1
|
Poyraz B. Poly(ethylene-co-(acrylic acid)) and maleic anhydride effect on micro crystalline cellulose and lignin-filled EPDM automotive sealing profiles. Int J Biol Macromol 2025; 297:139602. [PMID: 39798745 DOI: 10.1016/j.ijbiomac.2025.139602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/08/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
In this study, the effect of Poly(ethylene-co-(acrylic acid)) and maleic anhydride on cellulose and lignin-filled EPDM elastomers was investigated. Poly(ethylene-co-(acrylic acid)) and maleic anhydride were added in certain amounts (3.5 phr) to determine their chemical, thermal, rheological, mechanical, and morphological properties. With the addition of Poly(ethylene-co-(acrylic acid)) and maleic anhydride, higher thermal stability and slower vulcanization with retarded ts2 and t90 were seen. Improved elongation and tear strength were also observed. However, maleic anhydride-added cellulose and lignin-filled EPDM had a higher tensile strength value since it formed adequate chain mobility and had good interfacial compatibility that made stress transfer easy. Despite some immiscibility phases (especially after maleic anhydride) and microvoid structures, no considerable aggregation was observed in all elastomers. In conclusion, Poly(ethylene-co-(acrylic acid)) and maleic anhydride on cellulose and lignin-filled EPDM elastomers can be recommended for mechanical, rheological, and ecological benefit to industries that are interested in biopolymer-filled EPDM elastomers.
Collapse
Affiliation(s)
- Bayram Poyraz
- Civil Engineering Department, Düzce University, Duzce, Turkey.
| |
Collapse
|
2
|
Qian X. Sodium Thiophenolate Initiated Polymerization of Methacrylate with Sulfur (S 8): High-Refractive-Index and -Transparency Polymers for Lithography. ACS OMEGA 2025; 10:3953-3959. [PMID: 39926508 PMCID: PMC11800153 DOI: 10.1021/acsomega.4c09788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
A simple and effective strategy for introducing sulfur into a polymethacrylate matrix at room temperature has been developed, allowing for the polymerization of a variety of methacrylate derivatives with sulfur. The resulting S-containing polymers exhibited a high refractive index of up to 1.72 while retaining over 90% transmittance in the visible region. Additionally, when mixed with 3% photo acid generator (PAG) as photoresist, the formulation demonstrated excellent patterning capabilities. Furthermore, the scalable preparation of high-refractive-index polymers (HRIPs) indicates significant potential for fabrication.
Collapse
Affiliation(s)
- Xiaofei Qian
- School
of Microelectronics, Fudan University, Shanghai 200433, P. R. China
- Fudan
Zhangjiang Institute, Shanghai 201203, P. R. China
| |
Collapse
|
3
|
Fan J, Ju C, Fan S, Li X, Zhang Z, Hadjichristidis N. Inverse Vulcanization of Aziridines: Enhancing Polysulfides for Superior Mechanical Strength and Adhesive Performance. Angew Chem Int Ed Engl 2025; 64:e202418764. [PMID: 39560162 DOI: 10.1002/anie.202418764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
This study introduces a novel approach to inverse vulcanization by utilizing a commercially available triaziridine crosslinker as an alternative to conventional olefin-based crosslinkers. The model reactions reveal a self-catalyzed ring-opening of "unactivated" aziridine with elemental sulfur, forming oligosulfide-functionalized diamines. The triaziridine-derived polysulfides exhibit impressive mechanical properties, achieving a maximum stress of ~8.3 MPa and an elongation at break of ~107 %. The incorporation of silicon dioxide (20 wt %) enhances the composite's rigidity, yielding a Young's modulus of ~0.94 GPa. Furthermore, these polysulfides display excellent adhesion strength on various substrates, such as aluminum (~7.0 MPa), walnut (~9.6 MPa), and steel (~11.0 MPa), with substantial retention of adhesion strength (~3.3 MPa on steel) at -196 °C. The straightforward synthetic process, combined with the accessibility of the triaziridine crosslinker, emphasizes the potential for further innovations in sulfur polymer chemistry.
Collapse
Affiliation(s)
- Jieai Fan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Changzheng Ju
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Songjie Fan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Xia Li
- Analysis and Test Center, Guangdong University of Technology, 510006, Guangzhou, China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Diniz V, Rath S, Crick CR. Optimizing Superhydrophobic Coatings: The Role of Catalysts, Additives, and Composition on UV and Thermal Stability of Inverse Vulcanization Polymers. ACS APPLIED POLYMER MATERIALS 2025; 7:567-572. [PMID: 39882258 PMCID: PMC11773412 DOI: 10.1021/acsapm.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Inverse vulcanization (IV) enables the production of sustainable polymer from sulfur waste, offering hydrophobic, fluorine-free, and superhydrophobic coatings. However, these materials need adhesion improvements for enhanced durability. This study has developed an epoxy-, fluorine-, and metal-free superhydrophobic coating using the spray-coating of carbon nanofibers (CNFs), silica nanoparticles, and IV polymers on glass. An optimized formula of 28% sulfur, 20 mg/mL CNFs, 25 mg/mL silica, and 80 mg/mL polymer-was established. Zn(DTC)2-catalyzed coatings retained superhydrophobicity for 150 tape peeling cycles, up to 250 °C, and 6 h of UV-C exposure, demonstrating a straightforward, eco-friendly approach to durable, versatile superhydrophobic coatings.
Collapse
Affiliation(s)
- Vinicius Diniz
- School
of Engineering and Materials Sciences, Queen
Mary University of London, London, E1 4NS, U.K.
- Institute
of Chemistry, University of Campinas, 13083-970 Campinas, Brazil
| | - Susanne Rath
- Institute
of Chemistry, University of Campinas, 13083-970 Campinas, Brazil
| | - Colin R. Crick
- School
of Engineering and Materials Sciences, Queen
Mary University of London, London, E1 4NS, U.K.
| |
Collapse
|
5
|
Jia J, Chai Y, Xun X, Gao Y, Qiao T, Wang X, Wang XC, Hasell T, Wu X, Quan ZJ. Dynamic Covalent Sulfur-Selenium Rich Polymers via Inverse Vulcanization for High Refractive Index, High Transmittance, and UV Shielding Materials. Macromol Rapid Commun 2025:e2400998. [PMID: 39812334 DOI: 10.1002/marc.202400998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous H2S gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C. The resultant sulfur-selenium rich polymers exhibit exceptional optical properties: 1) A high refractive index, reaching 1.89 when the total sulfur-selenium content is 65%; 2) Excellent UV shielding capabilities, blocking ultraviolet rays while permitting 95.1-98.6% transmission of visible light; 3) Notable transparency, with polymer films of 0.94 mm thickness exhibiting good transparency under natural light. The materials also demonstrate environmental stability under prolonged exposure to hot or cold conditions. Additionally, the polymers display adhesive strength as evidenced by two adhered glass slides with the material lifting weights of up to 20 kg without any displacement in their glued area. These properties provide a new avenue for sulfur-selenium rich materials to be implemented in high-precision optical instruments with unique characteristics.
Collapse
Affiliation(s)
- Jinhong Jia
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yao Chai
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Xingwei Xun
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yan Gao
- Lanzhou Petrochemical Branch of China National Petroleum Corporation, Lanzhou, Gansu, 730060, P. R. China
| | - Tongsen Qiao
- Lanzhou Petrochemical Research Center, PetroChina Petrochemical Research Institute, Lanzhou, Gansu, 730060, P. R. China
| | - Xiong Wang
- Lanzhou Petrochemical Research Center, PetroChina Petrochemical Research Institute, Lanzhou, Gansu, 730060, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Tom Hasell
- Materials Innovation Factory, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Xiaofeng Wu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Materials Innovation Factory, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
6
|
Yang H, Zhang J, Huang W, Zhang G. Transforming Element Sulfur to High Performance Closed-Loop Recyclable Polymer via Proton Transfer Enabled Anionic Hybrid Copolymerization. Angew Chem Int Ed Engl 2025; 64:e202414244. [PMID: 39263929 DOI: 10.1002/anie.202414244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
The utilization of sulfur has been a global issue. Copolymerization of element sulfur (S8) with other monomers is a promising route to convert it to useful materials but is limited by the comonomers. Here, we report anionic hybrid copolymerization of S8 with acrylate and epoxide at room temperature, where S8 does not copolymerize with epoxide in the absence of acrylate. Yet, the proton transfer from the methyne in acrylate to the oxygen anion enables the ring-opening of the cyclic comonomer and hence the copolymerization. The cyclic comonomers can be expanded to lactone and cyclic carbonate. Specifically, the copolymer of S8 with bisphenl A diglycidyl ether and diacrylate displays mechanical properties comparable to those of most common plastics, namely, it has ultimate tensile strength as high as 60.8 MPa and Young's modulus up to 680 MPa. It also exhibits high UV resistance and good transparency. Particularly, it has excellent UV-induced self-healing, reprocessability and closed-loop recyclability due to the abundant dynamic S-S bonds and ester groups. This study provides an efficient strategy to turn element sulfur into closed-loop recyclable polymer with high mechanical and optical performances.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
- Changzhou University Huaide College, Jingjiang, 214500, Jiangsu, P. R. China
| | - Jikai Zhang
- Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
| | - Wenyan Huang
- Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangou, 510640, Guangdong, P. R. China
| |
Collapse
|
7
|
Cai D, Dale JJ, Petcher S, Wu X, Hasell T. Investigating the Effect of UV Irradiation and TiO2 Addition on Heavy Metal Adsorption by Inverse Vulcanized Sulfur Polymers. Chemistry 2024; 30:e202402194. [PMID: 39373665 DOI: 10.1002/chem.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Organomercury contamination in wastewater is a longstanding global concern, prompting the establishment of the Mi-namata Convention in 2013, following the tragic Minamata Bay incident in Japan. Despite numerous proposed solutions, the development of an affordable and convenient adsorbent remains a challenge. Sulfur, being one of the most abundant elements globally, has shown promise in mercury adsorption in previous research. This study delves into the influence of light exposure on the process of mercury adsorption. Our findings reveal that exposure to UV-A wavelengths (315 nm-400 nm), in combination with the addition of titanium dioxide (TiO2), enhances the adsorption capacity of a sulfur-rich polymer. The maximum observed adsorption capacity reached 47 mg/g under these conditions. Notably, the presence of TiO2 and UV exposure did not significantly impact the adsorption of inorganic mercury and gold.
Collapse
Affiliation(s)
- Diana Cai
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Joseph J Dale
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Sam Petcher
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Xiaofeng Wu
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| |
Collapse
|
8
|
Sun Q, Brédas JL, Coropceanu V. Light-Induced Ring-to-Chain Transformations of Elemental Sulfur: Nonadiabatic Dynamics Simulations. J Phys Chem Lett 2024; 15:9920-9925. [PMID: 39303217 DOI: 10.1021/acs.jpclett.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The emergence of high-sulfur content polymeric materials and their diverse applications underscore the need for a comprehensive understanding of the ring-to-chain transformation of elemental sulfur. In this study, we delve into the ultrafast transformation of the elemental sulfur S8 ring upon photoexcitation employing advanced nonadiabatic dynamics simulations. Our findings reveal that the bond breaking of the S8 ring occurs within tens of femtoseconds. At the time of bond breaking, most molecules are in the lowest singlet excited state S1. S1 survives for 40-450 fs before relaxing to the quasi-degenerate manifolds formed by the T1 and S0 states of the S8 chain. This suggests that upon photoexcitation the polymerization of the S8 chains might proceed before the chains relax to their lowest energy states. The derived temporal resolution provides a detailed perspective on the dynamics of S8 rings upon photoexcitation, shedding light on the intricate processes involved in its excited-state transformations.
Collapse
Affiliation(s)
- Qi Sun
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| |
Collapse
|
9
|
Shi CY, Zhang XP, Zhang Q, Chen M, Tian H, Qu DH. Closed-loop chemically recyclable covalent adaptive networks derived from elementary sulfur. Chem Sci 2024:d4sc05031b. [PMID: 39371464 PMCID: PMC11447730 DOI: 10.1039/d4sc05031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
The development of sulfur-rich polymers derived from elementary sulfur provides an innovative approach to industrial waste valorization. Despite significant advancements in polymerization techniques and promising applications beyond traditional polymers, polysulfide networks are still primarily stabilized by diene crosslinkers, forming robust C-S bonds that hinder the degradation of sulfur-based polymers. In this study, the anionic ring-opening copolymerization of chemically homologous S8 and cyclic disulfides was explored to yield robust sulfur-rich copolymers with high molecular weight. The incorporation of polysulfide segments not only efficiently activated the crosslinked networks for excellent reprocessability and mechanical adaptability but also endowed the resulting copolymer with high optical transparency in the near-infrared region. More importantly, the dynamic disulfide crosslinking sites promoted the chemical closed-loop recyclability of the polysulfide networks via reversible S-S cleavage. This innovative inverse vulcanization strategy utilizing dynamic disulfide crosslinkers offers a promising pathway for the advanced applications and upcycling of high-performance sulfur-rich polymers.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiao-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
10
|
Tisdale KA, Kapuge Dona NL, Smith RC. The Influence of the Comonomer Ratio and Reaction Temperature on the Mechanical, Thermal, and Morphological Properties of Lignin Oil-Sulfur Composites. Molecules 2024; 29:4209. [PMID: 39275057 PMCID: PMC11397338 DOI: 10.3390/molecules29174209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Although lignin is a plentiful biomass resource, it continually exists as an underutilized component of biomass material. Elemental sulfur is another abundant yet underutilized commodity produced as a by-product resulting from the refining of fossil fuels. The current study presents a strategy for preparing five durable composites via a simple one-pot synthesis involving the reaction of lignin oil and elemental sulfur. These lignin oil-sulfur composites LOSx@T (where x = wt. % sulfur, ranging from 80 to 90, and T represents the reaction temperature in °C) were prepared via the reaction of elemental sulfur and lignin oil (LO) with elemental sulfur. The resulting composites could be remelted and reshaped several times without the loss of mechanical strength. Mechanical, thermal, and morphological studies showed that LOSx@T possesses properties competitive with some mechanical properties of commercial building materials, exhibiting favorable compressive strengths (22.1-35.9 MPa) and flexural strengths (5.7-6.5 MPa) exceeding the values required for many construction applications of ordinary Portland cement (OPC) and brick formulations. While varying the amount of organic material did not result in a notable difference in mechanical strength, increasing the reaction temperature from 230 to 300 °C resulted in a significant increase in compressive strength. The results reported herein reveal potential applications of both lignin and waste sulfur during the ongoing effort toward developing recyclable and sustainable building materials.
Collapse
Affiliation(s)
- Katelyn A Tisdale
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, Clemson, SC 29634, USA
| | - Nawoda L Kapuge Dona
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, Clemson, SC 29634, USA
| | - Rhett C Smith
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Grimm AP, Plank M, Stihl A, Schmitt CW, Voll D, Schacher FH, Lahann J, Théato P. Inverse Vulcanization of Activated Norbornenyl Esters-A Versatile Platform for Functional Sulfur Polymers. Angew Chem Int Ed Engl 2024; 63:e202411010. [PMID: 38895894 DOI: 10.1002/anie.202411010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.
Collapse
Affiliation(s)
- Alexander P Grimm
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Plank
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Stihl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
| | - Christian W Schmitt
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik Voll
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Jörg Lahann
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Patrick Théato
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| |
Collapse
|
12
|
Marshall CM, Molineux J, Kang KS, Kumirov V, Kim KJ, Norwood RA, Njardarson JT, Pyun J. Synthesis of Polycyclic Olefinic Monomers from Norbornadiene for Inverse Vulcanization: Structural and Mechanistic Consequences. J Am Chem Soc 2024; 146:24061-24074. [PMID: 39143005 DOI: 10.1021/jacs.4c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The preparation of high-sulfur content organosulfur polymers has generated considerable interest as an emerging area in polymer science that has been driven by advances in the inverse vulcanization polymerization of elemental sulfur with organic comonomers. While numerous new inverse vulcanized polysulfides have been made over the past decade, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers remain limited in scope. Furthermore, the exploration of new molecular architectures for organic comonomer synthesis remains an important frontier to enhance the properties of these new polymeric materials. In the current report, the first detailed study on the synthesis and inverse vulcanization of polycyclic rigid comonomers derived from norbornadiene was conducted, affording a quantitative assessment of polymer microstructure for these organopolysulfides and insights into the inverse vulcanization polymerization mechanism for this class of monomers. In particular, a stereoselective synthesis of the endo-exo norbornadiene cyclopentadiene adduct (Stillene) was achieved, which enabled direct comparison with the known exo-exo norbornadiene dimer (NBD2) previously used for inverse vulcanization. Reductive degradation of these sulfur copolymers and detailed structural analysis of the recovered sulfurated organic fragments revealed that remarkable exo-stereospecificity was achieved in the inverse vulcanization of elemental sulfur with both these polycyclic dienyl comonomers, which correlated to the robust thermomechanical properties associated with organopolysulfides made from NBD2 previously. Melt processing and molding of these sulfur copolymers were conducted to fabricate free-standing plastic lenses for long-wave infrared thermal imaging.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jake Molineux
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Vlad Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Jo Kim
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Robert A Norwood
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
- Department of Materials Science & Engineering, College of Engineering, University of Arizona, Tucson, Arizona 85719, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Jeon Y, Ahn CS, Char K, Lim J. Size Control and Antioxidant Properties of Sulfur-Rich Polymer Colloids from Interfacial Polymerization. Macromol Rapid Commun 2024; 45:e2300747. [PMID: 38652855 DOI: 10.1002/marc.202300747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Indexed: 04/25/2024]
Abstract
High sulfur content polymeric materials, known for their intriguing properties such as high refractive indices and high electrochemical capacities, have garnered significant interest in recent years for their applications in optics, antifouling surfaces, triboelectrics, and electrochemistry. Despite the high interest, most high sulfur-content polymers reported to date are either bulk materials or thin films, and there is a general lack of research into sulfur-rich polymer colloids. Water-dispersed, sulfur-rich particles are anticipated to broaden the range of applications for sulfur-containing materials. In this study, the preparation and size control parameters are presented of an aqueous dispersion of sulfur-rich polymers with the sulfur content of dispersed particles exceeding 75 wt%. Employing polymeric stabilizers with varying hydrophilic-lipophilic balance (HLB), along with changing the rank of inorganic polysulfides, allow for the control of particle size in the range of 360 nm - 1.8 µm. The sulfur-rich colloid demonstrates antioxidant properties in water, demonstrating the potential for the use of sulfur-rich polymeric materials readily removable, heterogeneous radical scavengers.
Collapse
Affiliation(s)
- Yujin Jeon
- Department of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea
- Current address: Korea Testing Laboratory (KTL), 87 Digital-ro 26-gil, Guro-gu, Seoul, 08389, Republic of Korea
| | - Chi Sup Ahn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 00826, Republic of Korea
| | - Kookheon Char
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 00826, Republic of Korea
| | - Jeewoo Lim
- Department of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
14
|
Zheng B, Zhong L, Wang X, Lin P, Yang Z, Bai T, Shen H, Zhang H. Structural evolution during inverse vulcanization. Nat Commun 2024; 15:5507. [PMID: 38951493 PMCID: PMC11217493 DOI: 10.1038/s41467-024-49374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Inverse vulcanization exploits S8 to synthesize polysulfides. However, evolution of products and its mechanism during inverse vulcanization remains elusive. Herein, inverse vulcanization curves are obtained to describe the inverse vulcanization process in terms of three stages: induction, curing and over-cure. The typical curves exhibit a moduli increment before declining or plateauing, reflecting the process of polysulfide network formation and loosing depending on monomers. For aromatic alkenes, in the over-cure, the crosslinked polysulfide evolves significantly into a sparse network with accelerated relaxation, due to the degradation of alkenyl moieties into thiocarbonyls. The inverse vulcanization product of olefins degrades slowly with fluctuated relaxation time and modulus because of the generation of thiophene moieties, while the inverse vulcanization curve of dicyclopentadiene has a plateau following curing stage. Confirmed by calculations, the mechanisms reveal the alkenyl groups react spontaneously into thiocarbonyls or thiophenes via similar sulfur-substituted alkenyl intermediates but with different energy barriers.
Collapse
Affiliation(s)
- Botuo Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Liling Zhong
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Xiaoxiao Wang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Peiyao Lin
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Zezhou Yang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Tianwen Bai
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province in Jiaxing University, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Hang Shen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China.
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
15
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Mann AK, Lisboa LS, Tonkin SJ, Gascooke JR, Chalker JM, Gibson CT. Modification of Polysulfide Surfaces with Low-Power Lasers. Angew Chem Int Ed Engl 2024; 63:e202404802. [PMID: 38501442 DOI: 10.1002/anie.202404802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The modification of polymer surfaces using laser light is important for many applications in the nano-, bio- and chemical sciences. Such capabilities have supported advances in biomedical devices, electronics, information storage, microfluidics, and other applications. In most cases, these modifications require high power lasers that are expensive and require specialized equipment and facilities to minimize risk of hazardous radiation. Additionally, polymer systems that can be easily modified by lasers are often complex and costly to prepare. In this report, these challenges are addressed with the discovery of low-cost sulfur copolymers that can be rapidly modified with lasers emitting low-power infrared and visible light. The featured copolymers are made from elemental sulfur and either cyclopentadiene or dicyclopentadiene. Using a suite of lasers with discreet wavelengths (532, 638 and 786 nm) and powers, a variety of surface modifications could be made on the polymers such as controlled swelling or etching via ablation. The facile synthesis and laser modification of these polymer systems were exploited in applications such as direct laser lithography and erasable information storage.
Collapse
Affiliation(s)
- Abigail K Mann
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Lynn S Lisboa
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Samuel J Tonkin
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Jason R Gascooke
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- Australian National Fabrication Facility, South Australia Node, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Christopher T Gibson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| |
Collapse
|
17
|
Deng Y, Huang Z, Feringa BL, Tian H, Zhang Q, Qu DH. Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides. Nat Commun 2024; 15:3855. [PMID: 38719820 PMCID: PMC11079033 DOI: 10.1038/s41467-024-48097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhengtie Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| |
Collapse
|
18
|
Gallizioli C, Battke D, Schlaad H, Deglmann P, Plajer AJ. Ring-Opening Terpolymerisation of Elemental Sulfur Waste with Propylene Oxide and Carbon Disulfide via Lithium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202319810. [PMID: 38421100 DOI: 10.1002/anie.202319810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Elemental sulfur, a waste product of the oil refinement process, represents a promising raw material for the synthesis of degradable polymers. We show that simple lithium alkoxides facilitate the polymerisation of elemental sulfur S8 with industrially relevant propylene oxide (PO) and CS2 (a base chemical sourced from waste S8 itself) to give poly(monothiocarbonate-alt-Sx) in which x can be controlled by the amount of supplied sulfur. The in situ generation of thiolate intermediates obtained by a rearrangement, which follows CS2 and PO incorporation, allows to combine S8 and epoxides into one polymer sequence that would otherwise not be possible. Mechanistic investigations reveal that alkyl oligosulfide intermediates from S8 ring opening and sulfur chain length equilibration represent the better nucleophiles for inserting the next PO if compared to the trithiocarbonates obtained from the competing CS2 addition, which causes the sequence selectivity. The polymers can be crosslinked in situ with multifunctional thiols to yield reprocessable and degradable networks. Our report demonstrates how mechanistic understanding allows to combine intrinsically incompatible building blocks for sulfur waste utilisation.
Collapse
Affiliation(s)
- Cesare Gallizioli
- Makromolekulare Chemie I, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth
| | - David Battke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin
| | - Helmut Schlaad
- Institute für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam
| | - Peter Deglmann
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein
| | - Alex J Plajer
- Makromolekulare Chemie I, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth
| |
Collapse
|
19
|
Ahmad M, Naik MUD, Tariq MR, Khan I, Zhang L, Zhang B. Advances in natural polysaccharides for gold recovery from e-waste: Recent developments in preparation with structural features. Int J Biol Macromol 2024; 261:129688. [PMID: 38280695 DOI: 10.1016/j.ijbiomac.2024.129688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
The increasing demand for gold because of its high market price and its wide use in the electronic industry has attracted interest in gold recovery from electronic waste (e-waste). Gold is being dumped as solid e-waste which contains gold concentrations ten times higher than gold ores. Adsorption is a widely used approach for extracting gold from e-waste due to its simplicity, low cost, high efficiency, and reusability of adsorbent material. Natural polysaccharides received increased attention due to their natural abundance, multi-functionality, biodegradability, and nontoxicity. In this review, a brief history, and advancements in this technology were evaluated with recent developments in the preparation and mechanism advancements of natural polysaccharides for efficient gold recovery. Moreover, we have discussed some bifunctional modified polysaccharides with detailed gold adsorption mechanisms. The modified adsorbent materials developed from polysaccharides coupled with inorganic/organic functional groups would demonstrate an efficient technology for the development of new bio-based materials for efficient gold recovery from e-waste. Also, future views are recommended for highlighting the direction to achieve fast and effective gold recovery from e-waste in a friendly and sustainable manner.
Collapse
Affiliation(s)
- Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Xian Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, 710129, China
| | - Mehraj Ud-Din Naik
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Rizwan Tariq
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, China.
| |
Collapse
|
20
|
Huang H, Zheng S, Luo J, Gao L, Fang Y, Zhang Z, Dong J, Hadjichristidis N. Step-growth Polymerization of Aziridines with Elemental Sulfur: Easy Access to Linear Polysulfides and Their Use as Recyclable Adhesives. Angew Chem Int Ed Engl 2024; 63:e202318919. [PMID: 38169090 DOI: 10.1002/anie.202318919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
The bulk radical polymerization of bis(aziridine) with molten elemental sulfur resulted in brittle, cross-linked polymers. However, when the bis(aziridine) was treated with elemental sulfur in the presence of an organobase, the ring-opening reaction of aziridine with oligosulfide anions occurred, leading to the formation of linear polymers by step-growth polymerization. These newly synthesized polymers possess repeating units containing a sulfonamide or amide functional moiety and oligosulfide bonds with an average sulfur segment of about two. A small molecular model reaction confirmed the nucleophilic addition reaction of elemental sulfur to aziridine. It was verified that S-S dynamic bond exchange takes place in the presence of an organic base within the linear chains. The mixture of the synthesized polysulfides with pyridine exhibits exceptional adhesive properties when applied to steel, and aluminum substrates. Notably, these prepared adhesives displayed good reusability due to the dynamic S-S exchange and complete recyclability due to their solution processability. This elemental sulfur-involved polymerization approach represents an innovative method for the synthesis of advanced sulfur-containing polymers, demonstrating the potential for various applications in adhesives and beyond.
Collapse
Affiliation(s)
- Huishan Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shuojia Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Jinxiang Dong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
21
|
Ghumman AS, Shamsuddin R, Alothman ZA, Waheed A, Aljuwayid AM, Sabir R, Abbasi A, Sami A. Amine-Decorated Methacrylic Acid-based Inverse Vulcanized Polysulfide for Effective Mercury Removal from Wastewater. ACS OMEGA 2024; 9:4831-4840. [PMID: 38313525 PMCID: PMC10832004 DOI: 10.1021/acsomega.3c08361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Mercury [Hg(II)] contamination is an indefatigable global hazard that causes severe permanent damage to human health. Extensive research has been carried out to produce mercury adsorbents; however, they still face certain challenges, limiting their upscaling. Herein, we report the synthesis of a novel amine-impregnated inverse vulcanized copolymer for effective mercury removal. Poly(S-MA) was prepared using sulfur and methacrylic acid employing the inverse vulcanization method, followed by functionalization. The polyethylenimine (PEI) was impregnated on poly(S-MA) to increase the adsorption active sites. The adsorbent was then characterized byusing Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). FTIR spectroscopy confirmed the formation of the copolymer, and successful impregnation of PEI and SEM revealed the composite porous morphology of the copolymer. Amine-impregnated copolymer [amine@poly(S-MA)] outperformed poly(S-MA) in mercury as it showed 20% superior performance with 44.7 mg/g of mercury adsorption capacity. The adsorption data best fit the pseudo-second-order, indicating that chemisorption is the most effective mechanism, in this case, indicating the involvement of NH2 in mercury removal. The adsorption is mainly a monolayer on a homogeneous surface as indicated by the 0.76 value of Redlich-Peterson exponent (g), which describes the adsorption nature advent from the R2 value of 0.99.
Collapse
Affiliation(s)
- Ali Shaan
Manzoor Ghumman
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- HICoE,
Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable
Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Rashid Shamsuddin
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- HICoE,
Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable
Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Zeid A. Alothman
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ammara Waheed
- Department
of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Punjab, Pakistan
| | - Ahmed M. Aljuwayid
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Rabia Sabir
- Department
of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Punjab, Pakistan
| | - Amin Abbasi
- Technology
University of the Shannon (TUS), County
Westmeath, Athlone N37 HD68, Ireland
| | - Abdul Sami
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
22
|
Lauer MK, Godman NP, Iacono ST. The Role of Dithiocarbamate Catalysts in the Diversification of Sulfur Speciation Towards Anionic Sulfur. ACS Macro Lett 2024; 13:40-46. [PMID: 38112189 DOI: 10.1021/acsmacrolett.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been growing interest in the implementation of various "catalysts" to further diversify the substrate scope for inverse vulcanization reactions. While there have been several proposals on the mechanism of how these catalysts work, the speciation of sulfur in these mixtures has remained elusive. As a key component to understanding when and if these catalysts are appropriate, we sought to elucidate the role of dithiocarbamate species in inverse vulcanization reactions by attempting to characterize the speciation of sulfur. The reaction efficacy for various substrates containing different functional groups with sulfur, either with or without a metal dithiocarbamate, potassium diethyldithiocarbamate (K-DTC), suggests the formation of a rapidly fluctuating sulfur speciation and, most importantly, the presence of anionic sulfur. The work concludes with some suggestions on best practices for the utilization of dithiocarbamate catalysts based on our results.
Collapse
Affiliation(s)
- Moira K Lauer
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- Department of Chemistry and Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
- Azimuth Corporation, Fairborn, Ohio 45324, United States
| | - Nicholas P Godman
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Scott T Iacono
- Department of Chemistry and Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| |
Collapse
|
23
|
Peng J, Tian T, Xu S, Hu R, Tang BZ. Base-Assisted Polymerizations of Elemental Sulfur and Alkynones for Temperature-Controlled Synthesis of Polythiophenes or Poly(1,4-dithiin)s. J Am Chem Soc 2023; 145:28204-28215. [PMID: 38099712 DOI: 10.1021/jacs.3c10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
With the increasing demand for functional polythiophenes in extensive applications such as organic solar cells, electronic skins, thermoelectric materials, and field effect transistors, efficient and economic synthetic approaches for polythiophenes are urgently required. In this work, KOH-assisted polymerizations of elemental sulfur and alkynones were developed to directly afford polythiophenes with various backbones, regioselective structures, and high molecular weights (Mns up to 20700 g/mol) in high yields (up to 97%) at 80 °C in 30 min. When the same polymerization was conducted at room temperature, stable and unique poly(1,4-dithiin)s (Mns up to 21800 g/mol) could be rapidly obtained in high yields (up to 87%) in 10 min. The temperature-controlled KOH-assisted polymerizations of sulfur and alkynones possessed high efficiency, mild conditions, and simple operation, which had provided an economic, efficient, and convenient approach for the direct conversion from elemental sulfur to functional polythiophenes and poly(1,4-dithiin)s with the in situ constructed aromatic or nonaromatic heterocycles embedded in the polymer backbones, demonstrating great synthetic simplicity, high efficiency, good selectivity, and robustness. It is anticipated to accelerate the development of semiconducting polymer materials and their applications.
Collapse
Affiliation(s)
- Jianwen Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Shuangshuang Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
24
|
Abstract
Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
25
|
Prioglio G, Naddeo S, Giese U, Barbera V, Galimberti M. Bio-Based Pyrrole Compounds Containing Sulfur Atoms as Coupling Agents of Carbon Black with Unsaturated Elastomers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2761. [PMID: 37887912 PMCID: PMC10608980 DOI: 10.3390/nano13202761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
In this work, the hysteresis of elastomer composites suitable for tire compounds was reduced by using CB functionalized with pyrrole compounds containing sulfur-based functional groups reactive with the elastomer chains. CB was functionalized with bio-based pyrrole compounds: 2-(2,5-dimethyl-1H-pyrrol-1-yl)ethane-1-thiol (SHP) and 1,2-bis(2-(2,5-dimethyl-1H-pyr-rol-1-yl)ethyl)disulfide (SSP), bearing an -SH and an -SS- functional group, respectively. SHP and SSP were synthesized via a one-pot two-step synthesis, with yields higher than 70%, starting from biosourced chemicals as follows: 2,5-hexanedione from 2,5-dimethylfuran, cysteine and cysteamine. The functionalization of CB was carried out by mixing the CB with PyC and heating, with quantitative yields ranging from 92 to 97%. Thus, the whole functionalization process was characterized by a high carbon efficiency. The formation of the covalent bond between SHP, SSP and CB, in line with the prior art of such a functionalization technology, was proven by means of extraction and TGA analyses. The reactivity of the sulfur-based functional groups with unsaturated polymer chains was demonstrated by using squalene as the model compound. Poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis were the elastomers employed for the preparation of the composites, which were crosslinked with a sulfur-based system. Pristine CB was partially replaced with CB/SHP (33%) and CB/SSP (33% and 66%). The PyC resulted in better curing efficiency, an increase in the dynamic rigidity of approximately 20% and a reduction in the hysteresis of approximately 10% at 70 °C, as well as similar/better ultimate tensile properties. The best results were achieved with a 66% replacement of CB with CB/SSP. This new family of reactive carbon blacks paves the way for a new generation of 'green tires', reinforced by a CB reactive with the polymer chains, which provides high mechanical properties and low rolling resistance. Such a reactive CB eliminates the use of silica, and thus the ethanol emission resulting from the condensation of silane is used as a coupling agent. In addition, CB-based tires are characterized by a higher mileage, at a moment in which the reduction in tire wear has become a primary concern.
Collapse
Affiliation(s)
- Gea Prioglio
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (G.P.); (S.N.)
| | - Simone Naddeo
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (G.P.); (S.N.)
| | - Ulrich Giese
- Deutsches Institut für Kautschuktechnologie e. V., Eupener Straße 33, 30519 Hannover, Germany;
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (G.P.); (S.N.)
| | - Maurizio Galimberti
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (G.P.); (S.N.)
| |
Collapse
|
26
|
Bao J, Martin KP, Cho E, Kang KS, Glass RS, Coropceanu V, Bredas JL, Parker WO, Njardarson JT, Pyun J. On the Mechanism of the Inverse Vulcanization of Elemental Sulfur: Structural Characterization of Poly(sulfur- random-(1,3-diisopropenylbenzene)). J Am Chem Soc 2023. [PMID: 37224413 DOI: 10.1021/jacs.3c03604] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organosulfur polymers, such as those derived from elemental sulfur, are an important new class of macromolecules that have recently emerged via the inverse vulcanization process. Since the launching of this new field in 2013, the development of new monomers and organopolysulfide materials based on the inverse vulcanization process is now an active area in polymer chemistry. While numerous advances have been made over the last decade concerning this polymerization process, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers that are produced remain challenging due to the increasing insolubility of the materials with a higher sulfur content. Furthermore, the high temperatures used in this process can result in side reactions and complex microstructures of the copolymer backbone, complicating detailed characterization. The most widely studied case of inverse vulcanization to date remains the reaction between S8 and 1,3-diisopropenylbenzene (DIB) to form poly(sulfur-random-1,3-diisopropenylbenzene)(poly(S-r-DIB)). Here, to determine the correct microstructure of poly(S-r-DIB), we performed comprehensive structural characterizations of poly(S-r-DIB) using nuclear magnetic resonance spectroscopy (solid state and solution) and analysis of sulfurated DIB units using designer S-S cleavage polymer degradation approaches, along with complementary de novo synthesis of the sulfurated DIB fragments. These studies reveal that the previously proposed repeating units for poly(S-r-DIB) were incorrect and that the polymerization mechanism of this process is significantly more complex than initially proposed. Density functional theory calculations were also conducted to provide mechanistic insights into the formation of the derived nonintuitive microstructure of poly(S-r-DIB).
Collapse
Affiliation(s)
- Jianhua Bao
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kaitlyn P Martin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Eunkyung Cho
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Richard S Glass
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Wallace O'Neil Parker
- Physical Chemistry Department, Eni, Research & Technical Innovation, ENI S.p.A., Via Maritano 26, 20097 San Donato Milanese, Italy
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
27
|
Pople JMM, Nicholls TP, Pham LN, Bloch WM, Lisboa LS, Perkins MV, Gibson CT, Coote ML, Jia Z, Chalker JM. Electrochemical Synthesis of Poly(trisulfides). J Am Chem Soc 2023; 145:11798-11810. [PMID: 37196214 DOI: 10.1021/jacs.3c03239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With increasing interest in high sulfur content polymers, there is a need to develop new methods for their synthesis that feature improved safety and control of structure. In this report, electrochemically initiated ring-opening polymerization of norbornene-based cyclic trisulfide monomers delivered well-defined, linear poly(trisulfides), which were solution processable. Electrochemistry provided a controlled initiation step that obviates the need for hazardous chemical initiators. The high temperatures required for inverse vulcanization are also avoided resulting in an improved safety profile. Density functional theory calculations revealed a reversible "self-correcting" mechanism that ensures trisulfide linkages between monomer units. This control over sulfur rank is a new benchmark for high sulfur content polymers and creates opportunities to better understand the effects of sulfur rank on polymer properties. Thermogravimetric analysis coupled with mass spectrometry revealed the ability to recycle the polymer to the cyclic trisulfide monomer by thermal depolymerization. The featured poly(trisulfide) is an effective gold sorbent, with potential applications in mining and electronic waste recycling. A water-soluble poly(trisulfide) containing a carboxylic acid group was also produced and found to be effective in the binding and recovery of copper from aqueous media.
Collapse
Affiliation(s)
- Jasmine M M Pople
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Thomas P Nicholls
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Le Nhan Pham
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Witold M Bloch
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Lynn S Lisboa
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael V Perkins
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Christopher T Gibson
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
28
|
Cherumukkil S, Agrawal S, Jasra RV. Sulfur Polymer as Emerging Advanced Materials: Synthesis and Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Sandeep Cherumukkil
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Santosh Agrawal
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| | - Raksh Vir Jasra
- Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited Vadodara Gujarat 391346 India
| |
Collapse
|
29
|
Ghumman ASM, Shamsuddin R, Sabir R, Waheed A, Sami A, Almohamadi H. Synthesis and performance evaluation of slow-release fertilizers produced from inverse vulcanized copolymers obtained from industrial waste. RSC Adv 2023; 13:7867-7876. [PMID: 36909756 PMCID: PMC9996625 DOI: 10.1039/d3ra00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
To improve crop nutrient uptake efficacy (NUE) and better manage fertilization, slow-release fertilizers (SRFs) are developed by either coating the urea granules or making a composite. Several materials have already been developed, nevertheless, scalability of those materials is still a challenge due to their inherit drawbacks (such as hydrophilicity, crystallinity, non-biodegradability, etc.). Herein, we utilized a biodegradable, green and sustainable copolymer produced from industrial waste (sulfur-petroleum industry waste and myrcene-citrus industry waste) to coat the urea using a facile coating method to develop novel SRFs and achieve better agronomic and environmental advantages. The copolymer was first synthesized using a facile, solvent-free one-pot method called inverse vulcanization followed by Fourier transform infrared spectroscopy (FTIR) analysis to confirm the successful reaction between myrcene and sulfur subsequently coating the copolymer on urea granule. The morphology and coating thickness of coated fertilizers were analysed using scanning electron microscopy (SEM), followed by a nitrogen release test in distilled water and a soil burial test to confirm the biodegradability. The nitrogen release test revealed that the SRF with the maximum coating thickness of 1733 μm releases only 16% of its total nitrogen after 4 days of incubation compared to the pristine urea which releases all its nutrient within 1 day. The soil burial test confirms the biodegradability of the copolymer, as after 50 days of incubation in soil the copolymer loses almost 18.25% of its total weight indicating that the copolymer is degrading.
Collapse
Affiliation(s)
- Ali Shaan Manzoor Ghumman
- HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia .,Chemical Engineering Department, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Rashid Shamsuddin
- HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia .,Chemical Engineering Department, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Rabia Sabir
- Department of Chemical Engineering, Wah Engineering College, University of Wah Wah Cantt 47040 Punjab Pakistan
| | - Ammara Waheed
- Department of Chemical Engineering, Wah Engineering College, University of Wah Wah Cantt 47040 Punjab Pakistan
| | - Abdul Sami
- Chemical Engineering Department, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Hamad Almohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah Madinah Saudi Arabia
| |
Collapse
|
30
|
Yang J, Yang Q, Zhao H, He L. Elastomeric Polyurethane Foam from Elemental Sulfur with Exceptional Mercury Capture Capability. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Jun Yang
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- Section for Hepato-Pancreato-Biliary Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Hui Zhao
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Lirong He
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Lai YS, Liu YL. Reaction between 1,3,5-Triisopropylbenzene and Elemental Sulfur Extending the Scope of Reagents in Inverse Vulcanization. Macromol Rapid Commun 2023; 44:e2300014. [PMID: 36790071 DOI: 10.1002/marc.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Inverse vulcanization utilizes an organic compound as reagent for crosslinking elemental sulfur to result in corresponding polymeric material with a high sulfur content. This work, employing 1,3,5-triisopropylbenzene (TIPB) as the reagent, demonstrates the first attempt on extending the scope of crosslinking agents of inverse vulcanization to saturate compounds. Under nuclear magnetic spectroscopic analysis, the reactions between TIPB and elemental sulfur take places through ring-opening reaction of S8 resulting in sulfur radicals at sulfur chain ends, radicals transferring to isopropyl groups of TIPB, and radical coupling reactions between carbon radicals and sulfur radicals. The obtained products are similar to the sulfur polymers from conventional inverse vulcanization processes and show self-healing property.
Collapse
Affiliation(s)
- Yue-Sheng Lai
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Ying-Ling Liu
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| |
Collapse
|
32
|
Zheng N, Gao H, Jiang Z, Song W. Multicomponent polymerization of sulfur, chloroform and diamine toward polythiourea. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Sperry B, Kukhta NA, Huang Y, Luscombe CK. Ligand Decomposition during Nanoparticle Synthesis: Influence of Ligand Structure and Precursor Selection. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:570-583. [PMID: 36711050 PMCID: PMC9879203 DOI: 10.1021/acs.chemmater.2c03006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Aliphatic amine and carboxylic acid ligands are widely used as organic solvents during the bottom-up synthesis of inorganic nanoparticles (NPs). Although the ligands' ability to alter final NP properties has been widely studied, side reactivity of these ligands is emerging as an important mechanism to consider. In this work, we study the thermal decomposition of common ligands with varying functional groups (amines and carboxylic acids) and bond saturations (from saturated to polyunsaturated). Here, we investigate how these ligand properties influence decomposition in the absence and presence of precursors used in NP synthesis. We show that during the synthesis of inorganic chalcogenide NPs (Cu2ZnSnS4, Cu x S, and SnS x ) with metal acetylacetonate precursors and elemental sulfur, the ligand pyrolyzes, producing alkylated graphitic species. Additionally, there was less to no ligand decomposition observed during the sulfur-free synthesis of ZnO and CuO with metal acetylacetonate precursors. These results will help guide ligand selection for NP syntheses and improve reaction purity, an important factor in many applications.
Collapse
Affiliation(s)
- Breena
M. Sperry
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Nadzeya A. Kukhta
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yunping Huang
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
- University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christine K. Luscombe
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Pi-Conjugated
Polymers Unit, Okinawa Institute of Science
and Technology, Okinawa 904-0495, Japan
| |
Collapse
|
34
|
Tufts NQ, Chiu NC, Musa EN, Gallagher TC, Fast DB, Stylianou KC. Photoactive Organo-Sulfur Polymers for Hydrogen Generation. Chemistry 2023; 29:e202203177. [PMID: 36683006 DOI: 10.1002/chem.202203177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Herein, we report the synthesis of photoactive polymeric organo-sulfur (POS) materials. These polymers absorb light in the ultraviolet/visible and near-infrared region of the solar spectrum, and upon irradiation, they reduce water to hydrogen (H2 ). The decoration of POS materials with nitrile (-CN) groups is found to be the critical factor for enhanced interactions with the co-catalyst, Ni2 P, leading to greater H2 evolution rates compared to the nitrile-free POS material.
Collapse
Affiliation(s)
- Noah Q Tufts
- Materials Discovery Laboratory (MaD Lab), Oregon State University, Corvallis, Oregon, 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Nan Chieh Chiu
- Materials Discovery Laboratory (MaD Lab), Oregon State University, Corvallis, Oregon, 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Emmanuel Nyela Musa
- Materials Discovery Laboratory (MaD Lab), Oregon State University, Corvallis, Oregon, 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Trenton C Gallagher
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Dylan B Fast
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Oregon State University, Corvallis, Oregon, 97331, United States.,Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, United States
| |
Collapse
|
35
|
Dodd LJ, Lima C, Costa-Milan D, Neale AR, Saunders B, Zhang B, Sarua A, Goodacre R, Hardwick LJ, Kuball M, Hasell T. Raman analysis of inverse vulcanised polymers. Polym Chem 2023. [DOI: 10.1039/d2py01408d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Raman analysis has been found to provide otherwise hard to obtain information on inverse vulcanised polymers, including their homogeneity, sulfur rank, and unpolymerised sulfur content.
Collapse
Affiliation(s)
- Liam J. Dodd
- University of Liverpool, School of Physical Sciences, Department of Chemistry, Crown Street, Liverpool, L697ZD, Merseyside, UK
| | - Cássio Lima
- University of Liverpool, Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Crown Street, Liverpool, L697BE, Merseyside, UK
| | - David Costa-Milan
- University of Liverpool, Stephenson Institute for Renewable Energy, Chadwick Building, Peach Street, Liverpool, L697ZF, Merseyside, UK
| | - Alex R. Neale
- University of Liverpool, Stephenson Institute for Renewable Energy, Chadwick Building, Peach Street, Liverpool, L697ZF, Merseyside, UK
| | - Benedict Saunders
- University College London, Department of Chemistry, Gower Street, London, WC1E6BT, UK
| | - Bowen Zhang
- University of Liverpool, School of Physical Sciences, Department of Chemistry, Crown Street, Liverpool, L697ZD, Merseyside, UK
| | - Andrei Sarua
- University of Bristol, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS81TL, UK
| | - Royston Goodacre
- University of Liverpool, Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Crown Street, Liverpool, L697BE, Merseyside, UK
| | - Laurence J. Hardwick
- University of Liverpool, Stephenson Institute for Renewable Energy, Chadwick Building, Peach Street, Liverpool, L697ZF, Merseyside, UK
| | - Martin Kuball
- University of Bristol, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS81TL, UK
| | - Tom Hasell
- University of Liverpool, School of Physical Sciences, Department of Chemistry, Crown Street, Liverpool, L697ZD, Merseyside, UK
| |
Collapse
|
36
|
Jia J, Liu J, Wang ZQ, Liu T, Yan P, Gong XQ, Zhao C, Chen L, Miao C, Zhao W, Cai S, Wang XC, Cooper AI, Wu X, Hasell T, Quan ZJ. Photoinduced inverse vulcanization. Nat Chem 2022; 14:1249-1257. [DOI: 10.1038/s41557-022-01049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/29/2022] [Indexed: 11/09/2022]
|
37
|
Wang D, Tang Z, Huang R, Li H, Zhang C, Guo B. Inverse Vulcanization of Vinyltriethoxysilane: A Novel Interfacial Coupling Agent for Silica-Filled Rubber Composites. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Wang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Ruoyan Huang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Haoming Li
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Chengfeng Zhang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| |
Collapse
|
38
|
Thermodynamics incompatibility-driven covalent crosslinking network in situ phase separation from biomimetic design. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Mousavi M, Zhou T, Dong Z, Fini EH. Turning abundant waste sulfur to polymers for manufacturing: Exploiting role of organic crosslinkers and benign catalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Mechanochemical synthesis of inverse vulcanized polymers. Nat Commun 2022; 13:4824. [PMID: 35974005 PMCID: PMC9381570 DOI: 10.1038/s41467-022-32344-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Inverse vulcanization, a sustainable platform, can transform sulfur, an industrial by-product, into polymers with broad promising applications such as heavy metal capture, electrochemistry and antimicrobials. However, the process usually requires high temperatures (≥159 °C), and the crosslinkers needed to stabilize the sulfur are therefore limited to high-boiling-point monomers only. Here, we report an alternative route for inverse vulcanization—mechanochemical synthesis, with advantages of mild conditions (room temperature), short reaction time (3 h), high atom economy, less H2S, and broader monomer range. Successful generation of polymers using crosslinkers ranging from aromatic, aliphatic to volatile, including renewable monomers, demonstrates this method is powerful and versatile. Compared with thermal synthesis, the mechanochemically synthesized products show enhanced mercury capture. The resulting polymers show thermal and light induced recycling. The speed, ease, versatility, safety, and green nature of this process offers a more potential future for inverse vulcanization, and enables further unexpected discoveries. Inverse vulcanization is a process that enables to convert sulfur, a by-product of the petroleum industry, into polymers. Here the authors report a synthetic method of inverse vulcanization via mechanochemical synthesis; compared to thermal routes, a broader range of monomers can be used, and the protocol yields materials with enhanced mercury capture capacity.
Collapse
|
41
|
Miao C, Yan P, Liu H, Cai S(D, Dodd LJ, Wang H, Deng X, Li J, Wang XC, Hu X, Wu X, Hasell T, Quan ZJ. Fabrication of TiN-Based Superhydrophobic Anti-Corrosion Coating by Inverse Vulcanization. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Congcong Miao
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Peiyao Yan
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Haichao Liu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou 730070, P. R. China
| | | | - Liam J. Dodd
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Haoran Wang
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Xi Deng
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Jian Li
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xiaolin Hu
- Chongqing Key Laboratory of Green Energy Materials Technology and Systems, Department of Physics and Energy, Chongqing University of Technology, Chongqing 40054, P. R. China
| | - Xiaofeng Wu
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou 730070, P. R. China
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Tom Hasell
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou 730070, P. R. China
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
42
|
Synthesis of a sulfur-containing polyHIPE from a sustainable monomer by using inverse vulcanization approach. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Pyun J, Carrozza CF, Silvano S, Boggioni L, Losio S, de Angelis AR, O'Neil Parker Jr W. Nuclear magnetic resonance structural characterization of sulfur‐derived copolymers from inverse vulcanization. Part 1: Styrene. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jeffrey Pyun
- Department of Chemistry and Biochemistry University of Arizona Tucson Arizona USA
- James C. Wyant College of Optical Sciences University of Arizona Tucson Arizona USA
| | | | - Selena Silvano
- CNR‐SCITEC, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” Milan Italy
- Department Materials Science University of Milano Bicocca Milan Italy
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Florence Italy
| | - Laura Boggioni
- CNR‐SCITEC, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” Milan Italy
| | - Simona Losio
- CNR‐SCITEC, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” Milan Italy
| | | | | |
Collapse
|
44
|
Kang K, Iyer KA, Pyun J. On the Fundamental Polymer Chemistry of Inverse Vulcanization for Statistical and Segmented Copolymers from Elemental Sulfur. Chemistry 2022; 28:e202200115. [DOI: 10.1002/chem.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kyung‐Seok Kang
- Department of Chemistry and Biochemistry University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Krishnan A. Iyer
- ExxonMobil Chemical Company 5200 Bayway Drive Baytown TX 77520 USA
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| |
Collapse
|
45
|
Worthington MJH, Mann M, Muhti IY, Tikoalu AD, Gibson CT, Jia Z, Miller AD, Chalker JM. Modelling mercury sorption of a polysulfide coating made from sulfur and limonene. Phys Chem Chem Phys 2022; 24:12363-12373. [PMID: 35552571 DOI: 10.1039/d2cp01903e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer made from sulfur and limonene was used to coat silica gel and then evaluated as a mercury sorbent. A kinetic model of mercury uptake was established for a range of pH values and concentrations of sodium chloride. Mercury uptake was generally rapid from pH = 3 to pH = 11. At neutral pH, the sorbent (500 mg with a 10 : 1 ratio of silica to polymer) could remove 90% of mercury within one minute from a 100 mL solution containing 5 ppm HgCl2 and 99% over 5 minutes. It was found that sodium chloride, at concentrations comparable to seawater, dramatically reduced mercury uptake rates and capacity. It was also found that the spent sorbent was stable in acidic and neutral media, but degraded at pH 11 which led to mercury leaching. These results help define the conditions under which the sorbent could be used, which is an important advance for using this material in remediation processes.
Collapse
Affiliation(s)
- Max J H Worthington
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia. .,College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Maximilian Mann
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia. .,College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Ismi Yusrina Muhti
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Alfrets D Tikoalu
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia. .,College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Christopher T Gibson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia. .,Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia. .,College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Anthony D Miller
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia. .,College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
46
|
Chao JY, Yue TJ, Ren BH, Gu GG, Lu XB, Ren WM. Controlled Disassembly of Elemental Sulfur: An Approach to the Precise Synthesis of Polydisulfides. Angew Chem Int Ed Engl 2022; 61:e202115950. [PMID: 35129257 DOI: 10.1002/anie.202115950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/08/2023]
Abstract
The usage of elemental sulfur (S8 ) for constructing sulfur-containing polymers is of great significance in terms of sulfur resource utilization or fabrication of high-performance polymers. Currently, the random disassembly of S8 hinders its direct use in the precise synthesis of sulfur-containing polymers. Herein, we provide an effective strategy for controlling the dismantlement of S8 to synthesize polydisulfides, a promising category of dynamic bonds containing polymers. In this strategy, the completely alternating copolymerization of one sulfur atom, which is orderly derived from S8 , with episulfides is achieved with MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) as catalyst and [PPN]SbF6 ([PPN]+ is bis(triphenylphosphine)iminium) as cocatalyst. Delightedly, the living- polymerization feature, and the good monomer compatibility allows for the access to diverse polydisulfides. Furthermore, the density functional theory (DFT) was employed to elaborate the copolymerization process.
Collapse
Affiliation(s)
- Ji-Yan Chao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Ge-Ge Gu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
47
|
Scheiger JM, Hoffmann M, Falkenstein P, Wang Z, Rutschmann M, Scheiger VW, Grimm A, Urbschat K, Sengpiel T, Matysik J, Wilhelm M, Levkin PA, Theato P. Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds. Angew Chem Int Ed Engl 2022; 61:e202114896. [PMID: 35068039 PMCID: PMC9302686 DOI: 10.1002/anie.202114896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/10/2022]
Abstract
The inverse vulcanization produces high sulfur content polymers from alkenes and elemental sulfur. Control over properties such as the molar mass or the solubility of polymers is not well established, and existing strategies lack predictability or require large variations of the composition. Systematic design principles are sought to allow for a targeted design of materials. Herein, we report on the inverse vulcanization of norbornenylsilanes (NBS), with a different number of hydrolysable groups at the silicon atom. Inverse vulcanization of mixtures of NBS followed by polycondensation yielded soluble high sulfur content copolymers (50 wt % S) with controllable weight average molar mass (MW ), polydispersity (Đ), glass transition temperature (TG ), or zero-shear viscosity (η0 ). Polycondensation was conducted in the melt with HCl as a catalyst, abolishing the need for a solvent. Purification by precipitation afforded polymers with a greatly reduced amount of low molar mass species.
Collapse
Affiliation(s)
- Johannes M. Scheiger
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Maxi Hoffmann
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Patricia Falkenstein
- Leipzig UniversityInstitute of Analytical ChemistryLinnéstrasse 304103LeipzigGermany
| | - Zhenwu Wang
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Mark Rutschmann
- Institute of Inorganic Chemistry (IAC)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Valentin W. Scheiger
- Institute of Applied Informatics and Formal Description Methods (AIFB)Karlsruhe Institute of Technology (KIT)Kaiserstrasse 8976133KarlsruheGermany
| | - Alexander Grimm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Klara Urbschat
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Tobias Sengpiel
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Jörg Matysik
- Leipzig UniversityInstitute of Analytical ChemistryLinnéstrasse 304103LeipzigGermany
| | - Manfred Wilhelm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676313Eggenstein-LeopoldshafenGermany
| | - Patrick Theato
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
- Soft Matter Synthesis Laboratory - Institute for Biological Interfaces III (IBG-3)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
48
|
Park KW, Zujovic Z, Leitao EM. Synthesis and Characterization of Disiloxane Cross-Linked Polysulfides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kun Woo Park
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Zoran Zujovic
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland 1142, New Zealand
| | - Erin M. Leitao
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
49
|
Chao J, Yue T, Ren B, Gu G, Lu X, Ren W. Controlled Disassembly of Elemental Sulfur: An Approach to the Precise Synthesis of Polydisulfides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ji‐Yan Chao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Tian‐Jun Yue
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Bai‐Hao Ren
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Ge‐Ge Gu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Xiao‐Bing Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wei‐Min Ren
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
50
|
Scheiger JM, Hoffmann M, Falkenstein P, Wang Z, Rutschmann M, Scheiger VW, Grimm A, Urbschat K, Sengpiel T, Matysik J, Wilhelm M, Levkin PA, Theato P. Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Martin Scheiger
- Karlsruher Institut fur Technologie Institute of Technical Chemistry and Polymer Chemistry Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen GERMANY
| | - Maxi Hoffmann
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | | | - Zhenwu Wang
- Karlsruhe Institute of Technology Institute of Biological and Chemical Systems GERMANY
| | - Mark Rutschmann
- Karlsruhe Institute of Technology Institute of Inorganic Chemistry GERMANY
| | - Valentin W. Scheiger
- Karlsruhe Institute of Technology Institute of Applied Informatics and Formal Description Methods GERMANY
| | - Alexander Grimm
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Klara Urbschat
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Tobias Sengpiel
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Jörg Matysik
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Manfred Wilhelm
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Pavel A. Levkin
- Karlsruhe Institute of Technology Institute of Biological and Chemical Systems GERMANY
| | - Patrick Theato
- Karlruher Institut für Technologie (KIT) Präparative Makromolekulare Chemie Kaiserstr. 12 76131 Karlsruhe GERMANY
| |
Collapse
|