1
|
Wu J, Ren Z, Xu X, Mok DH, Guo W, Ye K, Shen P, Zhang W, Ni B, Wan S, Yu G, Cai WB, Back S, Wang J, Jiang K. Chemical Bath Deposition of NiFe Alloy Anode for Efficient Alkaline Water Electrolyzer Integration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407374. [PMID: 39463069 DOI: 10.1002/smll.202407374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Green hydrogen production from water splitting is a feasible way for intermittent renewable energy storage and utilization, where the exploration and scale-up preparation of high-performance anodic oxygen evolution electrocatalysts are critical prerequisites for its industrial-level applications. Herein, a chemical bath deposition of FeNi3 intermetallic alloys onto Ni mesh support is performed, which delivers a current density of 0.62 A cm-2 at 1.72 V versus reversible hydrogen electrode for alkaline water oxidation in 1 m KOH and an excellent electrolysis stability at 0.2 A cm-2 for over 300 h. Moreover, via 3D computational fluid dynamics simulation and flow field optimization, a homogeneous deposition of ≈5400 cm2 NiFe anode is demonstrated within 4 min using the developed flow bath reactor. Once integrating the as-prepared NiFe anodes into alkaline electrolyzer stack, the voltage variation between each unit cell is below 40 mV at a total operation current of 71 A, or ca. current density of 0.2 A cm-2, confirming the uniformity of this batch synthesis protocol and its great potential for industrial alkaline water electrolysis.
Collapse
Affiliation(s)
- Jingwen Wu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhibo Ren
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Xindi Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Dong Hyeon Mok
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Weiqi Guo
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Ke Ye
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Shen
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiyi Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Baoxin Ni
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shusheng Wan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Gwonho Yu
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinyi Wang
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Kun Jiang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
Chiu YH, Chung RJ, Kongvarhodom C, Saukani M, Yougbaré S, Chen HM, Wu YF, Lin LY. Facile Combination of Bismuth Vanadate with Nickel Tellurium Oxide for Efficient Photoelectrochemical Catalysis of Water Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49249-49261. [PMID: 39235429 PMCID: PMC11420875 DOI: 10.1021/acsami.4c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Bismuth vanadate (BVO) having suitable band edges is one of the effective photocatalysts for water oxidation, which is the rate-determining step in the water splitting process. Incorporating cocatalysts can reduce activation energy, create hole sinks, and improve photocatalytic ability of BVO. In this work, the visible light active nickel tellurium oxide (NTO) is used as the cocatalyst on the BVO photoanode to improve photocatalytic properties. Different NTO amounts are deposited on the BVO to balance optical and electrical contributions. Higher visible light absorbance and effective charge cascades are developed in the NTO and BVO composite (NTO/BVO). The highest photocurrent density of 6.05 mA/cm2 at 1.23 V versus reversible hydrogen electrode (VRHE) and the largest applied bias photon-to-current efficiency (ABPE) of 2.13% are achieved for NTO/BVO, while BVO shows a photocurrent density of 4.19 mA/cm2 at 1.23 VRHE and ABPE of 1.54%. Excellent long-term stability under light illumination is obtained for NTO/BVO with photocurrent retention of 91.31% after 10,000 s. The photoelectrochemical catalytic mechanism of NTO/BVO is also proposed based on measured band structures and possible interactions between NTO and BVO. This work has depicted a novel cocatalytic BVO system with a new photocharging material and successfully achieves high photocurrent densities for catalyzing water oxidation.
Collapse
Affiliation(s)
- Yu-Hsuan Chiu
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ren-Jei Chung
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chutima Kongvarhodom
- Department
of Chemical Engineering, King Mongkut’s
University of Technology Thonburi, 126 Pracha-u-thit, Toong-kru, Bangkok 10140, Thailand
- Department
of Chemical Engineering, University of New
Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| | - Muhammad Saukani
- Department
of Mechanical Engineering, Faculty of Engineering, Universitas Islam Kalimantan MAB, Jl. Adhyaksa No. 2, Banjarmasin 70124, Indonesia
| | - Sibidou Yougbaré
- Institut
de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou 03 7192-03, Burkina Faso
| | - Hung-Ming Chen
- Gingen Technology
Co., LTD., Rm. 7, 10F.,
No. 189, Sec. 2, Keelung Road, Xinyi District, Taipei 11054, Taiwan
| | - Yung-Fu Wu
- Department
of Chemical Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
| | - Lu-Yin Lin
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
3
|
Nguyen TT, Sayler RI, Shoemaker AH, Zhang J, Stoll S, Winkler JR, Britt RD, Hunter BM. Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2024; 146:15019-15026. [PMID: 38743719 DOI: 10.1021/jacs.3c13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O-O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxide─one of the best earth-abundant electrocatalysts to be studied─water oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.
Collapse
Affiliation(s)
- Trisha T Nguyen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Richard I Sayler
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Aaron H Shoemaker
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jibo Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jay R Winkler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Bryan M Hunter
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Lyu Z, Yu S, Wang M, Tieu P, Zhou J, Shi Q, Du D, Feng Z, Pan X, Lin H, Ding S, Zhang Q, Lin Y. NiFe Nanoparticle Nest Supported on Graphene as Electrocatalyst for Highly Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308278. [PMID: 38009756 DOI: 10.1002/smll.202308278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Designing cost-efffective electrocatalysts for the oxygen evolution reaction (OER) holds significant importance in the progression of clean energy generation and efficient energy storage technologies, such as water splitting and rechargeable metal-air batteries. In this work, an OER electrocatalyst is developed using Ni and Fe precursors in combination with different proportions of graphene oxide. The catalyst synthesis involved a rapid reduction process, facilitated by adding sodium borohydride, which successfully formed NiFe nanoparticle nests on graphene support (NiFe NNG). The incorporation of graphene support enhances the catalytic activity, electron transferability, and electrical conductivity of the NiFe-based catalyst. The NiFe NNG catalyst exhibits outstanding performance, characterized by a low overpotential of 292.3 mV and a Tafel slope of 48 mV dec-1, achieved at a current density of 10 mA cm- 2. Moreover, the catalyst exhibits remarkable stability over extended durations. The OER performance of NiFe NNG is on par with that of commercial IrO2 in alkaline media. Such superb OER catalytic performance can be attributed to the synergistic effect between the NiFe nanoparticle nests and graphene, which arises from their large surface area and outstanding intrinsic catalytic activity. The excellent electrochemical properties of NiFe NNG hold great promise for further applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Peter Tieu
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Jiachi Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Qiurong Shi
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Xiaoqing Pan
- Irvine Materials Research Institute (IMRI), Department of Physics and Astronomy, Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Hongfei Lin
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Qiang Zhang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
5
|
Yin S, Zhou Y, Liu Z, Wang H, Zhao X, Zhu Z, Yan Y, Huo P. Elucidating protonation pathways in CO 2 photoreduction using the kinetic isotope effect. Nat Commun 2024; 15:437. [PMID: 38200030 PMCID: PMC10781958 DOI: 10.1038/s41467-024-44753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
The surge in anthropogenic CO2 emissions from fossil fuel dependence demands innovative solutions, such as artificial photosynthesis, to convert CO2 into value-added products. Unraveling the CO2 photoreduction mechanism at the molecular level is vital for developing high-performance photocatalysts. Here we show kinetic isotope effect evidence for the contested protonation pathway for CO2 photoreduction on TiO2 nanoparticles, which challenges the long-held assumption of electron-initiated activation. Employing isotopically labeled H2O/D2O and in-situ diffuse reflectance infrared Fourier transform spectroscopy, we observe H+/D+-protonated intermediates on TiO2 nanoparticles and capture their inverse decay kinetic isotope effect. Our findings significantly broaden our understanding of the CO2 uptake mechanism in semiconductor photocatalysts.
Collapse
Affiliation(s)
- Shikang Yin
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yiying Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhonghuan Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiaoxue Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhi Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yan Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
6
|
Sun Y, Wu CR, Ding TY, Gu J, Yan JW, Cheng J, Zhang KHL. Direct observation of the dynamic reconstructed active phase of perovskite LaNiO 3 for the oxygen-evolution reaction. Chem Sci 2023; 14:5906-5911. [PMID: 37293652 PMCID: PMC10246674 DOI: 10.1039/d2sc07034k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Ni-based transition metal oxides are promising oxygen-evolution reaction (OER) catalysts due to their abundance and high activity. Identification and manipulation of the chemical properties of the real active phase on the catalyst surface is crucial to improve the reaction kinetics and efficiency of the OER. Herein, we used electrochemical-scanning tunnelling microscopy (EC-STM) to directly observe structural dynamics during the OER on LaNiO3 (LNO) epitaxial thin films. Based on comparison of dynamic topographical changes in different compositions of LNO surface termination, we propose that reconstruction of surface morphology originated from transition of Ni species on LNO surface termination during the OER. Furthermore, we showed that the change in surface topography of LNO was induced by Ni(OH)2/NiOOH redox transformation by quantifying STM images. Our findings demonstrate that in situ characterization for visualization and quantification of thin films is very important for revealing the dynamic nature of the interface of catalysts under electrochemical conditions. This strategy is crucial for in-depth understanding of the intrinsic catalytic mechanism of the OER and rational design of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng-Rong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Tian-Yi Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| |
Collapse
|
7
|
Bai S, Fang Y, Zhao Y, Feng Y, Luo R, Li D, Chen A. Bi nanoparticles modified the WO 3/ZnWO 4 heterojunction for photoelectrochemical water splitting. J Colloid Interface Sci 2023; 646:745-752. [PMID: 37229992 DOI: 10.1016/j.jcis.2023.05.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
The novel ternary photoanode was successfully prepared by Bi nanoparticles (Bi NPs) modified on type II heterojunction of WO3-ZnWO4 using the simple and effective drop casting and chemical impregnation methods. The photoelectrochemical (PEC) experimental tests revealed that the photocurrent density of the ternary photoanode of WO3/ZnWO4(2)/Bi NPs reaches 3.0 mA/cm2 at 1.23 V (vs. RHE), which is 6 times of the WO3 photoanode. The incident photon-to-electron conversion efficiency (IPCE) at 380 nm wave length reaches 68%, which increases 2.8 times compared to WO3 photoanode. The observed enhancement can be attributed to the formation of type II heterojunction and modification of Bi NPs. The former broadens the absorption range for visible light and improves the carrier separation efficiency, while the latter enhances the light capture ability through the local surface plasmon resonance (LSPR) effect of Bi NPs and the generation of hot electrons.
Collapse
Affiliation(s)
- Shouli Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanling Fang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingying Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruixian Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Aifan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Xu X, Dong Y, Wang X, Liu F, Ren J, Wang H, Wang R. High-Density NiCu Bimetallic Phosphide Nanosheet Clusters Constructed by Cu-Induced Effect Boost Total Urea Hydrolysis for Hydrogen Production. Inorg Chem 2023; 62:4648-4661. [PMID: 36893334 DOI: 10.1021/acs.inorgchem.3c00082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The development of urea electrolysis technologies toward energy-saving hydrogen production can alleviate the environmental issues caused by urea-rich wastewater. In the current practices, the development of high-performance electrocatalysts in urea electrolysis remains critical. In this work, the NiCu-P/NF catalyst is prepared by anchoring Ni/Cu bimetallic phosphide nanosheets onto Ni foam (NF). In the experiments, the micron-sized elemental Cu polyhedron is first anchored on the surface of the NF substrate to provide more space for the growth of bimetallic nanosheets. Meanwhile, the Cu element adjusted the electron distribution within the composite and formed Ni/P orbital vacancies, which in turn accelerated the kinetic process. As a result, the optimal NiCu-P/NF sample exhibits excellent catalytic activity and cycling stability in a hybrid electrolysis system for the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Further, the alkaline urea-containing electrolyzer is assembled with NiCu-P/NF as two electrodes reached a current density of 50 mA cm-2 with a low driving potential of 1.422 V, which outperforms the typical commercial noble metal electrolyzer (RuO2||Pt/C). Those findings suggest the feasibility of the substrate regulation strategy to increase the growth density of active species in preparation of an efficient bifunctional electrocatalyst for cracking the urea-containing wastewater.
Collapse
Affiliation(s)
- Xiao Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yucheng Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuyun Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fangfang Liu
- Weifang University of Science and Technology, Shouguang, Weifang 262700, China
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, Johannesburg 2092, South Africa
| | - Hui Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rongfang Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
9
|
Lin L, Xin R, Yuan M, Wang T, Li J, Xu Y, Xu X, Li M, Du Y, Wang J, Wang S, Jiang F, Wu W, Lu C, Huang B, Sun Z, Liu J, He J, Sun G. Revealing Spin Magnetic Effect of Iron-Group Layered Double Hydroxides with Enhanced Oxygen Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Ruiyun Xin
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Mengwei Yuan
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Tongyue Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jie Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yunming Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Xuhui Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yu Du
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jianing Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Shuyi Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Fubin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Wenxin Wu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Caicai Lu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Binbin Huang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jian Liu
- Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Jinlu He
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Genban Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing100875, China
| |
Collapse
|
10
|
Wang Y, Wang J, Wei J, Wang C, Wang H, Yang X. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Letters 2022. [DOI: 10.1007/s10562-022-04238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Righi G, Plescher J, Schmidt FP, Campen RK, Fabris S, Knop-Gericke A, Schlögl R, Jones TE, Teschner D, Piccinin S. On the origin of multihole oxygen evolution in haematite photoanodes. Nat Catal 2022. [DOI: 10.1038/s41929-022-00845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractThe oxygen evolution reaction (OER) plays a crucial role in (photo)electrochemical devices that use renewable energy to produce synthetic fuels. Recent measurements on semiconducting oxides have found a power law dependence of the OER rate on surface hole density, suggesting a multihole mechanism. In this study, using transient photocurrent measurements, density functional theory simulations and microkinetic modelling, we have uncovered the origin of this behaviour in haematite. We show here that the OER rate has a third-order dependence on the surface hole density. We propose a mechanism wherein the reaction proceeds by accumulating oxidizing equivalents through a sequence of one-electron oxidations of surface hydroxy groups. The key O–O bond formation step occurs by the dissociative chemisorption of a hydroxide ion involving three oxyl sites. At variance with the case of metallic oxides, the activation energy of this step is weakly dependent on the surface hole coverage, leading to the observed power law.
Collapse
|
12
|
Du K, Zhang L, Shan J, Guo J, Mao J, Yang CC, Wang CH, Hu Z, Ling T. Interface engineering breaks both stability and activity limits of RuO 2 for sustainable water oxidation. Nat Commun 2022; 13:5448. [PMID: 36114207 PMCID: PMC9481627 DOI: 10.1038/s41467-022-33150-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Designing catalytic materials with enhanced stability and activity is crucial for sustainable electrochemical energy technologies. RuO2 is the most active material for oxygen evolution reaction (OER) in electrolysers aiming at producing 'green' hydrogen, however it encounters critical electrochemical oxidation and dissolution issues during reaction. It remains a grand challenge to achieve stable and active RuO2 electrocatalyst as the current strategies usually enhance one of the two properties at the expense of the other. Here, we report breaking the stability and activity limits of RuO2 in neutral and alkaline environments by constructing a RuO2/CoOx interface. We demonstrate that RuO2 can be greatly stabilized on the CoOx substrate to exceed the Pourbaix stability limit of bulk RuO2. This is realized by the preferential oxidation of CoOx during OER and the electron gain of RuO2 through the interface. Besides, a highly active Ru/Co dual-atom site can be generated around the RuO2/CoOx interface to synergistically adsorb the oxygen intermediates, leading to a favourable reaction path. The as-designed RuO2/CoOx catalyst provides an avenue to achieve stable and active materials for sustainable electrochemical energy technologies.
Collapse
Affiliation(s)
- Kun Du
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lifu Zhang
- School of Physics, Nankai University, Tianjin, 300071, China
| | - Jieqiong Shan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jiaxin Guo
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Mao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chueh-Cheng Yang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC.
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin, 300071, China.
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
13
|
Piatka DR, Venkiteswaran JJ, Uniyal B, Kaule R, Gilfedder B, Barth JAC. Dissolved oxygen isotope modelling refines metabolic state estimates of stream ecosystems with different land use background. Sci Rep 2022; 12:10204. [PMID: 35715436 PMCID: PMC9205993 DOI: 10.1038/s41598-022-13219-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Dissolved oxygen (DO) is crucial for aerobic life in streams and rivers and mostly depends on photosynthesis (P), ecosystem respiration (R) and atmospheric gas exchange (G). However, climate and land use changes progressively disrupt metabolic balances in natural streams as sensitive reflectors of their catchments. Comprehensive methods for mapping fundamental ecosystem services become increasingly important in a rapidly changing environment. In this work we tested DO and its stable isotope (18O/16O) ratios as novel tools for the status of stream ecosystems. For this purpose, six diel sampling campaigns were performed at three low-order and mid-latitude European streams with different land use patterns. Modelling of diel DO and its stable isotopes combined with land use analyses showed lowest P rates at forested sites, with a minimum of 17.9 mg m−2 h−1. Due to high R rates between 230 and 341 mg m−2 h−1 five out of six study sites showed a general heterotrophic state with P:R:G ratios between 0.1:1.1:1 and 1:1.9:1. Only one site with agricultural and urban influences showed a high P rate of 417 mg m−2 h−1 with a P:R:G ratio of 1.9:1.5:1. Between all sites gross G rates varied between 148 and 298 mg m−2 h−1. In general, metabolic rates depend on the distance of sampling locations to river sources, light availability, nutrient concentrations and possible exchanges with groundwater. The presented modelling approach introduces a new and powerful tool to study effects of land use on stream health. Such approaches should be integrated into future ecological monitoring.
Collapse
Affiliation(s)
- David R Piatka
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 5, 91054, Erlangen, Germany. .,Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany.
| | - Jason J Venkiteswaran
- Department of Geography and Environmental Studies, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Bhumika Uniyal
- Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
| | - Robin Kaule
- Limnological Research Station, BayCEER, Department of Hydrology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Benjamin Gilfedder
- Limnological Research Station, BayCEER, Department of Hydrology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Johannes A C Barth
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 5, 91054, Erlangen, Germany
| |
Collapse
|
14
|
Yang H, Li F, Zhan S, Liu Y, Li W, Meng Q, Kravchenko A, Liu T, Yang Y, Fang Y, Wang L, Guan J, Furó I, Ahlquist MSG, Sun L. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat Catal 2022. [DOI: 10.1038/s41929-022-00783-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractExploration of efficient water oxidation catalysts (WOCs) is the primary challenge in conversion of renewable energy into fuels. Here we report a molecularly well-defined heterogeneous WOC with Aza-fused, π-conjugated, microporous polymer (Aza-CMP) coordinated single cobalt sites (Aza-CMP-Co). The single cobalt sites in Aza-CMP-Co exhibited superior activity under alkaline and near-neutral conditions. Moreover, the molecular nature of the isolated catalytic sites makes Aza-CMP-Co a reliable model for studying the heterogeneous water oxidation mechanism. By a combination of experimental and theoretical results, a pH-dependent nucleophilic attack pathway for O-O bond formation was proposed. Under alkaline conditions, the intramolecular hydroxyl nucleophilic attack (IHNA) process with which the adjacent -OH group nucleophilically attacks Co4+=O was identified as the rate-determining step. This process leads to lower activation energy and accelerated kinetics than those of the intermolecular water nucleophilic attack (WNA) pathway. This study provides significant insights into the crucial function of electrolyte pH in water oxidation catalysis and enhancement of water oxidation activity by regulation of the IHNA pathway.
Collapse
|
15
|
Tao M, Yin Q, Kaledin AL, Uhlikova N, Lu X, Cheng T, Chen YS, Lian T, Geletii YV, Musaev DG, Bacsa J, Hill CL. Structurally Precise Two-Transition-Metal Water Oxidation Catalysts: Quantifying Adjacent 3d Metals by Synchrotron X-Radiation Anomalous Dispersion Scattering. Inorg Chem 2022; 61:6252-6262. [PMID: 35416667 DOI: 10.1021/acs.inorgchem.2c00446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mixed 3d metal oxides are some of the most promising water oxidation catalysts (WOCs), but it is very difficult to know the locations and percent occupancies of different 3d metals in these heterogeneous catalysts. Without such information, it is hard to quantify catalysis, stability, and other properties of the WOC as a function of the catalyst active site structure. This study combines the site selective synthesis of a homogeneous WOC with two adjacent 3d metals, [Co2Ni2(PW9O34)2]10- (Co2Ni2P2) as a tractable molecular model for CoNi oxide, with the use of multiwavelength synchrotron X-radiation anomalous dispersion scattering (synchrotron XRAS) that quantifies both the location and percent occupancy of Co (∼97% outer-central-belt positions only) and Ni (∼97% inner-central-belt positions only) in Co2Ni2P2. This mixed-3d-metal complex catalyzes water oxidation an order of magnitude faster than its isostructural analogue, [Co4(PW9O34)2]10- (Co4P2). Four independent and complementary lines of evidence confirm that Co2Ni2P2 and Co4P2 are the principal WOCs and that Co2+(aq) is not. Density functional theory (DFT) studies revealed that Co4P2 and Co2Ni2P2 have similar frontier orbitals, while stopped-flow kinetic studies and DFT calculations indicate that water oxidation by both complexes follows analogous multistep mechanisms, including likely Co-OOH formation, with the energetics of most steps being lower for Co2Ni2P2 than for Co4P2. Synchrotron XRAS should be generally applicable to active-site-structure-reactivity studies of multi-metal heterogeneous and homogeneous catalysts.
Collapse
Affiliation(s)
- Meilin Tao
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Qiushi Yin
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Alexey L Kaledin
- Emerson Center for Scientific Computation, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Natalie Uhlikova
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Xinlin Lu
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Yu-Sheng Chen
- ChemMatCARS/The University of Chicago, 9700 S. Cass Ave, Lemont, Illinois 60439, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Yurii V Geletii
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Djamaladdin G Musaev
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States.,Emerson Center for Scientific Computation, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Craig L Hill
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Priyadarsini A, Mallik BS. Site dependent catalytic water dissociation on an anisotropic buckled black phosphorus surface. Phys Chem Chem Phys 2022; 24:2582-2591. [PMID: 35029266 DOI: 10.1039/d1cp05249g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Black phosphorus (BP) is unique among 2D materials due to its anisotropic puckered structure. It has been used as a multifunctional catalyst for various purposes. In this study, we performed first principles molecular dynamics simulations to understand the water-splitting reaction on a bi-layer BP surface. We focused on the site-specific aqueous reactivity of the buckled surface. A difference in the axis-dependent reactivity is observed owing to edge defects and exposed sites. Thus, we believe that BP edges, which significantly affect the interfacial water or organic solvent molecules, must exhibit very different edge-dependent reactivity. Experiments suggested the increasing catalytic efficiency of undisturbed BP in the order bulk, few-layered BP, and BP quantum dots. We choose three active sites to investigate the mechanistic details of the OER: the zigzag (ZZ), armchair (AC), and bulk sites. This study will provide insight into the enhanced catalytic activity when more edges are exposed as the active surface. We hope to clarify the reactive pathway in an aqueous solution supported by bi-layer BP by exploring the two different mechanisms for forming the OOH* complex. We explore and report two mechanisms: a simple push-pull reaction for oxygen-oxygen bond formation, the nucleophilic attack by formed OH- and an attack by a water molecule. The free energy barriers procured for mechanism 1 taking place at the zigzag, armchair, and bulk sites are 7.59 ± 0.33, 9.04 ± 0.01, and 12.80 ± 0.09 kcal mol-1, respectively. For mechanism 2 the free energy barriers are 7.62 ± 0.11, 9.15 ± 0.16, and 11.63 ± 0.11 kcal mol-1 for the ZZ, AC, and bulk sites. The interlink between both the mechanisms is established concerning the reported free energy barriers for OOH* formation. The ZZ site is found to lower the activation barrier for the rate-determining step, followed by the AC and bulk.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| |
Collapse
|
17
|
Ponnada S, Kiai MS, Gorle DB, Venkatachalam R, Saini B, Murugavel K, Nowduri A, Singhal R, Marken F, Kulandainathan AM, Nanda KK, Sharma RK, Bose RSC. Recent Status and Challenges in Multifunctional Electrocatalysis Based on 2D MXenes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their chemical and electrical characteristics, such as metallic conductivity, redox-activity in transition metals, high hydrophilicity, and adjustable surface properties, MXenes are emerging as important contributors to oxygen reduction...
Collapse
|
18
|
Zhao E, Du K, Yin P, Ran J, Mao J, Ling T, Qiao S. Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104363. [PMID: 34850603 PMCID: PMC8728826 DOI: 10.1002/advs.202104363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Indexed: 05/08/2023]
Abstract
Powered by inexhaustible solar energy, photoelectrochemical (PEC) hydrogen/ammonia production and reduction of carbon dioxide to high added-value chemicals in eco-friendly and mild conditions provide a highly attractive solution to carbon neutrality. Recently, substantial advances have been achieved in PEC systems by improving light absorption and charge separation/transfer in PEC devices. However, less attention is given to the atomic design of photoelectrocatalysts to facilitate the final catalytic reactions occurring at photoelectrode surface, which largely limits the overall photo-to-energy conversion of PEC system. Fundamental catalytic mechanisms and recent progress in atomic design of PEC materials are comprehensively reviewed by engineering of defect, dopant, facet, strain, and single atom to enhance the activity and selectivity. Finally, the emerging challenges and research directions in design of PEC systems for future photo-to-energy conversions are proposed.
Collapse
Affiliation(s)
- Erling Zhao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Kun Du
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Peng‐Fei Yin
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Jingrun Ran
- School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSA5005Australia
| | - Jing Mao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of EducationTianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin UniversityTianjin300072China
| | - Shi‐Zhang Qiao
- School of Chemical Engineering and Advanced MaterialsThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
19
|
Abstract
Solar-driven water splitting is a promising route toward clean H2 energy and the photoelectrochemical approach attracts a strong interest. The oxygen evolution reaction is widely accepted as the performance limiting stage in this technology, which emphasizes the need of innovative anode materials. Metal oxide semiconductors are relevant in this respect owing to their cost-effectiveness and broad availability. The combination of chemical vapor deposition and atomic layer deposition was implemented in this study for the synthesis of randomly oriented CNT-ZnO core-shell nanostructures forming an adhering porous coating. Relative to a directly coated ZnO on Si, the porous structure enables a high interface area with the electrolyte and a resulting 458% increase of the photocurrent density under simulated solar light irradiation. The photoelectrochemical characterization correlates this performance to the effective electrons withdrawing along the carbon nanotubes (CNTs), and the resulting decrease of the onset potential. In terms of durability, the CNT-ZnO core–shell structure features an enhanced photo-corrosion stability for 8 h under illumination and with a voltage bias.
Collapse
|
20
|
Gao X, Yu XY, Chang CR. Perceptions on the Treatment of Apparent Isotope Effects during the Analyses of Reaction Rate and Mechanism. Phys Chem Chem Phys 2022; 24:15182-15194. [DOI: 10.1039/d2cp00825d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isotope substitution, a compelling tool of physical chemistry, has been broadly applied in the research field of heterogeneous catalysis. In general, upon the differences in mass-related atomic vibrational frequencies and...
Collapse
|
21
|
Xu Y, Fan K, Zou Y, Fu H, Dong M, Dou Y, Wang Y, Chen S, Yin H, Al-Mamun M, Liu P, Zhao H. Rational design of metal oxide catalysts for electrocatalytic water splitting. NANOSCALE 2021; 13:20324-20353. [PMID: 34870672 DOI: 10.1039/d1nr06285a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic energy conversion between electricity and chemical bonding energy is realized through redox reactions with multiple charge transfer steps at the electrode-electrolyte interface. The surface atomic structure of the electrode materials, if appropriately designed, will provide an energetically affordable pathway with individual reaction intermediates that not only reduce the thermodynamic energy barrier but also allow an acceptably fast kinetic rate of the overall redox reaction. As one of the most abundant and stable forms, oxides of transitional metals demonstrated promising electrocatalytic activities towards multiple important chemical reactions. In this topical review, we attempt to discuss the possible avenues to construct the electrocatalytic active surface for this important class of materials for two essential chemical reactions for water splitting. A general introduction of the electrochemical water splitting process on the electrocatalyst surface with applied potential will be provided, followed by a discussion on the fundamental charge transfers and the mechanism. As the generally perceived active sites are chemical reaction dependent, we offer a general overview of the possible approaches to construct or create electrocatalytically active sites in the context of surface atomic structure engineering. The review concludes with perspectives that summarize challenges and opportunities in electrocatalysis and how these can be addressed to unlock the electrocatalytic potentials of the metal oxide materials.
Collapse
Affiliation(s)
- Yiming Xu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Kaicai Fan
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Yu Zou
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Huaiqin Fu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Mengyang Dong
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Yuhai Dou
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Shan Chen
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Huajie Yin
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Porun Liu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| |
Collapse
|
22
|
Li Y, Zhan S, Tong L, Li W, Zhao Y, Zhao Z, Liu C, Ahlquist MSG, Li F, Sun L. Switching the O-O Bond Formation Pathways of Ru-pda Water Oxidation Catalyst by Third Coordination Sphere Engineering. RESEARCH 2021; 2021:9851231. [PMID: 33954292 PMCID: PMC8061195 DOI: 10.34133/2021/9851231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 11/06/2022]
Abstract
Water oxidation is a vital anodic reaction for renewable fuel generation via electrochemical- and photoelectrochemical-driven water splitting or CO2 reduction. Ruthenium complexes, such as Ru-bda family, have been shown as highly efficient water-oxidation catalysts (WOCs), particularly when they undergo a bimolecular O-O bond formation pathway. In this study, a novel Ru(pda)-type (pda2- =1,10-phenanthroline-2,9-dicarboxylate) molecular WOC with 4-vinylpyridine axial ligands was immobilized on the glassy carbon electrode surface by electrochemical polymerization. Electrochemical kinetic studies revealed that this homocoupling polymer catalyzes water oxidation through a bimolecular radical coupling pathway, where interaction between two Ru(pda)-oxyl moieties (I2M) forms the O-O bond. The calculated barrier of the I2M pathway by density-functional theory (DFT) is significantly lower than the barrier of a water nucleophilic attack (WNA) pathway. By using this polymerization strategy, the Ru centers are brought closer in the distance, and the O-O bond formation pathway by the Ru (pda) catalyst is switched from WNA in a homogeneous molecular catalytic system to I2M in the polymerized film, providing some deep insights into the importance of third coordination sphere engineering of the water oxidation catalyst.
Collapse
Affiliation(s)
- Yingzheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Shaoqi Zhan
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.,Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Lianpeng Tong
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Higher Education Mega Center, Guangzhou 510006, China
| | - Wenlong Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Yilong Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, China.,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China
| |
Collapse
|
23
|
Köhler I, Piatka D, Barth JAC, Martinez RE. Beware of effects on isotopes of dissolved oxygen during storage of natural iron-rich water samples: A technical note. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9024. [PMID: 33305417 DOI: 10.1002/rcm.9024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/21/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE Investigations of the isotope ratios of dissolved oxygen (δ18 ODO ) provide valuable information about the oxygen cycle in aquatic systems. However, oxidation of Fe(II) may change pristine δ18 ODO values during storage and can lead to a misinterpretation. We sampled an Fe(II)-rich spring system and measured δ18 ODO values at various time intervals in order to determine influences of Fe-oxidation. METHODS Water samples were collected from an Fe-rich spring and related stream and the δ18 ODO values were measured in fresh, 4- and 13-day-old samples with an isotope ratio mass spectrometer. Three replicates were measured for each sample with a 1σ of ± 0.2‰. On-site parameters and Fe(II) contents were also measured over the course of the spring system by multi-parameter probes and spectrophotometry. RESULTS The δ18 ODO values over the course of the spring system in fresh, 4- and 13-day-old samples revealed differences of up to 8‰. We explain this increase by the consumption of DO by Fe(II)-oxidation. After a flow length of 85 m the differences in δ18 ODO values between fresh and older samples decreased because most of the Fe(II) was consumed. CONCLUSIONS False interpretations of δ18 ODO values are possible if Fe-rich water samples are measured after too long storage, and we recommend measurement immediately after sampling.
Collapse
Affiliation(s)
- Inga Köhler
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Schlossgarten 5, Erlangen, 91054, Germany
| | - David Piatka
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Schlossgarten 5, Erlangen, 91054, Germany
| | - Johannes A C Barth
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Schlossgarten 5, Erlangen, 91054, Germany
| | | |
Collapse
|
24
|
Priyadarsini A, Mallik BS. Effects of Doped N, B, P, and S Atoms on Graphene toward Oxygen Evolution Reactions. ACS OMEGA 2021; 6:5368-5378. [PMID: 33681576 PMCID: PMC7931212 DOI: 10.1021/acsomega.0c05538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Molecular oxygen and hydrogen can be obtained from the water-splitting process through the electrolysis technique. However, harnessing energy is very challenging in this way due to the involvement of the 4e- reaction pathway, which is associated with a substantial amount of reaction barrier. After the report of the first N-doped graphene acting as an oxygen reduction reaction catalyst, the scientific community set out on exploring more reliable doping materials, better material engineering techniques, and developing computational models to explain the interfacial reactions. In this study, we modeled the graphene surface with four different nonmetal doping atoms N, B, P, and S individually by replacing a carbon atom from one of the graphitic positions. We report the mechanism of the complete catalytic cycle for each of the doped surfaces by the doping atom. The energy barriers for individual steps were explored using the biased first-principles molecular dynamics simulations to overcome the high reaction barrier. We explain the active sites and provide a comparison between the activation energy obtained by the application of two computational methods. Observing the rate-determining step, that is, oxo-oxo bond formation, S-doped graphene is the most effective. In contrast, N-doped graphene seems to be the least useful for oxygen evolution catalysis compared to the undoped graphene surface. B-doped graphene and P-doped graphene have an equivalent impact on the catalytic cycle.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian
Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian
Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
25
|
Tuning the O–O bond formation pathways of molecular water oxidation catalysts on electrode surfaces via second coordination sphere engineering. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63671-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
27
|
Abstract
Metal-halide perovskites transformed optoelectronics research and development during the past decade. They have also gained a foothold in photocatalytic and photoelectrochemical processes recently, but their sensitivity to the most commonly applied solvents and electrolytes together with their susceptibility to photocorrosion hinders such applications. Understanding the elementary steps of photocorrosion of these materials can aid the endeavor of realizing stable devices. In this Perspective, we discuss both thermodynamic and kinetic aspects of photocorrosion processes occurring at the interface of perovskite photocatalysts and photoelectrodes with different electrolytes. We show how combined in situ and operando electrochemical techniques can reveal the underlying mechanisms. Finally, we also discuss emerging strategies to mitigate photocorrosion (such as surface protection, materials and electrolyte engineering, etc.).
Collapse
Affiliation(s)
- Gergely F Samu
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary.,ELI-ALPS Research Institute, Wolfgang Sandner Street 3, Szeged H-6728, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1, Szeged H-6720, Hungary.,ELI-ALPS Research Institute, Wolfgang Sandner Street 3, Szeged H-6728, Hungary
| |
Collapse
|
28
|
George K, Khachatrjan T, van Berkel M, Sinha V, Bieberle-Hütter A. Understanding the Impact of Different Types of Surface States on Photoelectrochemical Water Oxidation: A Microkinetic Modeling Approach. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03987] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kiran George
- Electrochemical Materials and Interfaces, Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 6336, 5600 HH Eindhoven, The Netherlands
| | - Tigran Khachatrjan
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Matthijs van Berkel
- Energy Systems & Control, Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 6336, 5600 HH Eindhoven, The Netherlands
| | - Vivek Sinha
- Electrochemical Materials and Interfaces, Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 6336, 5600 HH Eindhoven, The Netherlands
| | - Anja Bieberle-Hütter
- Electrochemical Materials and Interfaces, Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 6336, 5600 HH Eindhoven, The Netherlands
| |
Collapse
|
29
|
Qian J, Baskin A, Liu Z, Prendergast D, Crumlin EJ. Addressing the sensitivity of signals from solid/liquid ambient pressure XPS (APXPS) measurement. J Chem Phys 2020; 153:044709. [DOI: 10.1063/5.0006242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jin Qian
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Artem Baskin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ethan J. Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
30
|
Li L, Wang P, Shao Q, Huang X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev 2020; 49:3072-3106. [PMID: 32309830 DOI: 10.1039/d0cs00013b] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metallic nanostructures with low dimensionality (one-dimension and two-dimension) possess unique structural characteristics and distinctive electronic and physicochemical properties including high aspect ratio, high specific surface area, high density of surface unsaturated atoms and high electron mobility. These distinctive features have rendered them remarkable advantages over their bulk counterparts for surface-related applications, for example, electrochemical water splitting. In this review article, we highlight the recent research progress in low-dimensional metallic nanostructures for electrochemical water splitting including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Fundamental understanding of the electrochemistry of water splitting including HER and OER is firstly provided from the aspects of catalytic mechanisms, activity descriptors and property evaluation metrics. Generally, it is challenging to obtain low-dimensional metallic nanostructures with desirable characteristics for HER and OER. We hereby introduce several typical methods for synthesizing one-dimensional and two-dimensional metallic nanostructures including organic ligand-assisted synthesis, hydrothermal/solvothermal synthesis, carbon monoxide confined growth, topotactic reduction, and templated growth. We then put emphasis on the strategies adopted for the design and fabrication of high-performance low-dimensional metallic nanostructures for electrochemical water splitting such as alloying, structure design, surface engineering, interface engineering and strain engineering. The underlying structure-property correlation for each strategy is elucidated aiming to facilitate the design of more advanced electrocatalysts for water splitting. The challenges and perspectives for the development of electrochemical water splitting and low-dimensional metallic nanostructures are also proposed.
Collapse
Affiliation(s)
- Leigang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Pengtang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
31
|
Song CW, Suh H, Bak J, Bae HB, Chung SY. Dissolution-Induced Surface Roughening and Oxygen Evolution Electrocatalysis of Alkaline-Earth Iridates in Acid. Chem 2019. [DOI: 10.1016/j.chempr.2019.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Cao L, Luo Q, Chen J, Wang L, Lin Y, Wang H, Liu X, Shen X, Zhang W, Liu W, Qi Z, Jiang Z, Yang J, Yao T. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat Commun 2019; 10:4849. [PMID: 31649237 PMCID: PMC6813412 DOI: 10.1038/s41467-019-12886-z] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Achieving active and stable oxygen evolution reaction (OER) in acid media based on single-atom catalysts is highly promising for cost-effective and sustainable energy supply in proton electrolyte membrane electrolyzers. Here, we report an atomically dispersed Ru1-N4 site anchored on nitrogen-carbon support (Ru-N-C) as an efficient and durable electrocatalyst for acidic OER. The single-atom Ru-N-C catalyst delivers an exceptionally intrinsic activity, reaching a mass activity as high as 3571 A gmetal-1 and turnover frequency of 3348 O2 h-1 with a low overpotential of 267 mV at a current density of 10 mA cm-2. The catalyst shows no evident deactivation or decomposition after 30-hour operation in acidic environment. Operando synchrotron radiation X-ray absorption spectroscopy and infrared spectroscopy identify the dynamic adsorption of single oxygen atom on Ru site under working potentials, and theoretical calculations demonstrate that the O-Ru1-N4 site is responsible for the high OER activity and stability.
Collapse
Affiliation(s)
- Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Qiquan Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jiajia Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Lan Wang
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wei Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
| |
Collapse
|
33
|
|
34
|
Mao QY, Pang YJ, Li XC, Chen GJ, Tan HW. Theoretical Study of the Mechanisms of Two Copper Water Oxidation Electrocatalysts with Bipyridine Ligands. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiu-Yun Mao
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Yun-Jie Pang
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Xi-Chen Li
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Guang-Ju Chen
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Hong-Wei Tan
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| |
Collapse
|