1
|
Saponaro C, Damato M, Stanca E, Aboulouard S, Zito FA, De Summa S, Traversa D, Schirosi L, Bravaccini S, Pirini F, Fonzi E, Tebaldi M, Puccetti M, Gaballo A, Pantalone L, Ronci M, Magnani L, Sergi D, Tinelli A, Tacconi S, Siculella L, Giudetti AM, Fournier I, Salzet M, Trerotola M, Vergara D. Unraveling the protein kinase C/NDRG1 signaling network in breast cancer. Cell Biosci 2024; 14:156. [PMID: 39736699 DOI: 10.1186/s13578-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC). Analysis of the TCGA dataset showed a significant positive correlation between NDRG1 and PRKCA expression, suggesting a mechanistic role of protein kinase C (PKC) in the regulation of NDRG1. We then assessed the hypothesis that PKC might modulate the activity of NDRG1, and observed that different acute stress conditions converging on PKC activation lead to enhanced NDRG1 expression. This mechanism was found to be specific for NDRG1 as the expression of other NDRG members was not affected. Moreover, CRISPR-based inhibition of NDRG1 expression was obtained in a BC cell line, and showed that this protein is a key driver of BC cell invasion through the Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated cofilin pathway that regulates stress fiber assembly, and the modulation of extracellular matrix reorganization related genes. Together, our findings highlight the potential of NDRG1 as a new BC biomarker and uncover a novel mechanism of regulation of NDRG1 expression that might lead to innovative therapeutic strategies.
Collapse
Affiliation(s)
- C Saponaro
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - M Damato
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - E Stanca
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - S Aboulouard
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - F A Zito
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - S De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - D Traversa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - L Schirosi
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - S Bravaccini
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - F Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - E Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Puccetti
- Azienda Unità Sanitaria Locale di Imola, Imola, Italy
| | - A Gaballo
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy
| | - L Pantalone
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M Ronci
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - L Magnani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Oncology and Haemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - D Sergi
- Department of Radiology, V. Fazzi Hospital, 73100, Lecce, Italy
| | - A Tinelli
- Department of Obstetrics and Gynecology and CERICSAL, (CEntro di RIcerca Clinico SALentino), "Veris Delli Ponti Hospital", 73020, ScorranoScorrano (Lecce), Italy
| | - S Tacconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - L Siculella
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - A M Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - I Fournier
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - M Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - M Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - D Vergara
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Hannan A, Wang Q, Wu Y, Makrides N, Qu X, Mao J, Que J, Cardoso W, Zhang X. Crk mediates Csk-Hippo signaling independently of Yap tyrosine phosphorylation to induce cell extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601065. [PMID: 39005335 PMCID: PMC11244872 DOI: 10.1101/2024.06.27.601065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Src family kinases (SFKs), including Src, Fyn and Yes, play important roles in development and cancer. Despite being first discovered as the Yes-associated protein, the regulation of Yap by SFKs remains poorly understood. Here, through single-cell analysis and genetic lineage tracing, we show that the pan-epithelial ablation of C-terminal Src kinase (Csk) in the lacrimal gland unleashes broad Src signaling but specifically causes extrusion and apoptosis of acinar progenitors at a time when they are shielded by myoepithelial cells from the basement membrane. Csk mutants can be phenocopied by constitutively active Yap and rescued by deleting Yap or Taz, indicating a significant functional overlap between Src and Yap signaling. Although Src-induced tyrosine phosphorylation has long been believed to regulate Yap activity, we find that mutating these tyrosine residues in both Yap and Taz fails to perturb mouse development or alleviate the Csk lacrimal gland phenotype. In contrast, Yap loses Hippo signaling-dependent serine phosphorylation and translocates into the nucleus in Csk mutants. Further chemical genetics studies demonstrate that acute inhibition of Csk enhances Crk/CrkL phosphorylation and Rac1 activity, whereas removing Crk/CrkL or Rac1/Rap1 ameliorates the Csk mutant phenotype. These results show that Src controls Hippo-Yap signaling through the Crk/CrkL-Rac/Rap axis to promote cell extrusion.
Collapse
Affiliation(s)
- Abdul Hannan
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yihua Wu
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jianwen Que
- Columbia Center for Human Development, Columbia University, New York, NY, USA
| | - Wellington Cardoso
- Columbia Center for Human Development, Columbia University, New York, NY, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Columbia Center for Human Development, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Rose MM, Nassar KW, Sharma V, Schweppe RE. AKT-independent signaling in PIK3CA-mutant thyroid cancer mediates resistance to dual SRC and MEK1/2 inhibition. Med Oncol 2023; 40:299. [PMID: 37713162 DOI: 10.1007/s12032-023-02118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/08/2023] [Indexed: 09/16/2023]
Abstract
Anaplastic thyroid cancer (ATC) is a rare and aggressive disease with 90% of patients succumbing to this disease 1 year after diagnosis. The approval of the combination therapy of a BRAF inhibitor dabrafenib with the MEK1/2 inhibitor trametinib has improved the overall survival of ATC patients. However, resistance to therapy remains a major problem. We have previously demonstrated combined inhibition of Src with dasatinib and MEK1/2 with trametinib synergistically inhibits growth and induces apoptosis in BRAF- and RAS-mutant thyroid cancer cells, however PIK3CA-mutant cells exhibit a mixed response. Herein, we determined that AKT is not a major mediator of sensitivity and instead PIK3CA-mutants that are resistant to combined dasatinib and trametinib have sustained activation of PDK1 signaling. Furthermore, combined inhibition of PDK1 and MEK1/2 was sufficient to reduce cell viability. These data indicate PDK1 inhibition is a therapeutic option for PIK3CA mutations that do not respond to combined Src and MEK1/2 inhibition.
Collapse
Affiliation(s)
- Madison M Rose
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO, 80045, USA.
| | - Kelsey W Nassar
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO, 80045, USA
| | - Vibha Sharma
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO, 80045, USA
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO, 80045, USA
| |
Collapse
|
4
|
Gu W, Zheng H, Canessa CM. Phosphatases maintain low catalytic activity of SGK1: DNA damage resets the balance in favor of phosphorylation. J Biol Chem 2023; 299:104941. [PMID: 37343701 PMCID: PMC10372406 DOI: 10.1016/j.jbc.2023.104941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
The serum- and glucocorticoid-induced kinase 1 (SGK1) promotes cell survival under stress conditions and facilitates the emergence of drug resistance in cancer. The underlying mechanisms of these observations are not fully understood. In this study, we found that SGK1 activity is suppressed by the action of the S/T phosphatases PP5 and PP2A, which constantly dephosphorylate SGK1. Using newly developed anti-phospho SGK1 antibodies and inhibitors of phosphatases, we determined that the high degree of dephosphorylation is caused by two factors: the tendency of SGK1 to unfold, which makes it dependent on Hsp90 chaperone complexes composed of four proteins, Hsp90/CDC37/PP5/SGK1, and where the phosphatase PP5 persistently dephosphorylates SGK1 within the complex. SGK1 binding to PP2A regulatory subunits B55γ and B55δ brings PP2A catalytic subunit close to exposed SGK1 phosphoresidues. A further association of phosphorylated pS37-FAM122A-an endogenous inhibitor of PP2A-to the holoenzyme diminishes dephosphorylation of SGK1 mediated by PP2A. Our study also reveals that genotoxic stress can reverse the dominant impact of phosphatases over kinases by activating the DNA-dependent protein kinase, which enhances mTORC2 activity directed to SGK1. Thus, our results provide insight into a molecular pathway that enables SGK1 to gain phosphorylation and catalytic activity and promote cell survival, potentially diminishing the efficacy of cancer treatments. As the DNA damage response operates in many cancer cells and is further induced by chemotherapies, the findings of this study could have significant implications for the development of novel cancer therapies targeting SGK1.
Collapse
Affiliation(s)
- Wenxue Gu
- School of Medicine, Tsinghua University, Beijing, China
| | - Hongyan Zheng
- School of Medicine, Tsinghua University, Beijing, China
| | - Cecilia M Canessa
- School of Medicine, Tsinghua University, Beijing, China; Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, USA.
| |
Collapse
|
5
|
Chen L, Zhao W, Li M, Yang Y, Tian C, Zhang D, Chang Z, Zhang Y, Zhao ZJ, Chen Y, Ma L. SHP2 participates in decidualization by activating ERK to maintain normal nuclear localization of progesterone receptor. Reproduction 2023; 166:37-53. [PMID: 37184079 PMCID: PMC10304905 DOI: 10.1530/rep-22-0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
In brief The establishment and maintenance of embryo implantation and pregnancy require decidualization of endometrial stromal cells. This paper reveals that SHP2 ensures the correct subcellular localization of progesterone receptor, thereby safeguarding the process of decidualization. Abstract Decidualization is the process of conversion of endometrial stromal cells into decidual stromal cells, which is caused by progesterone production that begins during the luteal phase of the menstrual cycle and then increases throughout pregnancy dedicated to support embryonic development. Decidualization deficiency is closely associated with various pregnancy complications, such as recurrent miscarriage (RM). Here, we reported that Src-homology-2-containing phospho-tyrosine phosphatase (SHP2), a key regulator in the signal transduction process downstream of various receptors, plays an indispensable role in decidualization. SHP2 expression was upregulated during decidualization. SHP2 inhibitor RMC-4550 and shRNA-mediated SHP2 reduction resulted in a decreased level of phosphorylation of ERK and aberrant cytoplasmic localization of progesterone receptor (PR), coinciding with reduced expression of IGFBP1 and various other target genes of decidualization. Solely inhibiting ERK activity recapitulated these observations. Administration of RMC-4550 led to decidualization deficiency and embryo absorption in mice. Moreover, reduced expression of SHP2 was detected in the decidua of RM patients. Our results revealed that SHP2 is key to PR's nuclear localization, thereby indispensable for decidualization and that reduced expression of SHP2 might be engaged in the pathogenesis of RM.
Collapse
Affiliation(s)
- Lin Chen
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijie Zhao
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Mengxiong Li
- Department of Gynaecology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yazhu Yang
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chengzi Tian
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunzhe Zhang
- Faculty of Life Sciences and Medicine, Kings College London, London, United Kingdom
| | - Zhizhuang Joe Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lin Ma
- Center for Reproductive Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Tyrosine kinase SRC-induced YAP1-KLF5 module regulates cancer stemness and metastasis in triple-negative breast cancer. Cell Mol Life Sci 2023; 80:41. [PMID: 36633714 PMCID: PMC9837006 DOI: 10.1007/s00018-023-04688-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
SRC is the first identified oncogene, and its aberrant activation has been implicated as a driving event in tumor initiation and progression. However, its role in cancer stemness regulation and the underlying regulatory mechanism are still elusive. Here, we identified a YAP1 tyrosine phosphorylation-dependent YAP1-KLF5 oncogenic module, as the key downstream mediator of SRC kinase regulating cancer stemness and metastasis in triple-negative breast cancer (TNBC). SRC was overexpressed in TNBC patient tissues and its expression level was highly correlated with the tumor malignancy. SRC activation induced, while inhibition of SRC kinase reduced the cancer stemness, tumor cell growth and metastasis in vitro and in vivo. Transcriptomic and proteomic analysis revealed that SRC-mediated YAP1 tyrosine phosphorylation induced its interaction with Kruppel-like factor 5 (KLF5) to form a YAP1/TEAD-KLF5 complex in TNBC cells. YAP1-KLF5 association further promoted TEAD-mediated transcriptional program independently of canonical Hippo kinases, which eventually gave rise to the enhanced cancer stemness and metastasis. Disruption of YAP1-KLF5 module in TNBC cells dramatically attenuated the SRC-induced cancer stemness and metastasis in vitro and in vivo. Accordingly, co-upregulations of SRC and YAP1-KLF5 module in TNBC tissues were significantly positively correlated with the tumor malignance. Altogether, our work presents a novel tyrosine phosphorylation-dependent YAP1-KLF5 oncogenic module governing SRC-induced cancer stemness and metastasis in TNBC. Therefore, targeting YAP1/KLF5-mediated transcription may provide a promising strategy for TNBC treatment with SRC aberrantly activation.
Collapse
|
7
|
de Castro Ferezin C, Lim Kam Sian TCC, Wu Y, Ma X, Chüeh AC, Huang C, Schittenhelm RB, Kobarg J, Daly RJ. Identification of biological pathways and processes regulated by NEK5 in breast epithelial cells via an integrated proteomic approach. Cell Commun Signal 2022; 20:197. [PMID: 36550548 PMCID: PMC9773587 DOI: 10.1186/s12964-022-01006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Specific members of the Nima-Related Kinase (NEK) family have been linked to cancer development and progression, and a role for NEK5, one of the least studied members, in breast cancer has recently been proposed. However, while NEK5 is known to regulate centrosome separation and mitotic spindle assembly, NEK5 signalling mechanisms and function in this malignancy require further characterization. To this end, we established a model system featuring overexpression of NEK5 in the immortalized breast epithelial cell line MCF-10A. MCF-10A cells overexpressing NEK5 exhibited an increase in clonogenicity under monolayer conditions and enhanced acinar size and abnormal morphology in 3D Matrigel culture. Interestingly, they also exhibited a marked reduction in Src activation and downstream signalling. To interrogate NEK5 signalling and function in an unbiased manner, we applied a variety of MS-based proteomic approaches. Determination of the NEK5 interactome by Bio-ID identified a variety of protein classes including the kinesins KIF2C and KIF22, the mitochondrial proteins TFAM, TFB2M and MFN2, RhoH effectors and the negative regulator of Src, CSK. Characterization of proteins and phosphosites modulated upon NEK5 overexpression by global MS-based (phospho)proteomic profiling revealed impact on the cell cycle, DNA synthesis and repair, Rho GTPase signalling, the microtubule cytoskeleton and hemidesmosome assembly. Overall, the study indicates that NEK5 impacts diverse pathways and processes in breast epithelial cells, and likely plays a multifaceted role in breast cancer development and progression. Video Abstract.
Collapse
Affiliation(s)
- Camila de Castro Ferezin
- grid.1002.30000 0004 1936 7857Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.411087.b0000 0001 0723 2494Faculty of Pharmaceutical Sciences, State University of Campinas, São Paulo, Brazil
| | - Terry C. C. Lim Kam Sian
- grid.1002.30000 0004 1936 7857Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| | - Yunjian Wu
- grid.1002.30000 0004 1936 7857Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| | - Xiuquan Ma
- grid.1002.30000 0004 1936 7857Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| | - Anderly C. Chüeh
- grid.1002.30000 0004 1936 7857Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| | - Cheng Huang
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, VIC 3800 Australia
| | - Ralf B. Schittenhelm
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, VIC 3800 Australia
| | - Jörg Kobarg
- grid.411087.b0000 0001 0723 2494Faculty of Pharmaceutical Sciences, State University of Campinas, São Paulo, Brazil
| | - Roger J. Daly
- grid.1002.30000 0004 1936 7857Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
8
|
Th17-Gene Expression Profile in Patients with Chronic Venous Disease and Venous Ulcers: Genetic Modulations and Preliminary Clinical Evidence. Biomolecules 2022; 12:biom12070902. [PMID: 35883458 PMCID: PMC9312858 DOI: 10.3390/biom12070902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic venous disease is a condition globally widespread, resulting in a disabling pathological disorder. The CD4 + Th17+ (Cluster Differentiation 4) lymphocytes represent a regulative factor for innate immunity related to the development of complex diseases. Recently, these mechanisms have been associated with vascular disease. The aim of this work is to validate whether the Th17 response correlates with the development of CVI (Chronic venous insufficiency)and CVLUs (chronic venous limbs ulcers) and whether Th17 markers can be used, both as intrinsic risk factors and diagnostic markers, for disease development. PBL derived from peripheral blood samples of patients and controls were subjected to gene expression analysis for IL23R, IL17, SGK1, TGFβ, RORγ, FOXO1, and RANBP1 by qRT-PCR and immunoblot. A post hoc correlation, the diagnostic performance of the target genes, and multivariable analyses were properly conducted. The main expression markers of the CD4 + Th17+ switch were strongly activated in chronic venous insufficiency and in advanced ulceration. The correlation analysis demonstrated the inter-dependence on Th17’s signature modulation. ROC (Receiver Operating Characteristic) analysis defined, for the examined genes, a clinical value as the potential diagnostic markers. Multi-logistic regression studies showed that Th17 markers behave as empirical risk factors for CVD (chronic venous disease) development. Taken together, the present data provide a new hypothesis for the TH17-dependent pathogenesis of CVD, favoring the possibility for the development of new diagnostic, preventive, and therapeutic approaches.
Collapse
|
9
|
Ghani MJ, Gu W, Chen Z, Canessa CM. Lipid droplets and autophagosomes together with chaperones fine-tune expression of SGK1. J Cell Mol Med 2022; 26:2852-2865. [PMID: 35393773 PMCID: PMC9097849 DOI: 10.1111/jcmm.17300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Serum-glucocorticoid-induced kinase-1 (SGK1) regulates ion homeostasis and promotes survival under stress conditions. The expression of SGK1 is under transcriptional and post-translational regulations that are frequently altered in cancer and immune disorders. We report that an N-terminal amphipathic alpha-helix determines SGK1 expression levels through two distinct mechanisms. It tethers SGK1 to intracellular organelles generating a large pool of membrane-bound SGK1, which is differentially stabilized in lipid droplets (LD) in fed conditions or degraded in the endoplasmic reticulum by ER-phagy in starvation. Association of the α-helix to organelles does not depend on dedicated receptors or special phospholipids rather, it is intrinsic to its physicochemical properties and depends on the presence of bulky hydrophobic residues for attachment to LDs. The second mechanism is recruitment of protein-chaperones that recognize the α-helix as an unfolded protein promoting survival of the cytosolic SGK1 fraction. Together, the findings unveil an unexpected link between levels of energy storage and abundance of SGK1 and how changes in calorie intake could be used to modulate SGK1 expression, whereas the inhibition of molecular chaperones could serve as an additional enhancer in the treatment of malignancies and autoimmune disorders with high levels of SGK1 expression.
Collapse
Affiliation(s)
| | - Wenxue Gu
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhuyuan Chen
- School of Medicine, Tsinghua University, Beijing, China
| | - Cecilia M Canessa
- School of Medicine, Tsinghua University, Beijing, China.,Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Cai M, Zhang N, Yang D, Jiao Q, Qu P, Zhang Y. High expression of SGK1 in thrombosis of acute ST-segment elevation myocardial infarction: Based on proteomics analysis of intracoronary thrombosis. Rev Port Cardiol 2022; 41:271-279. [DOI: 10.1016/j.repc.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/24/2023] Open
|
11
|
Vaidyanathan S, Salmi TM, Sathiqu RM, McConville MJ, Cox AG, Brown KK. YAP regulates an SGK1/mTORC1/SREBP-dependent lipogenic program to support proliferation and tissue growth. Dev Cell 2022; 57:719-731.e8. [PMID: 35216681 DOI: 10.1016/j.devcel.2022.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 11/19/2022]
Abstract
The coordinated regulation of growth control and metabolic pathways is required to meet the energetic and biosynthetic demands associated with proliferation. Emerging evidence suggests that the Hippo pathway effector Yes-associated protein 1 (YAP) reprograms cellular metabolism to meet the anabolic demands of growth, although the mechanisms involved are poorly understood. Here, we demonstrate that YAP co-opts the sterol regulatory element-binding protein (SREBP)-dependent lipogenic program to facilitate proliferation and tissue growth. Mechanistically, YAP stimulates de novo lipogenesis via mechanistic target of rapamcyin (mTOR) complex 1 (mTORC1) signaling and subsequent activation of SREBP. Importantly, YAP-dependent regulation of serum- and glucocorticoid-regulated kinase 1 (SGK1) is required to activate mTORC1/SREBP and stimulate de novo lipogenesis. We also find that the SREBP target genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) are conditionally required to support YAP-dependent proliferation and tissue growth. These studies reveal that de novo lipogenesis is a metabolic vulnerability that can be targeted to disrupt YAP-dependent proliferation and tissue growth.
Collapse
Affiliation(s)
- Srimayee Vaidyanathan
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Talhah M Salmi
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rasan M Sathiqu
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew G Cox
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Kristin K Brown
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
12
|
Zhang S, Wang Y, Yu M, Shang Y, Chang Y, Zhao H, Kang Y, Zhao L, Xu L, Zhao X, Difrancesco D, Baruscotti M, Wang Y. Discovery of Herbacetin as a Novel SGK1 Inhibitor to Alleviate Myocardial Hypertrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101485. [PMID: 34761560 PMCID: PMC8805583 DOI: 10.1002/advs.202101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/17/2021] [Indexed: 05/05/2023]
Abstract
Cardiac hypertrophy is a pivotal pathophysiological step of various cardiovascular diseases, which eventually leads to heart failure and death. Extracts of Rhodiola species (Ext.R), a class of commonly used medicinal herbs in Europe and East Asia, can attenuate cardiac hypertrophy both in vitro and in vivo. Serum/glucocorticoid regulated kinase 1 (SGK1) is identified as a potential target of Ext. R. By mass spectrometry-based kinase inhibitory assay, herbacetin (HBT) from Ext.R is identified as a novel SGK1 inhibitor with IC50 of 752 nmol. Thermal shift assay, KINOMEscan in vitro assay combined with molecular docking proves a direct binding between HBT and SGK1. Site-specific mutation of Asp177 in SGK1 completely ablates the inhibitory activity of HBT. The presence of OH groups at the C-3, C-8, C-4' positions of flavonoids is suggested to be favorable for the inhibition of SGK1 activity. Finally, HBT significantly suppresses cardiomyocyte hypertrophy in vitro and in vivo, reduces reactive oxygen species (ROS) synthesis and calcium accumulation. HBT decreases phosphorylation of SGK1 and regulates its downstream forkhead box protein O1 (FoxO1) signaling pathway. Taken together, the findings suggest that a panel of flavonoids structurally related to HBT may be novel leads for developing new therapeutics against cardiac hypertrophy.
Collapse
Affiliation(s)
- Shujing Zhang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yingchao Wang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Min Yu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ye Shang
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yanxu Chang
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Hong Zhao
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yu Kang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Lu Zhao
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Lei Xu
- Institute of Bioinformatics and Medical EngineeringSchool of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouJiangsu213001China
| | - Xiaoping Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | | | | | - Yi Wang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| |
Collapse
|
13
|
Luo J, Zou H, Guo Y, Tong T, Ye L, Zhu C, Deng L, Wang B, Pan Y, Li P. SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Res 2022; 24:99. [PMID: 36581908 PMCID: PMC9798727 DOI: 10.1186/s13058-022-01596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Hailin Zou
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yibo Guo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Tongyu Tong
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liping Ye
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Chengming Zhu
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liang Deng
- grid.511083.e0000 0004 7671 2506Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Bo Wang
- grid.511083.e0000 0004 7671 2506Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yihang Pan
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Peng Li
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| |
Collapse
|
14
|
Zhang Y, Shi G, Zhang H, Xiong Q, Cheng F, Wang H, Luo J, Zhang Y, Shi P, Xu J, Fu J, Chen N, Cheng L, Li Y, Dai L, Yang Y, Yu D, Zhang S, Deng H. Dexamethasone enhances the lung metastasis of breast cancer via a PI3K-SGK1-CTGF pathway. Oncogene 2021; 40:5367-5378. [PMID: 34272474 PMCID: PMC8413128 DOI: 10.1038/s41388-021-01944-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Dexamethasone (Dex), as a pretreatment agent, is widely used to attenuate the side effects of chemotherapy in breast cancer treatment. However, whether and how Dex affects breast cancer metastasis remain to be furtherly understood. In this study, we established several mouse breast cancer metastatic models to study the effect of Dex in vitro and in vivo. Transwell, Western Blot and RNA interference were applied to study the molecular mechanism of Dex in promoting breast cancer cell migration. Meanwhile, the effect of Dex on lung metastasis of breast cancer in Dex combined with PTX chemotherapy was discussed. Our results confirmed that Dex could promote breast cancer cell metastasis both in vitro and in vivo. Mechanistic studies revealed that this pro-metastatic effect of Dex was mediated by the GR-PI3K-SGK1-CTGF pathway in tumor cells. Ligation of Dex and glucocorticoid receptor (GR) on tumor cells activated the PI3K signaling pathway and upregulated serum glucocorticoid-inducible kinase 1 (SGK1) expression, and then increased the expression of connective tissue growth factor (CTGF) through Nedd4l-Smad2. Moreover, Dex was the leading factor for lung metastasis in a standard regimen for breast cancer treatment with paclitaxel and Dex. Importantly, targeting SGK1 with the inhibitor GSK650394 remarkably reduced lung metastasis in this regimen. Our present data provide new insights into Dex-induced breast cancer metastasis and indicate that SGK1 could be a candidate target for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Hantao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qi Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jieyan Luo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yong Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Pengyi Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jia Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiamei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yiming Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
- Innovent Biologics, Inc, Suzhou, Jiangsu, PR China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.
- Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
15
|
Mason JA, Cockfield JA, Pape DJ, Meissner H, Sokolowski MT, White TC, Valentín López JC, Liu J, Liu X, Martínez-Reyes I, Chandel NS, Locasale JW, Schafer ZT. SGK1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Rep 2021; 34:108821. [PMID: 33730592 DOI: 10.1016/j.celrep.2021.108821] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/30/2020] [Accepted: 02/12/2021] [Indexed: 12/29/2022] Open
Abstract
Loss of integrin-mediated attachment to extracellular matrix (ECM) proteins can trigger a variety of cellular changes that affect cell viability. Foremost among these is the activation of anoikis, caspase-mediated cell death induced by ECM detachment. In addition, loss of ECM attachment causes profound alterations in cellular metabolism, which can lead to anoikis-independent cell death. Here, we describe a surprising role for serum and glucocorticoid kinase-1 (SGK1) in the promotion of energy production when cells are detached. Our data demonstrate that SGK1 activation is necessary and sufficient for ATP generation during ECM detachment and anchorage-independent growth. More specifically, SGK1 promotes a substantial elevation in glucose uptake because of elevated GLUT1 transcription. In addition, carbon flux into the pentose phosphate pathway (PPP) is necessary to accommodate elevated glucose uptake and PPP-mediated glyceraldehyde-3-phosphate (G3P) is necessary for ATP production. Thus, our data show SGK1 as master regulator of glucose metabolism and cell survival during ECM-detached conditions.
Collapse
Affiliation(s)
- Joshua A Mason
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jordan A Cockfield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Daniel J Pape
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah Meissner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael T Sokolowski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Taylor C White
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - José C Valentín López
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juan Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason W Locasale
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zachary T Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
16
|
Sang Y, Kong P, Zhang S, Zhang L, Cao Y, Duan X, Sun T, Tao Z, Liu W. SGK1 in Human Cancer: Emerging Roles and Mechanisms. Front Oncol 2021; 10:608722. [PMID: 33542904 PMCID: PMC7851074 DOI: 10.3389/fonc.2020.608722] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Serum and glucocorticoid-induced protein kinase 1 (SGK1) is a member of the "AGC" subfamily of protein kinases, which shares structural and functional similarities with the AKT family of kinases and displays serine/threonine kinase activity. Aberrant expression of SGK1 has profound cellular consequences and is closely correlated with human cancer. SGK1 is considered a canonical factor affecting the expression and signal transduction of multiple genes involved in the genesis and development of many human cancers. Abnormal expression of SGK1 has been found in tissue and may hopefully become a useful indicator of cancer progression. In addition, SGK1 acts as a prognostic factor for cancer patient survival. This review systematically summarizes and discusses the role of SGK1 as a diagnostic and prognostic biomarker of diverse cancer types; focuses on its essential roles and functions in tumorigenesis, cancer cell proliferation, apoptosis, invasion, metastasis, autophagy, metabolism, and therapy resistance and in the tumor microenvironment; and finally summarizes the current understanding of the regulatory mechanisms of SGK1 at the molecular level. Taken together, this evidence highlights the crucial role of SGK1 in tumorigenesis and cancer progression, revealing why it has emerged as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Characterization of Mutational Status, Spheroid Formation, and Drug Response of a New Genomically-Stable Human Ovarian Clear Cell Carcinoma Cell Line, 105C. Cells 2020; 9:cells9112408. [PMID: 33153119 PMCID: PMC7693681 DOI: 10.3390/cells9112408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare subtype of gynecological cancer for which well-characterized and authenticated model systems are scarce. We provide an extensive characterization of ‘105C’, a cell line generated from an adenocarcinoma of the clear cell histotype using targeted next-generation sequencing, cytogenetic microarrays, along with analyses of AKT/mTOR signaling. We report that that the 105C cell line is a bona fide OCCC cell line, carrying PIK3CA, PTEN, and ARID1A gene mutations, consistent with OCCC, yet maintain a stable genome as reflected by low copy number variation. Unlike KOC-7c, TOV-21G, and RMG-V OCCC lines also mutated for the above genes, the 105C cells do not carry mutations in mismatch repair genes. Importantly, we show that 105C cells exhibit greater resistance to mTOR inhibition and carboplatin treatment compared to 9 other OCCC cell lines in 3D spheroid cultures. This resistance may be attributed to 105C cells remaining dormant in suspension culture which surprisingly, contrasts with several other OCCC lines which continue to proliferate in long-term suspension culture. 105C cells survive xenotransplantation but do not proliferate and metastasize. Collectively, we show that the 105C OCCC cell line exhibits unique properties useful for the pre-clinical investigation of OCCC pathobiology.
Collapse
|
18
|
Gu Z, Wang L, Yao X, Long Q, Lee K, Li J, Yue D, Yang S, Liu Y, Li N, Li Y. ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect in human stomach adenocarcinoma. Cell Death Dis 2020; 11:898. [PMID: 33093458 PMCID: PMC7583252 DOI: 10.1038/s41419-020-03107-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Currently, only a few available targeted drugs are considered to be effective in stomach adenocarcinoma (STAD) treatment. The PARP inhibitor olaparib is a molecularly targeted drug that continues to be investigated in BRCA-mutated tumors. However, in tumors without BRCA gene mutations, particularly in STAD, the effect and molecular mechanism of olaparib are unclear, which largely restricts the use of olaparib in STAD treatment. In this study, the in vitro results showed that olaparib specifically inhibited cell growth and migration, exerting antitumor effect in STAD cell lines. In addition, a ClC-3/SGK1 regulatory axis was identified and validated in STAD cells. We then found that the down-regulation of ClC-3/SGK1 axis attenuated olaparib-induced cell growth and migration inhibition. On the contrary, the up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced cell growth and migration inhibition, and the enhancement effect could be attenuated by SGK1 knockdown. Consistently, the whole-cell recorded chloride current activated by olaparib presented the same variation trend. Next, the clinical data showed that ClC-3 and SGK1 were highly expressed in human STAD tissues and positively correlated (r = 0.276, P = 0.009). Furthermore, high protein expression of both ClC-3 (P = 0.030) and SGK1 (P = 0.006) was associated with poor survival rate in STAD patients, and positive correlations between ClC-3/SGK1 and their downstream molecules in STAD tissues were demonstrated via the GEPIA datasets. Finally, our results suggested that olaparib inhibited the PI3K/AKT pathway in STAD cells, and up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced PI3K/AKT pathway inhibition. The animal experiments indicated that olaparib also exerted antitumor effect in vivo. Altogether, our findings illustrate that olaparib exerts antitumor effect in human STAD, and ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect. Up-regulation of the ClC-3/SGK1 axis may provide promising therapeutic potential for the clinical application of olaparib in STAD treatment.
Collapse
Affiliation(s)
- Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kaping Lee
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jieyao Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongli Yue
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuangning Yang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanfen Liu
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Cardiovascular Medicine, Qingdao No. 9 People's Hospital, Shandong, China
| | - Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Dattilo V, Amato R, Perrotti N, Gennarelli M. The Emerging Role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in Major Depressive Disorder: Hypothesis and Mechanisms. Front Genet 2020; 11:826. [PMID: 32849818 PMCID: PMC7419621 DOI: 10.3389/fgene.2020.00826] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous psychiatric disease characterized by persistent low mood, diminished interests, and impaired cognitive and social functions. The multifactorial etiology of MDD is still largely unknown because of the complex genetic and environmental interactions involved. Therefore, no established mechanism can explain all the aspects of the disease. In this light, an extensive research about the pathophysiology of MDD has been carried out. Several pathogenic hypotheses, such as monoamines deficiency and neurobiological alterations in the stress-responsive system, including the hypothalamic-pituitary-adrenal (HPA) axis and the immune system, have been proposed for MDD. Over time, remarkable studies, mainly on preclinical rodent models, linked the serum- and glucocorticoid-regulated kinase 1 (SGK1) to the main features of MDD. SGK1 is a serine/threonine kinase belonging to the AGK Kinase family. SGK1 is ubiquitously expressed, which plays a pivotal role in the hormonal regulation of several ion channels, carriers, pumps, and transcription factors or regulators. SGK1 expression is modulated by cell stress and hormones, including gluco- and mineralocorticoids. Compelling evidence suggests that increased SGK1 expression or function is related to the pathogenic stress hypothesis of major depression. Therefore, the first part of the present review highlights the putative role of SGK1 as a critical mediator in the dysregulation of the HPA axis, observed under chronic stress conditions, and its controversial role in the neuroinflammation as well. The second part depicts the negative regulation exerted by SGK1 in the expression of both the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), resulting in an anti-neurogenic activity. Finally, the review focuses on the antidepressant-like effects of anti-oxidative nutraceuticals in several preclinical model of depression, resulting from the restoration of the physiological expression and/or activity of SGK1, which leads to an increase in neurogenesis. In summary, the purpose of this review is a systematic analysis of literature depicting SGK1 as molecular junction of the complex mechanisms underlying the MDD in an effort to suggest the kinase as a potential biomarker and strategic target in modern molecular antidepressant therapy.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosario Amato
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Massimo Gennarelli
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Effect of glucose deprivation on the expression of genes encoding glucocorticoid receptor and some related factors in ERN1-knockdown U87 glioma cells. Endocr Regul 2020; 53:237-249. [PMID: 31734653 DOI: 10.2478/enr-2019-0024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the effect of glucose deprivation on the expression of genes encoded glucocorticoid receptor (NR3C1) and some related proteins (NR3C2, AHR, NRIP1, NNT, ARHGAP35, SGK1, and SGK3) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1/inositol requiring enzyme 1) for evaluation of their possible significance in the control of glioma growth through endoplasmic reticulum stress signaling mediated by IRE1 and glucose deprivation. METHODS The expression of NR3C1, NR3C2, AHR, NRIP1, NNT, ARHGAP35, SGK1, and SGK3 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control cells) and cells without ERN1 signaling enzyme function (transfected by dnERN1) under glucose deprivation was studied by real time quantitative polymerase chain reaction. RESULTS It was shown that the expression level of NR3C2, AHR, SGK1, SGK3, and NNT genes was up-regulated in control U87 glioma cells under glucose deprivation condition in comparison with the control cells growing with glucose. At the same time, the expression of NRIP1 gene is down-regulated in these glioma cells under glucose deprivation, but NR3C1 and ARHGAP35 genes was resistant to this experimental condition. We also showed that inhibition of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose deprivation condition. Thus, effect of glucose deprivation on the expression level of NR3C2, AHR, and SGK1 genes was significantly stronger in ERN1 knockdown U87 glioma cells since the expression of NNT gene was resistant to glucose deprivation condition. Moreover, the inhibition of ERN1 enzymatic activities in U87 glioma cells led to up-regulation of ARHGAP35 gene expression and significant down-regulation of the expression of SGK3 gene in response to glucose deprivation condition. CONCLUSIONS Results of this study demonstrated that glucose deprivation did not change the expression level of NR3C1 gene but it significantly affected the expression of NR3C2, AHR, NRIP, SGK1, SGK3, and NNT genes in vector-transfected U87 glioma cells in gene specific manner and possibly contributed to the control of glioma growth since the expression of most studied genes in glucose deprivation condition was significantly dependent on the functional activity of IRE1 signaling enzyme.
Collapse
|
21
|
Schimmel L, Fukuhara D, Richards M, Jin Y, Essebier P, Frampton E, Hedlund M, Dejana E, Claesson-Welsh L, Gordon E. c-Src controls stability of sprouting blood vessels in the developing retina independently of cell-cell adhesion through focal adhesion assembly. Development 2020; 147:dev185405. [PMID: 32108024 PMCID: PMC7157583 DOI: 10.1242/dev.185405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Abstract
Endothelial cell adhesion is implicated in blood vessel sprout formation, yet how adhesion controls angiogenesis, and whether it occurs via rapid remodeling of adherens junctions or focal adhesion assembly, or both, remains poorly understood. Furthermore, how endothelial cell adhesion is controlled in particular tissues and under different conditions remains unexplored. Here, we have identified an unexpected role for spatiotemporal c-Src activity in sprouting angiogenesis in the retina, which is in contrast to the dominant focus on the role of c-Src in the maintenance of vascular integrity. Thus, mice specifically deficient in endothelial c-Src displayed significantly reduced blood vessel sprouting and loss in actin-rich filopodial protrusions at the vascular front of the developing retina. In contrast to what has been observed during vascular leakage, endothelial cell-cell adhesion was unaffected by loss of c-Src. Instead, decreased angiogenic sprouting was due to loss of focal adhesion assembly and cell-matrix adhesion, resulting in loss of sprout stability. These results demonstrate that c-Src signaling at specified endothelial cell membrane compartments (adherens junctions or focal adhesions) control vascular processes in a tissue- and context-dependent manner.
Collapse
Affiliation(s)
- Lilian Schimmel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daisuke Fukuhara
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Mark Richards
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Yi Jin
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Patricia Essebier
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Emmanuelle Frampton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marie Hedlund
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Elisabetta Dejana
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Lena Claesson-Welsh
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| | - Emma Gordon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Uppsala University, Beijer and Science for Life Laboratories, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala 75185, Sweden
| |
Collapse
|
22
|
Xiao B, Wang G, Li W. Weighted gene correlation network analysis reveals novel biomarkers associated with mesenchymal stromal cell differentiation in early phase. PeerJ 2020; 8:e8907. [PMID: 32280568 PMCID: PMC7134052 DOI: 10.7717/peerj.8907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/13/2020] [Indexed: 12/26/2022] Open
Abstract
Osteoporosis is a major public health problem that is associated with high morbidity and mortality, and its prevalence is increasing as the world’s population ages. Therefore, understanding the molecular basis of the disease is becoming a high priority. In this regard, studies have shown that an imbalance in adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) is associated with osteoporosis. In this study, we conducted a Weighted Gene Co-Expression Network Analysis to identify gene modules associated with the differentiation of bone marrow MSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genome enrichment analysis showed that the most significant module, the brown module, was enriched with genes involved in cell cycle regulation, which is in line with the initial results published using these data. In addition, the Cytoscape platform was used to identify important hub genes and lncRNAs correlated with the gene modules. Furthermore, differential gene expression analysis identified 157 and 40 genes that were upregulated and downregulated, respectively, after 3 h of MSCs differentiation. Interestingly, regulatory network analysis, and comparison of the differentially expressed genes with those in the brown module identified potential novel biomarker genes, including two transcription factors (ZNF740, FOS) and two hub genes (FOXQ1, SGK1), which were further validated for differential expression in another data set of differentiation of MSCs. Finally, Gene Set Enrichment Analysis suggested that the two most important candidate hub genes are involved in regulatory pathways, such as the JAK-STAT and RAS signaling pathways. In summary, we have revealed new molecular mechanisms of MSCs differentiation and identified novel genes that could be used as potential therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Guozhu Wang
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Weiwei Li
- Department of Orthopedics, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
23
|
Sun CC, Zhang LC, Gao CL, Zhang HR, Yu RL, Kang CM. Design and screening of SGK1, Src dual inhibitors using pharmacophore models, molecular docking, and molecular dynamics simulation. NEW J CHEM 2020. [DOI: 10.1039/d0nj02249g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum and glucocorticoid-regulated protein kinase 1 that can promote the growth of tumor cells is highly expressed in many tumors. Sarcoma gene plays an important role in the pathogenesis of cancer and is an important kinase in tumor cell expression pathways.
Collapse
Affiliation(s)
- Chuan-ce Sun
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Li-chuan Zhang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Cheng-long Gao
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Hao-ran Zhang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Ri-lei Yu
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Cong-min Kang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|
24
|
D'Antona L, Dattilo V, Catalogna G, Scumaci D, Fiumara CV, Musumeci F, Perrotti G, Schenone S, Tallerico R, Spoleti CB, Costa N, Iuliano R, Cuda G, Amato R, Perrotti N. In Preclinical Model of Ovarian Cancer, the SGK1 Inhibitor SI113 Counteracts the Development of Paclitaxel Resistance and Restores Drug Sensitivity. Transl Oncol 2019; 12:1045-1055. [PMID: 31163384 PMCID: PMC6545392 DOI: 10.1016/j.tranon.2019.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy worldwide. Paclitaxel is particularly important in the therapy of ovarian carcinomas, but the treatment efficacy is counteracted by the development of resistance to chemotherapy. The identification of target molecules that can prevent or control the development of chemoresistance might provide important tools for the management of patients affected by ovarian cancer. Serum- and glucocorticoid-regulated kinase 1 (SGK1) appears to be a key determinant of resistance to chemo- and radiotherapy. Specifically, SGK1 affects paclitaxel sensitivity in RKO colon carcinoma cells by modulating the specificity protein 1 (SP1)–dependent expression of Ran-specific GTPase-activating protein (RANBP1), a member of the GTP-binding nuclear protein Ran (RAN) network that is required for the organization and function of the mitotic spindle. SGK1 inhibition might thus be useful for counteracting the development of paclitaxel resistance. Here, we present in vitro data obtained using ovarian carcinoma cell lines that indicate that the SGK1 inhibitor SI113 inhibits cancer cell proliferation, potentiates the effects of paclitaxel-based chemotherapy, counteracts the development of paclitaxel resistance, and restores paclitaxel sensitivity in paclitaxel-resistant A2780 ovarian cancer cells. The results were corroborated by preclinical studies of xenografts generated in nude mice through the implantation of paclitaxel-resistant human ovarian cancer cells. The SGK1 inhibitor SI113 synergizes with paclitaxel in the treatment of xenografted ovarian cancer cells. Taken together, these data suggest that SGK1 inhibition should be investigated in clinical trials for the treatment of paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Lucia D'Antona
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Vincenzo Dattilo
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Giada Catalogna
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Domenica Scumaci
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Claudia Vincenza Fiumara
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | | | - Giuseppe Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | | | - Rossana Tallerico
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Cristina B Spoleti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Nicola Costa
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Rodolfo Iuliano
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Giovanni Cuda
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro.
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro.
| |
Collapse
|