interdisciplinary Challenges On Neurodegeneration; CENTRO-01-0145-FEDER-000013), EXPL/BIM-MED/0822/2013 (LB), (SFRH/BPD/94228/2013, IF/00178/2015) (RF), Cerebrovascular Disease Grant and L’Oréal-UNESCO Portugal for Women in Science for supporting this work. Authors declare there are no conflict of interests.
Collapse
Affiliation(s)
- Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Joseph Napoli
- Nutritional Sciences and Toxicology, University of California, 231 Morgan Hall, MC#3104, Berkeley, CA, 94720, USA
| | - Tariq Enver
- UCL Cancer Institute, University College London, London, UK
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
17
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|